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Abstract. The study of trigonometric series has started at the beginning of the nineteenth century.
Joseph Fourier made the important observation that almost every function of a closed interval can
be decomposed into the sum of sine and cosine functions. This technique to develop a function into
a trigonometric series was published for the first time in 1822 by Joseph Fourier. The resulting series
is nowadays called Fourier series. Since Fourier’s time, many different approaches to understand
the concept of Fourier series have been discovered, each of which emphasizes different aspects of
the topic. Some of the more powerful and elegant approaches are based on mathematical ideas and
tools that were not available at the time Fourier completed his original work. Although the original
motivation was to solve the heat equation for a metal plate, it later became obvious that the same
technique could be applied to a wide variety of mathematical and physical problems and has many
applications in electrical engineering, vibration analysis, acoustics, optics, signal treatment, image
processing, etc . . . .

Despite the importance of Fourier series, the method used until now to compute them via
computer algebra systems (CAS) is essentially based on the same principle as in Fourier’s time, i.e.
by the evaluation of certain integrals. Unfortunately this technique is not completely successful for
many functions. Although numeric values of the Fourier coefficients might be available, symbolic
values are often not accessible. Modern CAS like Maple or Mathematica can compute such integrals
in many cases for a given n ∈ Z. However if one is interested in the Fourier coefficients for all n ∈ Z,
then n is considered as a given symbolic variable and such integrals can be computed only in few
cases.

In this paper we introduce an algorithmic approach to compute those Fourier coefficients,
involving differential equations of a particular form, and recurrence equations. This approach ex-
trapolates the computation of the Fourier series for functions for which the computation of Fourier
coefficients via the definition is out of reach for current CAS.

A holonomic recurrence equation for an, i. e. a recurrence equation which is linear, ho-
mogeneous and has polynomial coefficients, can be written in operator notation as L(an) = 0.
The operator L can be interpreted as a non-commutative polynomial via the commutator rule
Nn − nN = N , N denoting the shift operator Nan = an+1. In the last section we show how our
algorithm can be used to factorize such recurrence operators in certain cases.

Mathematics Subject Classification (2010). 33F10, 68W30.
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1. Introduction

1.1. Definitions

Definition 1.1. The real and complex Fourier series of an integrable function f : [a, b] → R are the
expressions

F(f)(t) :=
a0
2

+

∞∑
n=1

an cos(nω t) +

∞∑
n=1

bn sin(nω t) =

∞∑
n=−∞

cn e
inωt , (1.1)

where ω = 2π
b−a is the circular frequency and the corresponding real Fourier coefficients are given by

an =
2

b− a

∫ b

a

f(t) cos(nωt)dt ∈ R (n ∈ N := {0, 1, 2, 3, . . .}) , (1.2)

bn =
2

b− a

∫ b

a

f(t) sin(nωt)dt ∈ R (n ∈ N=1) , (1.3)

whereas the complex Fourier coefficients are defined as

cn =
1

b− a

∫ b

a

f(t)e−inωtdt ∈ C (n ∈ Z) . (1.4)

We remark that a finite sum of the form (1.1) is called a Fourier polynomial. Of course, by
definition we have the relations c0 = a0

2 as well as

cn =
1

2
(an − i bn) and c−n =

1

2
(an + i bn) (n ∈ N)

which—solving for an and bn—gives

an = cn + c−n and bn = i(cn − c−n) (n ∈ N=1) . (1.5)

All above formulas are also valid if f : [a, b]→ C is a complex function. However if the input function
is real, then we get moreover cn = 1

2 (an + ibn) = c−n, which—solving for an and bn—gives

an = cn + cn and bn = i(cn − cn) (n ∈ N=1) .

Under the additional assumption that f is continuous in (a, b), it turns out that pointwise F(f)(t) =
f(t) for all t ∈ (a, b). As general references for elementary properties of Fourier series see e.g. [2], [3],
[20] and [21].

Note that we will not study any convergence issues and therefore we mention that the series
(1.1) is a formal series corresponding to f(t). The problem of convergence of Fourier series has been
investigated by many authors and one of the first was Dirichlet in [6]. Since we will need to compute
successive derivatives in some of our algorithms, all the functions involved in this paper are assumed
to be defined and continuous in the interval I = [a, b] and at least N times continuously differentiable
on I for suitable N = 0. Furthermore the considered function f can be periodically continued to R
with period T = b− a. Let’s denote the resulting periodic function by F : R→ R. By definition, the
function F is continuous in R besides the points a + k T (k ∈ Z) which are (possible) discontinuities
of step size ∆ := f(a)− f(b).

