
Complexity measure by ordinal matrix growth modeling

J. S. Armand Eyebe Foudaa,b, Wolfram Koepfb

aDepartment of Physics, Faculty of Science, University of Yaoundé I, P.O. Box 812,
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Abstract

We present a new approach based on the modeling of the behavior of the number
of ordinal matrices derived from time series, as a function of the embedding
dimension. We show that the number of distinct ordinal matrices can be used
for determining whether the dynamics are regular or chaotic by means of the
periodicity (µ), quasi-periodicity (α) and nonregularity (λ) index herein defined.
We verify that λ behaves similarly to the Lyapunov exponent and therefore can
be used for measuring complexity in time series whose underlying equations are
unknown. Moreover, the combination of µ, α and λ enables us to distinguish
between deterministic and stochastic data. We thus propose the variation law
of the number of ordinal matrices characterizing the random walk.
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1. Introduction

Measuring complexity from time series is crucial for understanding the in-
ternal behavior of dynamical systems, and is applied in diverse fields of research
such as physics, finance and economics, biology, and meteorology [1–4]. Among
the existing methods, ordinal pattern-based algorithms (OPA) have been shown
effective as they can be easily applied to any type of data series, and are compu-
tationally low cost. Bandt and Pompe showed in their basic paper [5] that the
permutation entropy (PE) behaves similarly to the Lyapunov exponent (LE)
for chaotic dynamics. However, in the case of regular dynamics, the PE out-
puts positive values, whereas the corresponding Lyapunov exponent is negative.
Indeed, in information theory, periodic dynamics contain no information and
their entropy therefore should be zero. The PE thus fails to characterize regular
dynamics.

In order to address this concern, improvements of the PE have been un-
dertaken [6–13]. One can particularly quote the conditional entropy of ordinal
patterns (CPE) and the permutation largest slope entropy (PLSE) [14, 15].
The first algorithm is a detection approach while the second one is a complexity
measure. The PLSE allows to detect regular dynamics with a zero entropy as
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the algorithm can handle large embedding dimensions with moderate compu-
tation time, but it cannot be considered as a complexity measure. Unakafov
and Keller showed that CPE approximates better the Kolmogorov-Sinai en-
tropy (KSE) [14]. Although the CPE lets us easily detect periodic dynamics
with a zero complexity, the required embedding dimension (n) increases as the
period of the underlying dynamics is large. Given that the required observation
time increases as n!, only periodic dynamics with small periods can be prop-
erly detected with a zero complexity. In their fast CPE algorithm for example,
Unakafov and Keller have considered only n = 8 as the largest embedding di-
mension.

Recently, we proposed the ordinal array complexity (OAC) as a generalized
approximation of the KSE by considering arrays of permutations as patterns
[16]. We showed that the possible number of ordinal arrays (OA) increases as
a power of n!. Indeed, for ordinal arrays containing m permutations of order
n, the maximum number of ordinal arrays that can be derived from a time
series is Λ0 = (n!)m. The CPE is thus obtained by setting m = 2. However,
although Λ0 is accurately determined, the number of OA that is derived from a
given observation is not known a priori and depends on the nature of the time
series. We showed for example in [15] that in the case of periodic dynamics with
nonrepeating values in the basic period, the number of ordinal patterns does
not exceed L, where L is the phase space period of the underlying time series.
In the case of chaotic dynamics, Λ depends on the complexity of the dynamics
and for large values of m, Λ = Λ0 is reached only with purely random sources.
From these observations, it then turns out that evaluating Λ can give additional
inputs for the complexity measure.

In this paper, we propose modeling the behavior of Λ in terms of m. Three
ordinal matrix-based chaos indicators (OMCI) are thus derived, namely the
periodicity, the quasi-periodicity and the nonregularity index. The nonregular-
ity index particularly behaves similarly to the Lyapunov exponent (LE), thus
taking negative values for regular dynamics and positive values for nonregular
dynamics. The other indicators help to determine whether a dynamics is peri-
odic or quasi-periodic, or even stochastic. The rest of the paper is organized as
follows: in Sect. 2 we present the modeling equation of Λ; Sect. 3 is devoted to
simulation results while some concluding remarks are given in Sect. 4.