1.2. Summary of the Main Results

1.2.1. Computation of Fourier Series. The symbolic computation of the Fourier coefficients of a func-
tion f using formulas (1.2)–(1.4) is in some cases very complicated, because of the integer parameter
n in those formulas. Consider for example the function given as

f(t) = cos(5t) ln(2 + cos(5t)) .
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Using the algorithms presented in this paper we get that its Fourier series (in the interval I = [0, 2π5 ])
is given by

F(f)(t) = 2(2−
√

3) + (2
√

3− 7

2
+ ln(2 +

√
3)− ln(2)) cos(5t)

+

∞∑
n=2

2(−2 +
√

3)n(
√

3 + 2n)

(n+ 1)(n− 1)
cos(5nt) .

Note that this algorithmic approach is applicable to a rich family of functions denoted trigonometric
holonomic functions, which is defined and characterized in the second chapter. Our algorithm solves
the problem of determining the complex Fourier coefficients for those functions in the following way:

1. In the first step we determine a homogeneous linear differential equation DE for f(t) with Fourier
polynomial coefficients.

2. In the second step this differential equation is converted towards a homogeneous linear recurrence
equation RE with polynomial coefficients—a so-called holonomic recurrence equation—for the
complex Fourier coefficients cn.

3. In the last step the recurrence equation RE is solved using a suitable number of initial values if
possible. This is at least possible using known algorithms if the Fourier coefficients constitute a
linear combination of hypergeometric terms. A sequence an is a hypergeometric term if an+1

an
is

a rational function w. r. t. n.

Note that this procedure imitates the FPS algorithm that was given by the first author [10] which
determines a formal power series development of a (holonomic) function. Note further that if the third
step of the above algorithm does not succeed, the result of our procedure is a holonomic recurrence
equation for cn with which the Fourier coefficients can be computed most efficiently.

We would also like to mention that most of the expansions in Fourier series given in the math-
ematical dictionaries [2] and [20] are algorithmically found by the algorithmic method described in
this paper. Furthermore we note that the Fourier coefficients of the previous function f cannot be
successfully computed by current computer algebra systems using formulas (1.2)–(1.4).

When browsing the internet for algorithmic methods and recurrence relations for Fourier coef-
ficients, one finds the paper [13] about Recurrence relations for the coefficients of the Fourier series
expansions with respect to q-classical orthogonal polynomials and the PhD thesis [1] about Fast
semi-numerical algorithms for Chebyshev expansions. Both papers deal with certain generalizations of
Fourier series, namely with questions concerning other bases than the traditional trigonometric one.
On the other hand, we could not find algorithmic results on “traditional” Fourier series. Therefore to
the best of our knowledge the algorithms in our paper are new and were introduced 2010 in the PhD
thesis [15].

1.2.2. Factorization of Holonomic Recurrence Operators. The search for hypergeometric term solu-
tions of holonomic recurrence equations is related to the search of first order right factors of holonomic
recurrence operators, more generally to the factorization of those operators. Marko Petkovšek [16],
Mark van Hoeij [8], Peter Horn [9] and others investigated this issue and made important contributions
to the factorization of such operators. In the last section we give another approach to factorize such
operators, by using Fourier coefficients.

1.3. Outline of the Paper

In the second section we derive a connection between the complex Fourier coefficients of a function f
and those of its first derivative (Theorem 2.1). This connection implies a more general statement, this
time between the complex Fourier coefficients of f and those of its successive derivatives (Theorem
2.2), from which an explicit formula for the complex Fourier coefficients of polynomials involving
successive derivatives is deduced. This theorem will also be used in the third section to convert the
differential equations for f obtained in the second section into recurrence equations for cn (Theorem
4.5).
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In the third section we introduce the set of trigonometric holonomic functions and we give some
of its characteristics and properties. This family contains not only many elementary functions, but
also many functions whose Fourier coefficients cannot be successfully computed in the classical way.
We give some example types of trigonometric holonomic functions. We present an algorithm for the
computation of the trigonometric holonomic differential equations that those functions satisfy.

The fourth section is devoted to the algorithmic computation of the Fourier coefficients.
The fifth section deals with the factorization of holonomic recurrence operators. We present an

algorithm to convert a holonomic recurrence equation into a differential equation with side conditions.
This algorithm can be used to compute right factors of given holonomic recurrence operators.

2. Some Particular Cases

In this section we derive an identity for the Fourier coefficients of a differentiable function f(t) in terms
of the Fourier coefficients of its derivative f ′(t). This yields an algorithm to compute the Fourier coef-
ficients of f(t) whenever the Fourier coefficients of f ′(t) are known, and vice versa. Furthermore this
generates an iterative scheme for N times differentiable functions complementing the direct computa-
tion of Fourier coefficients via the defining integrals which can also be treated automatically in certain
cases, see [22] using Maple [14] and [5] using Mathematica [23]. As direct consequence of that scheme
we deduce an explicit formula for the computation of the complex Fourier coefficients of polynomials.
In the third section we will use that scheme to present an algorithm for the computation of the com-
plex Fourier coefficients of the set of trigonometric holonomic functions which will be introduced in
the next section.