2. Ordinal matrix-based chaos indicators

2.1. Brief recap of the ordinal matrix transform

We introduced in [16, 17] the ordinal array transform in which the time se-
ries is transformed into a series of ordinal patterns (permutations), which itself
is transformed into a series of ordinal arrays by embedding permutations. In
this section, we limit the transform to 2-dimensional arrays (matrices). Let
{xt}t=0,1,...,T−1 be a time series of length T where t is the time index. Per-
mutations of order n are obtained by sorting into increasing order the values
in embedding vectors xk =

(
xkτ0 , xkτ0+τ . . . , xkτ0+lτ , . . . , xkτ0+(n−1)τ

)
, where

k ∈ N, n is the embedding dimension (number of values in xk), τ0 ∈ N=1 is
the delay time of the embedding vectors, τ ∈ N=1 is the delay time of samples
and l + 1 the index of xkτ0+lτ in xk, l ∈ N. Let Pk be the permutation derived

from xk, with τ0 = 1. Pk =
(

1,2,3,...,n
5,n,1,...,3

)
for example is obtained by sorting the
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values of xk in ascending order, with xk+4τ < xk+(n−1)τ < xk < . . . < xk+2τ .
Identical values are sorted by ascending order of their time index.

Thereafter, we convert the pseudo-source of ordinal patterns into a set
of vectors of permutations or simply matrices. Indeed, given the set {Pk}
of ordinal patterns, we define another set {Sl} of matrices such that Sl =(
PT
l , P

T
l+τ , . . . , P

T
l+(m−1)τ

)
, where PT

l is a column vector (the transpose of Pl).

Pl is an n-length vector of positive integers in {1, 2, 3, . . . , n}, while Sl is an
n×m matrix of the same integer set, and m the number of permutations con-
sidered to form Sl. We showed in [16] that the equivalent embedding dimension
for this process is ρ = n+m− 1.

Let us consider for example a period-5 cycle orbit obtained by generating 5
distinct random numbers (0.8147, 0.9058, 0.1270, 0.9134, 0.6324) and repeating
this basic sequence K times (K > 2). The five distinct 5-order permutations
obtained by sorting the values of vectors xk, k = 0 to 4, are the following:

P0 =
(

1,2,3,4,5
3,5,1,2,4

)
; P1 =

(
1,2,3,4,5
2,4,5,1,3

)
; P2 =

(
1,2,3,4,5
1,3,4,5,2

)
, P3 =

(
1,2,3,4,5
5,2,3,4,1

)
and P4 =(

1,2,3,4,5
4,1,2,3,5

)
. The corresponding set of ordinal patterns for the whole time series is

{Pl} = {P0, P1, P2, P3, P4, P0, P1, P2, P3, P4, P0, P1, P2, . . .}. From {Pl}, one can
deduce for example the set of 5×3 matrices as {Sl} = {S0,S1,S2,S3,S4,S0, . . .},

where S0 =


3 2 1
5 4 3
1 5 4
2 1 5
4 3 2

, S1 =


2 1 5
4 3 2
5 4 3
1 5 4
3 2 1

, S2 =


1 5 4
3 2 1
4 3 2
5 4 3
2 1 5

, S3 =


5 4 3
2 1 5
3 2 1
4 3 2
1 5 4

, and S4 =


4 3 2
1 5 4
2 1 5
3 2 1
5 4 3

. Therefore, for n = 5 and m = 3, {Sl}

is a set of matrices and is also 5-periodic like the generating time series {xt}.
Choosing any other value of m ≥ 1 will output a period-5 series of matrices.

2.2. Recap of the conditional entropy of ordinal patterns

The PE as well as the conditional entropy of ordinal patterns (CPE) are
based on the statistical analysis of probability distribution of the ordinal pat-
terns. We showed in [16] that the CPE can be expressed as

h(n) = H(s)−H(n). (1)

H(n) is the Shannon entropy of the series of permutations of order n defined as

H(n) = −
∑

p(Θ) · ln(p(Θ)), (2)

where

p(Θ) =
#{k | k ≤ T − nτ, Pk = Θ}

T − nτ + 1
, (3)

is the probability of the permutation Θ and # denotes the cardinality [5]. Simi-
larly, H(s) is the Shannon entropy related to the series of n×2 ordinal matrices
S derived from the series of ordinal patterns. Instead of considering the prob-
ability distribution of the series of ordinal matrices as is done for the CPE, we
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consider exclusively its diversity, i.e the number of distinct ordinal matrices it
contains. In order words, we are not interested to the number of occurrences of
(probability) an existing ordinal matrix, but only to its existence in the series.

2.3. Particular behavior of the number ordinal matrices

The behavior of Λ depends on the nature of the time series under investi-
gation. We already know that the series of matrices derived from a periodic
dynamics is also periodic [16]. The upper limit of Λ is equal to Λmax = (n!)m

if we consider each matrix as a word of m symbols, and each of the possible
n! permutations as a distinct symbol. Therefore, the necessary data length re-
quired for an effective evaluation of the complexity of the time series also is such
that T ≫ (n!)m.

Theorem 1. Given a set {Pk} of ordinal patterns of length n, the maximum
number of distinct ordinal matrices S of size n × m that can be derived from
{Pk} is Λ0 = (n− 1)!nm.

Proof. If we consider each permutation as a distinct symbol in the ordinal matrix
S, then Λ0 = (n!)m. However, the structure of S does not allow this basic
consideration. Indeed, S is composed of positive integers ranged from 1 to
n and each of its columns contains each of the n integers once (columns are
permutations). Thus, the number of distinct columns is n!. While considering
the rows, each integer can appearm times and the number of distinct rows is nm.
Therefore, the number of distinct matrices is equal to the number of distinct
rows multiplied by the number of distinct columns, knowing one element in each
column, hence

Λ0 = (n− 1)!nm.

We can also consider that the number of distinct matrices is equal to the number
of distinct columns multiplied by the number of distinct rows, knowing one
element in each row, hence

Λ0 = n!nm−1 = (n− 1)!nm,

which ends the proof.

Theorem 2. Given an embedding dimension ρ = n + m − 1, the maximum
number of distinct ordinal matrices Λ0 satifies Λ0 < ρ!, where ρ! is the maximum
number of distinct ordinal patterns of length ρ.

Proof. We showed in Theorem 1 that Λ0 = (n − 1)!nm. By expanding ρ!, we
obtain

(n+m− 1)! = (n− 1)!
m−1∏
i=0

(n+ i).

As it is evident that

nm <
m−1∏
i=0

(n+ i),

it turns out that Λ0 < ρ!, which ends the proof.
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Theorem 2 shows that the ordinal matrix transform lets us consider large
embedding dimensions and to reduce the number of symbols of the correspond-
ing alphabet. Indeed, given a one dimensional embedding dimension ρ and the
corresponding alphabet {Pk} of ordinal patterns, one can decompose ρ into a
two dimensional embedding dimension (n,m), with ρ = n +m − 1, such that
the new alphabet {Sl} is the set of ordinal matrices. The cardinality of {Pk} is
ρ! = (n+m−1)!, whereas that of {Sl} is Λ0 = (n−1)!nm. The main advantage
of this decomposition is the possibility of reducing the data length T required for
an effective complexity measure. Instead of T ≫ ρ!, one may consider T ≫ Λ0.
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Figure 1: Particular behavior of Λ in terms of ϕ = m − 1. From top to bottom are shown
the behavior of Λ for a purely random source (Λ0), periodic (Λ1), quasi-periodic (Λ2), chaotic
(Λ3) and stochastic data (Λ4). We set T = 5× 105, n = 2 and 0 ≤ ϕ ≤ 13

Fig. 1 shows some examples of the behavior of Λ for the particular cases of
periodic, quasi-periodic, chaotic and stochastic data. The periodic and chaotic
dynamics were generated using the logistic equation

xt+1 = rxt (1− xt) , (4)

with r = 3.56 and r = 4 respectively, and x0 = 0.4. The quasi-periodic dynamics
was generated from the sine-circle map

θt+1 = Ω+ θt +
γ

2π
sin (2πθt) mod 1, (5)

with γ = 0, Ω = −1+
√
5

2 and θ0 = 0.5; while the stochastic sequence corresponds
to white noise with a Gaussian distribution. From this figure, it is evident that
Λ is bounded by Λ0 = (2)m for all four dynamics. The corresponding values are
tabulated in Table 1. In the particular case of chaotic dynamics, Λ corresponds
to the sequence of the Fibonacci numbers. Furthermore, increasing the data
length for given values of n and m does not affect the corresponding value of Λ
in the case of periodic, quasi-periodic and chaotic dynamics. This observation
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Table 1: Behavior of Λ in terms of ϕ = m − 1 for particular dynamics, n = 2, T = 5 × 105:
Λ1−4 for respectively the periodic, quasi-periodic, chaotic and stochastic data series.