2.1. Notation

Let f : [a, b]→ R be a continuous function in the interval I = [a, b] which is continuously differentiable
in (a, b). Then f ′ is continuous and has a Fourier series itself, for which we use the following notations

F(f ′)(t) =
a′0
2

+

∞∑
n=1

a′n cos(nω t) +

∞∑
n=1

b′n sin(nω t) =

∞∑
n=−∞

c′n e
inωt ,

i.e., the Fourier coefficients of the derivative function are denoted by dashes. If f ∈ CN [a, b], then we
can continue taking derivatives, and for the kth derivative (k 5 N) we use the notation

F(f (k))(t) =
a
(k)
0

2
+

∞∑
n=1

a(k)n cos(nω t) +

∞∑
n=1

b(k)n sin(nω t) =

∞∑
n=−∞

c(k)n einωt .

2.2. An Identity for Fourier Coefficients

Let us recall that the complex Fourier coefficients cn of a continuous function f in an interval [a, b]
are given by the equation

cn =
1

b− a

∫ b

a

f(t)e−in
2π
b−a tdt =

1

T

∫ a+T

a

f(t)e−inωtdt ,

where b− a = T = 2π
ω . Integrating by parts, using u(t) = f(t), v′(t) = e−inωt, hence u′(t) = f ′(t) and

v(t) = 1
−inω e

−inωt, we get

cn =

[
f(t)e−inωt

−inωT

]a+T
a

+
1

T

∫ a+T

a

f ′(t)e−inωt

inω
dt

=
f(a+ T )e−inω(a+T ) − f(a)e−inωa

−inωT
+

1

inω

(
1

T

∫ a+T

a

f ′(t)e−inωtdt

)

=
f(a+ T )− f(a)

−2πin
e−inωa − i

nω
c′n .
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In particular, we have derived the identity

cn +
i

nω
c′n =

i

2πn
(f(b)− f(a))e−inωa (n 6= 0) . (2.1)

As we shall discuss later, this easy-to-derive relation has interesting applications, and can be used to
compute the complex Fourier coefficients recursively under certain conditions, and therefore an and
bn via (1.5). We summarize the above identity in the following

Theorem 2.1 (Fourier coefficients and derivatives). Let f : [a, b] → R be continuous in [a, b] and
continuously differentiable in (a, b). Then the real and complex Fourier coefficients of f(t) and of f ′(t)
satisfy the identities

cn +
i

nω
c′n =

i

2πn
(f(b)− f(a))e−inωa (n ∈ Z, n 6= 0)

and

an +
1

nω
b′n =

1

πn
(f(b)− f(a)) sin(nωa) and

−bn +
1

nω
a′n =

1

πn
(f(b)− f(a)) cos(nωa) (n ∈ N=1) ,

respectively.

2.3. Iterated Derivatives

In this section, we assume that f ∈ CN [a, b] for some N ∈ N=1. Then by Theorem 2.1 we can write

down a series of identities for successive derivatives of f . Using (2.1), we get for the complex Fourier
coefficients and for n ∈ Z, n 6= 0

cn +
i

nω
c′n =

i

2πn
(f(b)− f(a))e−inωa

c′n +
i

nω
c′′n =

i

2πn
(f ′(b)− f ′(a))e−inωa

c′′n +
i

nω
c(3)n =

i

2πn
(f ′′(b)− f ′′(a))e−inωa

...

c(N−1)n +
i

nω
c(N)
n =

i

2πn
(f (N−1)(b)− f (N−1)(a))e−inωa .

In order to manipulate the previous relations easier, let us rewrite them in the following way:

cn + τ c′n = α0

c′n + τ c′′n = α1

c′′n + τ c(3)n = α2

...

c(N−1)n + τ c(N)
n = αN−1

with the abbreviations τ = i
nω and αk = i

2πn (f (k)(b)− f (k)(a))e−inωa.

Multiplying the kth equation by (−1)k τk and summing up obviously yields a telescoping sum
with the result

cn = α0 − τα1 + τ2α2 − τ3α3 + · · ·+ (−1)N−1τN−1αN−1 + (−1)NτNc(N)
n

which finally leads to the following
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Theorem 2.2 (Fourier coefficients and iterated derivatives). For f ∈ CN [a, b] and ω = 2π
b−a , the

following identities for the complex Fourier coefficients are valid (n ∈ N):

cn − (
−i
nω

)Nc(N)
n =

N−1∑
j=0

(−1)j(b− a)j(
i

2nπ
)j+1(f (j)(b)− f (j)(a))e−inωa , (2.2)

c
(N)
0 =

1

b− a
(f (N−1)(b)− f (N−1)(a)) .

Since a polynomial f(t) of degree N satisfies f (N)(t) = constant, and therefore c
(N)
n = 0 for n ∈ N=1,

Theorem 2.2 implies the following

Corollary 2.3 (Fourier coefficients of polynomials). Let f : [0, T ] → R resp. [−T2 ,
T
2 ] → R be a

polynomial of degree N . Then the complex Fourier coefficients of f can be written in the form (n ∈
Z, n 6= 0)

cn =

N−1∑
k=0

(−1)k
(
Ti

2πn

)k
i

2πn
(f (k)(T )− f (k)(0)) .

resp.

cn =

N−1∑
k=0

(−1)k+n
(
Ti

2πn

)k
i

2πn

(
f (k)

(
T

2

)
− f (k)

(
−T

2

))
. (2.3)

Note that the computation of the Fourier coefficients of tm, e.g., using (2.3) is much more efficient
than the computation using the definition.

Remark 2.4. For many functions, the computation of their Fourier coefficients in an interval [a, b]
via definitions (1.2)–(1.4) is not successful using current CAS. However, if one can compute the
Fourier coefficients of one of their successive derivatives, then Theorem 2.2 outlines the computation
of the Fourier coefficients of the foresaid function. We summarize this process in Algorithm 1. In this
algorithm we apply the above method up to derivative order N .

Algorithm 1: Computation of the Fourier coefficients cn of a function from those of one of its

successive derivatives c
(m)
n .

input : A function f ∈ CN [a, b] such that the computation of its Fourier coefficients in an interval
[a, b] is not successful, but one can compute those of one of its successive derivatives.

output : The complex Fourier coefficients of f in the interval [a, b] or the message “the complex
Fourier coefficients of f cannot be computed using this algorithm”.

1 begin
2 m← 1.

3 while m 5 N do

4 Compute the complex Fourier coefficients of f (m).

5 if the computation is successful then
6 use relation (2.2) to achieve the computation of the Fourier coefficients of f . The

coefficient c0 must be computed independently.
7 return the complex Fourier coefficients of f in the interval [a, b].

8 end

9 m← m+ 1.

10 end

11 The complex Fourier coefficients of f cannot be computed using this algorithm.

12 end
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Example 2.5. Consider the function defined by

f(t) = arctan(2 + cos(t)eit) .

The complex Fourier coefficients of f cannot be successfully computed using formulas (1.2)–(1.4).1

However we remark that the function under consideration belongs to the set of trigonometric holonomic
functions which will be defined in the next section. Moreover, its first derivative f ′ is a rational
trigonometric function. Using Algorithm 3 which will be presented in the fourth section, we can
compute the Fourier coefficients of f ′ and finally using Algorithm 1, we deduce those of f and get

cn =


−i
n

(
1+(−1)n

2

) (
( 1
29

√
−145 + 58i)n − ( 1

29

√
−145− 58i)n

)
n = 1

arctan
(
5
2

)
if n = 0

0 otherwise .

3. Trigonometric Holonomic Functions

In this section we introduce the set of trigonometric holonomic functions TH for which we will present
an algorithm to compute their Fourier coefficients in the next section. We will present some particular
subsets of TH. Then we will give some algebraic properties of TH, focussing on the aspects concerning
the aims of this paper.

3.1. Notations and Definitions

Let K denote a field of characteristic zero, and K?=K \ {0}. For simplification purposes we write
K[cos(t), sin(t)] for the set of trigonometric polynomials instead of K[x, y]/〈x2 + y2 − 1〉 and anal-
ogously in similar cases. We will also understand cos(2t), e. g., by the relation cos(2t) = cos(t)2 −
sin(t)2 as a member of Q[cos(t), sin(t)]. It is well-known that every trigonometric polynomial p =
I∑
i=0

J∑
j=0

aij cosi(t) sinj(t) ∈ K[cos(t), sin(t)] can be written as a Fourier polynomial in the form
K∑
k=0

(ak cos(kt)+

bk sin(kt)) and vice versa via the following addition theorems

cos(t± u) = cos(t) cos(u)∓ sin(t) sin(u)

sin(t± u) = sin(t) cos(u)± cos(t) sin(u)

and for recursive use
cos(kt) = cos((k − 1)t) cos(t)− sin((k − 1)t) sin(t)

and
sin(kt) = sin((k − 1)t) cos(t) + cos((k − 1)t) sin(t) ,

and for the backward process the substitution rules

cos(t) cos(u) =
1

2
cos(t− u) +

1

2
cos(t+ u)

sin(t) cos(u) =
1

2
sin(t− u) +

1

2
sin(t+ u)

sin(t) sin(u) =
1

2
cos(t− u)− 1

2
cos(t+ u)

and for recursive use

cosk(t) =

(
1

2
+

1

2
cos(2t)

)
cosk−2(t) (k = 2)

and

sink(t) =

(
1

2
− 1

2
cos(2t)

)
sink−2(t) (k = 2) .