ϕ 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Λ0 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384
Λ1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Λ2 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Λ3 2 3 5 8 13 21 34 55 89 144 233 377 610 987
Λ4 2 4 8 12 32 64 128 256 510 1017 2005 3923 7534 14190

clearly attests that each of these dynamics can be characterized by the behavior
of Λ. For chaotic dynamics with n = 2 for example, the behavior of Λ in terms
of m is bounded by the sequence of Fibonacci numbers: Λ(2,m) is equal to
the m-th Fibonacci number, provided T ≫ 2m. One can also observe that Λ
increases faster in the case of stochastic data than chaotic dynamics.

2.4. Modeling of the behavior of Λ as a function of m
In this section, we analyze the behavior of the number of ordinal matrices in

terms of the second embedding dimension m. While looking at Fig. 1, one can
observe three types of behavior for Λ: constant, linear and exponential behavior.
All these behaviors of Λ as shown in Fig. 1 are bounded by Λ0 and depend on
the dynamics under investigation. It then follows from this observation that
each type of dynamics can be characterized by the evolution rule of Λ compared
to Λ0. For this purpose, we suggest modeling the behavior of Λ in terms of
ϕ = m − 1 so that all the above three behaviors are taken into account. For
periodic dynamics, Λ(n, ϕ) = a0 where 1 ≤ a0 ≤ L is a positive integer related
to the period of the underlying dynamics. Λ for the quasi-periodic dynamics is
bounded by Λ(n, ϕ) = n+ ϕ. By combining the periodic and the quasi-periodic
dynamics, the modeling function can be expressed as Λ(n, ϕ) = µ(n + ϕ)α.
For this modeling function, µ = a0 and α = 0 for periodic dynamics; for quasi-
periodic dynamics, µ = α = 1. The exponential behavior can also be modeled as
an attenuated value of Λ0, i.e Λ(n, ϕ) = µ ·nλ·(ϕ+1), where λ ≤ 1. By combining
the linear and exponential models, the modeling function of Λ becomes

Λ(n, ϕ) = µ · (n+ ϕ)
α · bλ·(ϕ+1), (6)

where µ ∈ R+ is the periodicity index, α ∈ R is the quasi-periodicity index,
λ ∈ R the index of non-regularity and b ∈ R≥2 the exponential basis.

By considering the behavior of Λ = Λ0, which corresponds to a purely ran-
dom source, one can easily deduce the values of µ, α and λ by solving the
equation

µ · (n+ ϕ)
α · bλ·(ϕ+1) = Λ0. (7)

We solved this equation and found
µ = (n− 1)!
α = 0

λ = ln(n)
ln(b) .

(8)

Solving the same equation in the case of quasi-periodic dynamics with Λ(n, ϕ) =
n+ ϕ, we found  µ = 1

α = 1
λ = 0.

(9)
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For periodic dynamics, the solution is trivial µ = a0
α = 0
λ = 0,

(10)

with 1 ≤ a0 ≤ L. For the rest of the paper, we set b = exp(1). In that case,
λ0 = ln(n) is the upper limit of the nonregularity index λ.

Between the solutions presented above, there are many intermediate combi-
nations of µ, α and λ which depend on the nature of the underlying dynamics.
The appropriate solution ψ = (µ, α, λ) of Eq. (6) in that case can be determined
using least mean square interpolation, with f1(ϕ) = 1, f2(ϕ) = ln(n + ϕ) and
f3(ϕ) = ϕ+ 1 as the three basis functions. The values obtained are accurate as
T → +∞, hence the usefulness of the asymptotic behavior. In the case for ex-
ample of the particular dynamics in Fig. 1, we found respectively ψ1 = (2, 0, 0),
ψ2 = (1, 1, 0), ψ3 = (1.2453,−0.057, 0.4876), and ψ4 = (0.9228, 0.1221, 0.6685)
for the periodic, quasi-periodic, chaotic and stochastic sequence. λ is close to
its upper limit λ0 = ln(n) as the dynamics are complex. The largest complexity
value that can be estimated by this model is given in Eq. (8). Similarly to
the Lyapunov exponent, we expect that regular dynamics are characterized by
λ ≤ 0. In this way, periodic dynamics with large periods may be easily detected
as regular.

3. Simulation results

In this section, we apply the modeling of Λ to well known dynamical systems
and compare the results to the CPE and the Lyapunov exponent λLyap.

3.1. Parameter setting

Choosing the appropriate value of the embedding dimension n is crucial in
the analysis of dynamical systems. In the case of ordinal pattern analysis, n
should be as large as possible for the CPE to approximate the KSE. In practice,
the choice of n should take into account the data length T . This requirement
is also valid for the embedding dimension m of the second dimension of the
ordinal matrix. Furthermore, we need to consider at least four values of m for
the estimation error of µ, α and λ to be minimized. Therefore, the choice of the
pair C = (n,m) needs to be well balanced.

In the case of nonregular dynamics, assuming that Λ is an increasing expo-
nential function, its first difference (with respect to m) ∆mΛ(n,m) = Λ(n,m+
1)−Λ(n,m) also should be an increasing function. However, due to the limited
value of T , ∆mΛ increases up to a limit value, then decreases till zero. This
maximum value of ∆mΛ corresponds to the largest value m0 of m that can be
considered, given n and T . m0 is the first root of

∆2
mΛ(n,m) = 0, (11)

where
∆2

mΛ(n,m) = Λ(n,m+ 2) + Λ(n,m)− 2Λ(n,m+ 1) (12)

is the second difference of Λ with respect to m. Fig. 2 shows the behavior of
Λ and ∆2

mΛ in the case of the chaotic dynamics described in Fig. 1 for various
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Figure 2: Appropriate choice of n and ϕ = m − 1 for T = 5 × 104. From top to bottom are
shown the behavior of Λ and ∆2

mΛ for a chaotic time series.

Table 2: Appropriate values of n and m as well as the corresponding values of Λ for T = 5×104

in the case of the chaotic dynamics shown in Fig. 1.
n 2 3 4 5 6 7 8 9 10

m0 22 16 14 12 10 9 7 6 5
Λ(n,m0) 24170 17800 20591 20857 18554 22343 17548 19954 21963

values of n and m. The corresponding values of Λ are given in Table 2. In
practice, the optimal value of m0 is smaller than the one corresponding to
∆2

mΛ = 0. For the algorithm to be robust, we suggest to take as optimal choice
the value of m corresponding to the maximum of ∆2

mΛ(n,m). This value is
obtained by solving

∆3
m(n,m) = 0,

where

∆3
m(n,m) = Λ(n,m+ 3) + 3Λ(n,m+ 1)− 3Λ(n,m+ 2)− Λ(n,m)

is the third difference of Λ.
The optimal pair C0 = (n0,m0) also depends on the nature of the dynamics

under investigation. For periodic dynamics, large values of n (L < n < T
for example) and m can be considered for all the L possible patterns to be
observed [16]. For stochastic time series for example (T = 5 × 104), using Eq.
(11), we found respectively C0 = (2, 16), C0 = (3, 9), C0 = (4, 6), C0 = (5, 4) and
C0 = (6, 1), C0 = (7, 1), C0 = (8, 1), C0 = (9, 1). The corresponding number of
ordinal matrices are respectively 21202, 18731, 16350, 13192, 20792, 5040, 28765,
46717 and 49678. Given that only 1 ≤ m ≤ m0 is allowed for fixed n0 and T ,
and that we require at least four values of m for evaluating µ, α and λ, only
the first three pairs are allowed. We can also observe that Λ(n0,m0) <