1Maple is not even able to compute c0 when using f as defined. The value c0 was therefore computed using a suitable
rewriting.
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For more details about this conversion see e. g. ([11], Section 9).
We recall also that the sum f = f1 + f2 + · · · + fn of a finite sequence of periodic functions

{f1, f2, . . . , fn} is periodic if and only if their periods T1, T2, . . ., Tn, respectively are commensurable.
The commensurability of T1, T2, . . . , Tn means that there exist n integers N1, . . . , Nn such that

N1T1 = N2T2 = · · · = NnTN . (3.1)

It follows from (3.1) that a period of f is T = N1T1 = N2T2 = · · · = NnTN .

Definition 3.1 (Trigonometric holonomic functions). Let ω 6= 0 be a given real number. By TH(ω) we
denote the set of ω-trigonometric holonomic functions, i. e. the set of functions satisfying a differential
equation of the form

P∑
p=0

L∑
l=0

(αpl cos(lωt) + βpl sin(lωt)) f (p)(t) = 0 (3.2)

for appropriate integers P = 1 and L = 0, where αpl and βpl are constants.
A function f is said to be trigonometric holonomic if there exist ω ∈ R? such that f ∈ TH(ω). By TH
we denote the set of those functions, i.e.

⋃
TH(ω) = TH.

Differential equations of the form (3.2) are called trigonometric holonomic differential equations.

Definition 3.2 (Type). A function f ∈ TH(ω) is said to be of type L(ω) if L is the smallest non-negative
integer for which it satisfies a differential equation of the form (3.2).

Note that the type is important since it gives a priory information about the resulting holonomic
recurrence equation for the corresponding Fourier coefficients as we shall see in Theorem 4.5.

Definition 3.3 (Degree). A trigonometric holonomic differential equation is said to be of degree P if
P is the smallest positive integer appearing in its representation (3.2). Let f be a function of TH(ω).
The smallest integer P for which f satisfies a differential equation of the form (3.2) is called the degree
of f in TH(ω).

Example 3.4. The following differential equation

DE1 : (sin(2
√

7t) + 2)f(t) + 5f ′(t) + (3 + cos(4
√

7t))f ′′(t) = 0

is a trigonometric holonomic differential equation, since its non-constant coefficients sin(2
√

7t) + 2

and 3 + cos(4
√

7t) are periodic with commensurable periods. It is of degree 2, and of type 4 w. r. t.

ω =
√

7, but of type 2 w. r. t. ω = 2
√

7
But

DE2 : (sin(8t) + cos(16t))f(t) + (cos(
√

3t) + 3)f ′(t) + 5f ′′′(t) = 0

is not a trigonometric holonomic differential equation, since the periods of its non-constant coefficients
sin(8t) + cos(16t) and cos(

√
3t) + 3 are not commensurable.

Algorithm 2—given on p. 10—which is based on linear algebra, is decisive since it shows how a
trigonometric holonomic differential equation of a trigonometric holonomic function can be computed.
This algorithm is an adaption of an algorithm given in ([10], see also [11]) for the computation of a
holonomic differential equation. After substituting all derivatives, the left hand side of (3.2) is zero if
and only if the coefficients of the linearly independent summands have all zero coefficients. This leads
to a system of linear equations which can be solved for the unknowns αpl, βpl ∈ C (l = 0, . . . , L, p =
0, . . . , P ). If P and L are chosen large enough such that the number of variables is = than the number
of equations, the corresponding homogeneous linear system has a solution.

Of course the algorithm can be executed in such a way that either the type or the degree of the
resulting differential equation is minimized. For the most efficient computation of Fourier coefficients
it will be best to minimize the type, not the degree, see Theorem 4.5. Note that if the input function
is not trigonometric holonomic, then Algorithm 2 does not terminate.
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Example 3.5. We would like to give an example for the computation of a trigonometric differential
equation. Let

f(t) =
1

cos t+ 2
.