T
2 until

the critical point C0 = (6, 1) where Λ(n0,m0) ≃ T
10 , and that Λ(n0,m0) >

T
2 for

other n0 > 6. It is then obvious that there exists also an upper limit Λmax = T
2

that should not be exceeded for an efficient estimation of µ, α and λ. Thus, for
a given T , we set n and m0 such that Λ(n,m0) ≤ T

10 .
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3.2. Detection of the period doubling route to chaos

The logistic map, described in Eq. (4), is useful for evaluating the efficiency
of time series analysis algorithms [18]. For almost all µ ∈ (0, 4] the KS entropy
either coincides with the Lyapunov exponent if it is positive or is equal to zero
otherwise [19, 20]. It has also been shown that the Lyapunov exponent for the
logistic map can be estimated rather accurately [21]. We computed the µ, α
and λ spectrum (see Fig. 3) for the logistic map and compared the results to
the CPE and the Lyapunov exponent (see Fig. 4).
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Figure 3: Spectrum of ordinal matrix indices for n = 8 and T = 5× 105. From top to bottom
are shown the behavior of µ, α and λ. m ≥ 5 is self adapting such that Λ(m) ≤ T
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Figure 4: Comparison between λLyap, h and λ presented in Fig. 3 for n = 8 and T = 5× 105.

Fig. 3 confirms that periodic dynamics are characterized by ψ = (a0 ≥
1, 0, 0), where a0 = L if L ≤ n. For some particular cases where L > n, the
dynamics is detected as ψ = (µ < 1, α > 1, λ < 0). Some examples are given
(see the zoomed region in Fig. 4) for r = 3.583, r = 3.602 and r = 3.673 whose
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periods are respectively L = 24, L = 88 and L = 20. The corresponding de-
tection results are ψ = (0.0746, 2.5191,−0.2374), ψ = (0.2734, 2.0271,−0.1401)
and ψ = (0.0213, 3.0503,−0.2875), respectively. It should be noted that for
these values of the control parameter r, both λLyap and λ are negative, whereas
h > 0 instead of h = 0.

In Fig. 4, one can notice a quite uniform bias between the LE and the
nonregularity index, whereas it is not the case for the CPE [16]. This bias can
be reduced by increasing n and T . As it is quite uniform (constant ratio between
λ and λLyap), multiplying λ by a scaling factor to be determined may also help
reduce this bias, without affecting the detection result.

3.3. Detection of regular dynamics with large periods
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Figure 5: Detection of periodic dynamics with large periods in the rotation map. The com-
parison of the spectra of λ and h shows the efficiency of the proposed algorithm compared to
the CPE. We set T = 5× 104 and n = 5.

We now discuss the case of dynamics with large periods. Such dynamics
require large embedding dimensions n for them to be detected as regular by
the ordinal patterns related entropy measures. In practice, due to the limited
data length, it is common to choose small embedding dimensions. It is well
known that the KSE of a periodic dynamical system is equal to zero. However,
the CPE in that case may output nonzero values, depending on the embedding
dimension n and the period L of the underlying dynamics. To illustrate the
efficiency of our approach, we considered the rotation map. The rotation map
is obtained by setting γ = 0 in Eq. (5). When Ω is a rational number, the map
provides a periodic behavior [14]. We used T = 5×104 as data length, n = 5 as
embedding dimension and Ω varying from 0 to 0.5, with step size ∆Ω = 10−3.
As shown on Fig. 5, all the dynamics are detected as regular by the indicators
µ, α and λ, whereas the CPE detects most of the dynamics as nonregular,
thus outputting h > 0. We verified that h(5) goes to 0 at rational numbers
whose denominators are smaller than or equal to 5, which corresponds to Ω ∈
{0, 15 ,

1
4 ,

2
5 ,

1
2}. Dynamics corresponding to these four values of Ω are clearly

detected as periodic by our approach, thus outputting respectively ψ0 = (1, 0, 0),
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ψ 1
5
= (5, 0, 0), ψ 1

4
= (4, 0, 0), ψ 2

5
= (5, 0, 0) and ψ 1

2
= (2, 0, 0). The OMCI thus

correctly detects periodic dynamics with large periods without needing large
embedding dimension n.