Then

f ′(t) =
sin t

(cos t+ 2)2

so that with P = L = 1 we get

0 =

1∑
p=0

1∑
l=0

(αpl cos(lt) + βpl sin(lt)) f (p)(t)

= (α00 + α01 cos t+ β01 sin t) f(t) + (α10 + α11 cos t+ β11 sin t) f ′(t)

= (α00+α01 cos t+β01 sin t)
1

cos t+2
+ (α10+α11 cos t+β11 sin t)

sin t

(cos t+2)2

=
1

(cos t+ 2)2

(
α00(cos t+2) + α01(cos2 t+2 cos t) + β01(sin t cos t+2 sin t) +

α10 sin t+ α11 sin t cos t+ β11 sin2 t
)

=
1

(cos t+ 2)2

((
2α00 +

1

2
α01 +

1

2
β11

)
+ (α00 + 2α01) cos t+(

1

2
α01 −

1

2
β11

)
cos(2t) + (2β01 + α10) sin t+

(
1

2
β01 +

1

2
α11

)
sin(2t)

)
.

Note that in the last step conversion towards a Fourier polynomial took place. This is essential to
guarantee linear independence (stemming from the fact that the representation of a trigonometric
polynomial as a Fourier polynomial is a canonical form, see e. g. [11]). Solving the linear system by
equating the coefficients of this expression yields the differential equation

(2 + cos t)f ′(t)− sin t f(t) = 0

which is unique up to a constant factor.

Example 3.6. We would like to give some more examples of trigonometric differential equations. For
f(t) = sin t

cos t+2 , we get the differential equation

(cos(t) + 2) f ′′(t)− 2 sin(t) f ′(t) + 2 f(t) = 0

of type 1, as well as the differential equation

(4 sin(t) + sin(2 t)) f ′(t)− 2 (2 cos(t) + 1)f(t) = 0

of degree 1.
As a more complicated example, we consider the function

f(t) = arctan(2 + cos(t)eit) = arctan(2 + cos(t)(cos(t) + i sin(t)))

from Example 2.5, again. It turns out that f satisfies the trigonometric holonomic differential equation

(14 i sin(2 t)− 15 cos(2 t)− 5) f ′′(t) + (28 i cos(2 t) + 30 sin(2 t)) f ′(t) = 0 .

The type of f(t) =
5∑
k=1

sin(kt) is 0 with the corresponding differential equation

f (10)(t) + 55 f (8)(t) + 1023 f (6)(t) + 7645 f (4)(t) + 21076 f ′′(t) + 14400 f(t) = 0

and its degree is 3 with

sin(t)f ′′′(t) + (cos(t) + 2)f ′′(t) + 30 sin(t)f ′(t) + 30f(t) = 0 .
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3.2. Functions Satisfying Differential Equations with Coefficients in K[eiωt, e−iωt]

For a given ω ∈ R? one can convert a trigonometric holonomic differential equation (as we have defined
until now) into a differential equation with coefficients in K[e−iωt, eiωt] and conversely. In this section
we will emphasize on differential equations whose coefficients are linear polynomials of either e−iωt or
eiωt exclusively. As we will see in the next section, the particular importance of that type of differential
equations is that they lead to first order holonomic recurrence equations for the Fourier coefficients of
the considered function in an interval of length T , where ω is chosen according to ω = 2π

T . We remark
that such recurrence equations (of first order) do not result once the coefficients of the considered
differential equation are not of the foresaid form.

Theorem 3.7. For a given ω ∈ R?, functions satisfying a differential equation of the form

P∑
p=0

L∑
l=0

(
γple

−ilωt + δple
ilωt
)
f (p)(t) = 0 (3.3)

for appropriate integers P = 1, L = 0, where γpl and δpl ∈ C are ω-trigonometric holonomic functions.

Proof. Using Euler’s identity the proof is obvious. �

Algorithm 2: Determination of a trigonometric holonomic differential equation for a trigono-
metric holonomic function

input : A real number ω = 2π
b−a , a function f ∈ TH(ω) such that f ∈ C(N)[a, b] for N large

enough, a value Lmax as maximal type, and a value Pmax as maximal degree.
output : A differential equation satisfied by f in the form either (3.2) or (3.3).

1 begin
2 for L = 0 to Lmax do
3 for P = 1 to Pmax do
4 if f contains expressions of the form e±iωt where ω = 2π

b−a then

5 search for coefficients γpl and δpl such that the equation

6
P∑
p=0

L∑
l=0

(
γple

−ilωt + δple
ilωt
)
f (p)(t) = 0 is valid.

7 else
8 search for coefficients αpl and βpl such that the equation

9
P∑
p=0

L∑
l=0

(αpl cos(lωt) + βpl sin(lωt)) f (p)(t) = 0 is valid

10 end

11 if the search is successful then
12 return the differential equation of f in the form either (3.2) or (3.3).