3.4. Detection of the quasi-periodic route to chaos

The interest for this type of dynamical system is to confirm the efficiency
of the OMCI for the detection of regular dynamics using small values of the
permutation order n. For this purpose, we have considered the sine circle map
as defined in Eq. (5). Ω is the frequency ratio parameter and γ the nonlinearity

parameter. For Ω = −1+
√
5

2 , the system is known to exhibit quasi-periodic
dynamics for 0 ≤ γ ≤ 1 [22, 23]. As in the case of the rotation map, we
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Figure 6: OMCI spectrum of the sine circle map. We set T = 5× 104, n = 5 and 0 ≤ γ ≤ 2.5
with step size ∆γ = 0.01. The comparison with the CPE shows a better performance for the
OMCI.

considered sequences of length T = 5× 105 samples and the control parameter
0 ≤ γ ≤ 2.5 varying with step size ∆γ = 0.01. We also choose θ0 = 0.4 as initial
condition and set n = 5. The corresponding results for the OMCI and the CPE
are shown in Fig. 6 from where it is confirmed that λ ≤ 0 for regular (periodic
and quasi-periodic) dynamics. We can thus conclude that chaos indicators based
on the behavior of Λ efficiently detect regular dynamics, using small embedding
dimensions, which also makes it possible to use small data lengths.

3.5. Distinguishing between deterministic and stochastic data

The combination of the three indices can also help to distinguish between
deterministic and stochastic data, provided that the different parameters are
suitably chosen. Figure 7 shows some examples of detection results obtained
for stochastic time series. Stochastic data are random sequences with a Gaus-
sian distribution, whose standard deviation is σ = 1 and mean value η̄ = 0.
From this figure, it turns out that stochastic data are characterized by ψ =
(µ→ (n− 1)!, α→ 0, λ→ ln(n)), as theoretically predicted.

In order to verify this property, we considered different values of n. Given
the the large complexity of stochastic data, increasing n imposes large values
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Figure 7: OMCI spectrum for stochastic data with Gaussian distribution. We generated 200
sequences of length T = 5 × 104 and set n = 2. For this source to be considered as purely
random, it is necessary that µ → 1 and α → 0, which is not actually the case.

of T . We thus set n ∈ {2, 3, 4} and T = 107. For comparison purpose, we
also considered a chaotic dynamics from the logistic map with r = 4. The
corresponding results are respectively ψ2 = (1.2136,−0.0224, 0.4827), ψ3 =
(2.7878, 0.0345, 0.5596) and ψ4 = (5.1711, 0.2086, 0.5759) for the chaotic dy-
namics; and ψ2 = (0.9085, 0.1283, 0.6708), ψ3 = (1.7790, 0.1192, 1.0763) and
ψ4 = (6.0059,−0.0007, 1.3863) for the stochastic data. By comparing the val-
ues of λ for the two types of dynamics, in appears that λ < ln(2) for the
chaotic dynamics, while λ for the stochastic data significantly increases with n
as λ ≃ ln(n). This high sensitivity of λ to n in the case of stochastic data may be
helpful for distinguishing between deterministic and stochastic data. It should
also be noted that for suitably chosen values of m, µ → (n − 1)! for stochastic
data and µ > (n− 1)! for chaotic data. An interesting remark is related to the
useful data length. Indeed, considering that for stochastic processes λ = ln(n),
the required data length may be set as T ≫ nm, which is much smaller than
T ≫ (n!)m and T ≫ ρ!, ρ = n+m−1 being the equivalent embedding dimension
[16]. Thus, choosing T ≫ ρ! is sufficient in some cases.

We also applied the algorithm to the random walk with T = 105 and n ∈
{2, 3, 4, 5, 6, 7, 8}. The results obtained are tabulated in Table 3. From this
table, it turns out that the random walk is characterized by λ = ln(2), α = 0
and µ = 2n−2. The evolution rule of its number of ordinal matrices can then be
expressed as

lim
T→∞

Λ(n,m) = 2n+m−2. (13)