13 end

14 end

15 end

16 end

Definition 3.8. The set of functions satisfying trigonometric holonomic differential equations leading
to first order recurrence equations for their complex Fourier coefficients are called simple trigonometric
holonomic functions (sTH). The coefficients of such trigonometric holonomic differential equations are
linear polynomials of either eiωt or e−iωt, but not of both.

Example 3.9. Set ω = 1 and consider the function defined by

f(t) = eie
it

.

f satisfies the differential equation

DE : eitf(t) + f ′(t) = 0 ,
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from which it follows that f is of degree 1 in TH(1). Moreover, f ∈ sTH, see Example 4.8.

3.3. Example Types of Trigonometric Holonomic Functions

The set of trigonometric holonomic functions is rich and contains, in particular, the following types.

3.3.1. Polynomials. The following theorem is trivial:

Theorem 3.10. For all ω ∈ R?, the set K[t] of polynomials is a subset of TH(ω) and each polynomial
f of degree N is of type 0 and of degree N + 1 in TH(ω).

3.3.2. Exp-like Functions. We call a function exp-like if it satisfies a differential equation with constant
coefficients, see [10], i.e. a differential equation of the form

anf
(n)(t) + an−1f

(n−1)(t) + · · ·+ a2f
′′(t) + a1f

′(t) + a0f(t) = 0, (3.4)

an 6= 0, ak ∈ K (k = 0, . . . , n) .

According to the solution theory of ordinary differential equations exp-like functions can be classified
and are products of polynomials, exponentials, sines and cosines, and linear combinations of such
functions. Of course we have

Theorem 3.11. Every exp-like function f lies in TH(ω) for every ω ∈ K∗ and has type 0.

3.3.3. Rational Trigonometric Functions. We get

Theorem 3.12. For all ω ∈ R? the set of rational trigonometric functions K(cos(ωt), sin(ωt)) is a
subset of TH(ω) and each function of K(cos(ωt), sin(ωt)) is of degree at most 1 in TH(ω).

Proof. Let f ∈ TH(ω). Hence f(t) = p(t)
q(t) with p(t), q(t) ∈ K[cos(t), sin(t)]. Differentiation yields

p(t) = q(t) f(t)

p′(t) = q′(t) f(t) + q(t) f ′(t) .

Multiplying the first line by p′(t) and the second line by p(t) and subtracting yields a first order
trigonometric holonomic differential equation. �

Example 3.13. Note that every rational trigonometric function R(cos(ωt), sin(ωt)) not only satisfies
a trigonometric differential equation, but its complex Fourier coefficients satisfy a linear recurrence
equation with constant coefficients. This can be seen as follows:2 W. l. o. g. we assume that ω = 1.
Using Euler’s formula and the variable z = eit we can write

x = cos t =
1

2

(
z +

1

z

)
and y = sin t =

1

2i

(
z − 1

z

)
.

Then

r(z) := R(x, y) = R

(
1

2

(
z +

1

z

)
,

1

2i

(
z − 1

z

))
∈ K[i](z)

is a rational function of the variable z. To compute the complex Fourier coefficient cn of R we write

r(z) =
p(z)

q(z)

with gcd(p(z), q(z)) = 1. Assume p(z) =
∑P
k=0 pkz

k and q(z) =
∑Q
k=0 qkz

k, then we can write

Q∑
k=0

qke
iktr(eit) =

P∑
k=0

pkz
k ,

and multiplying by 1
2π e
−itn and integrating from t = 0, . . . , 2π, we get the recurrence equations

Q∑
k=0

qkcn−k = 0 for n < 0 and n > P (3.5)

2We would like to thank an anonymous reviewer of a preliminary version of this paper for these important comments.
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and
Q∑
k=0

qkcn−k = pn for 0 5 n 5 P . (3.6)

That makes the rational trigonometric functions very special. Of course the above algorithm can be
implemented, and this can yield a formula for the complex Fourier coefficients. We would like to give
the following comments on this approach. In the next section we will show that the Fourier coefficients
of all functions in TH satisfy a holonomic recurrence equation, i. e. a homogeneous linear recurrence
equation with polynomial coefficients. Let’s call the latter recurrence REhol, and the recurrence of
type (3.5)–(3.6) REconst. It turns out that

• In most cases the recurrence REconst has much higher order than the holonomic recurrence
equation REhol. This is the bottleneck since many more initial values have to be computed.
• To find a formula for the complex Fourier coefficients by solving REconst, one must factorize the

polynomial
∑Q
k=0 qk z

k ∈ K[z]. If this polynomial does not have a complete factorization into
linear factors in K, we have to work in algebraic extension fields which makes the algorithm
typically very slow.
• The holonomic recurrence equation REhol often has low order and can be (independently of the

order) algorithmically solved very efficiently using van Hoeij’s algorithm ([12, Chapter 9], [8] and
[4]), often without introducing algebraic numbers.