Table 3: Characterization of the random walk by the OMCI. The data length is set to T = 105

while n ∈ {2, 3, 4, 5, 6, 7, 8}.
n 2 3 4 5 6 7 8

m0 9 8 7 6 5 5 5
µ 1 2 4 8 16 32 64

α 0 0 0 0 0 0 0
λ ln(2) ln(2) ln(2) ln(2) ln(2) ln(2) ln(2)
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By setting for example T = 69, n ∈ {2, 3, 4, 5, 6} and m = 3, we also verified
that pseudorandom data with Gaussian and uniform distributions generated
from MATLAB are characterized by λ = ln(n), α = 0 and µ = (n − 1)! as
predicted. However, while setting m > 4 and n > 4, we obtained µ < ln(n−1)!,
α > 0 and λ < ln(n), thus attesting that the complexity of the random data
series is less than that of a purely random source. We can thus confirm that a
data source is purely random only if

lim
T→∞

Λ(n,m) = (n− 1)!nm. (14)

Applying this relation to Eq. (4), it turns out that the upper limit of the CPE
for a purely random source is ln(n).

Now applying the algorithm to the “handel.mat” audio file downloaded from
MATLAB (T = 73113), we found the same result as for the Gaussian and
uniform distribution noises for n ∈ {2, 3, 4} and m = 3. While setting n = 5, we
found ψ5 = (0.0036, 6.1822, 0.4756) indicating a false detection, which clearly
attests that we need to increase the data length. However, while using the
same data length for the MATLAB pseudorandom sequences, the variation law
of Λ in Eq. (14) still remains valid. It then turns out that the audio data
sequence is much more random than the MATLAB pseudorandom sequences.
This observation shows that OMCI can also be used for classifying stochastic
data.

While considering the same parameter setting for the chaotic sequence gen-
erated from the logistic map with r = 4, we found (n − 1)! < µ < n!, α ̸= 0
and no particular relation for λ, except that λ is bounded by an upper limit
equal to ln(2). Indeed, given that the complexity of the chaotic sequence is less
than ln(2), the decrease of λ is compensated by an increase of µ, thus giving
µ > (n − 1)!. Considering these results, we propose the following classification
in Table 4 for distinguishing between deterministic and stochastic data.

Table 4: Classification of deterministic and stochastic data. OMCI values correspond to the
asymptotic behavior of the number of ordinal matrices.

Data type Stochastic Deterministic
Regular Chaotic

µ→ (n− 1)! µ > 0
Characteristics α→ 0 λ ≤ 0 α > 0

λ→ ln(n) 0 < λ < ln(n)

Given that we used the least mean square approximation for determining
the OMCI, the approximation error should also be taken into account. Such
errors can have a significant impact for example in the case of weak chaos and
some quasi-periodic dynamics where the Lyapunov exponent is close to zero.

4. Conclusion

In this paper, we presented a new algorithm based on the modeling of the
behavior of the number of distinct ordinal matrices. This approach lets us per-
form both the detection of regular dynamics and the complexity measure in
time series, as for the LE. In the case of one dimensional systems, the nonregu-
larity index λ defined here behaves similarly to the LE, thus taking negative or
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zero values for regular dynamics. We did not take into account the probability
distribution, which contributes to reducing the embedding dimension required
for detecting regular dynamics, hence to reduce the required data length com-
pared to the CPE. Simulation results show that the CPE converges faster to
the KSE for nonregular dynamics, while the nonregularity index lets us eas-
ily detect regular dynamics. We also showed that the modeling approach can
help to distinguish between chaotic and stochastic data. We proposed some
modeling behaviors of Λ for the random walk and purely random sources. The
choice of n depends on the nature of the data series under investigation. We
verified the nonregularity index tracks the LE with a uniform bias that can be
reduced by increasing the permutation order n or by defining a constant scaling
factor. This particular relationship between the LE and the nonregularity will
be investigated in a future work.
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maps, Astérisque 261 (2000) 239–252.

[21] J. Sprott, Chaos and Time-Series Analysis, Oxford University Press, Ox-
ford, 2003.

[22] J. S. A. E. Fouda, W. Koepf, Efficient detection of the quasi-periodic route
to chaos by the trhee-state test, Nonlinear Dyn. 78 (2014) 14771487.

[23] O. Afsar, G. Bagei, U. Tirnakli, Renormalized entropy for one dimensional
discrete map: Periodic and quasiperiodic route to chaos and their robust-
ness, Eur. Phys. J. 86 (2013) 307320.

15