That’s why we don’t give further details about the above algorithm. However we will give a typical
example for the recurrence REconst together with an efficiency consideration in Example 4.10.

We finish this subsection with

Theorem 3.14. The set of functions of the form g(t)·h(t) where g(t) is exp-like and h(t) ∈ K(cos(ωt), sin(ωt))
is a subset of TH(ω).

3.4. Some More Example Types of Trigonometric Holonomic Functions

By Euler’s identity, from Theorem 3.11 we may deduce the following theorem.

Theorem 3.15. The set K[t, e−αt, eβt, e−iγt, eiδt] where α, β, γ, δ ∈ R is a subset of TH(ω) for all
ω ∈ R?. Each of its functions is of type 0 in TH(ω).

Example 3.16. Consider the function defined by

f(t) = t sin(t)e3it + 3eit cos(t)

f is a solution of the following complex differential equation

−64if ′(t) + 96f ′′(t) + 52if ′′′(t)− 12f (4)(t)− if (5)(t) = 0 .

From Theorem 3.12 we may also deduce the following.

Theorem 3.17. The set K(e−iωt, eiωt) is a subset of TH(ω) and each function of K(e−iωt, eiωt) is of
degree 1 in TH(ω).

Furthermore, we have

Theorem 3.18. K(cos(ωt), sin(ωt), e−iωt, eiωt) is a subset of TH(ω).

We deduce from Theorem 3.14 that

Theorem 3.19. Functions of the form g(t) · h(t) where g(t) is exp-like and h(t) ∈ K[e−iωt, eiωt] are
contained in TH(ω).

Remark 3.20. We cannot give a complete list of families of functions satisfying a differential equation
either of the form (3.2) or (3.3). In the following example we list some functions whose form has not
been mentioned previously.
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Example 3.21. 1. Consider the function

f(t) = arctan(2 + eit) ∈ TH(1) .

f is solution of the trigonometric holonomic differential equation

DE : (−eit + 5e−it)f ′(t) + i(4 + 5e−it + eit)f ′′(t) = 0 .

We deduce that f is of degree 2 in TH(1).
2. Consider now the function

f(t) =

√
eit + 3

eit + 2
∈ TH(1) .

f satisfies the trigonometric holonomic differential equation

i(4 + eit)f(t) + (10 + 12e−it + 2eit)f ′(t) = 0 .

f is of type 1 and of degree 1 in TH(1).

3. Set ω =
√

7 and consider the function

f(t) = cos(
√

7t) ln(2 + sin(
√

7t)) .

f satisfies the trigonometric holonomic differential equation

98
√

7(4 + 3 sin(
√

7t))f(t) + 343 cos(
√

7t)f ′(t) + 7
√

7(10 + 3 sin(
√

7t))f ′′(t)

+21 cos(
√

7t)f ′′′(t) +
√

7(2 + sin(
√

7t))f (4)(t) = 0

from which we deduce that f ∈ TH(
√

7).

3.5. A Function Which is not Trigonometric Holonomic

In this section we give an example of a function which is not trigonometric holonomic. W.l.o.g. we
may assume that ω = 1. We will show that the rational function f(t) = 1

t is not a trigonometric
holonomic function.

Proof. We use a proof by contradiction. Let us assume that f is a trigonometric holonomic function.
Then there exist integers P = 1 and L = 0 and coefficients αpl and βpl for which f satisfies a differential
equation of the form (3.2). At least one of αpl and βpl is non-vanishing. The successive derivatives of

f are given by f (p)(t) = (−1)pp!
tp+1 . The substitution of those derivatives in (3.2) leads to

P∑
p=0

L∑
l=0

(αpl cos(lt) + βpl sin(lt))
(−1)pp!

tp+1
= 0⇐⇒

1

t

L∑
l=0

(α0l cos(lt) + β0l sin(lt))− 1

t2

L∑
l=0

(α1l cos(lt) + β1l sin(lt)) + · · ·

+
(−1)PP !

tP+1

L∑
l=0

(αPl cos(lt) + βPl sin(lt)) = 0 .

Multiplying the previous equation by tP+1 we get

tP
L∑
l=0

(α0l cos(lt) + β0l sin(lt))− tP−1
L∑
l=0

(α1l cos(lt) + β1l sin(lt)) + · · · (3.7)

+(−1)PP !

L∑
l=0

(αPl cos(lt) + βPl sin(lt)) = 0 .

Collecting the previous equation with respect to the expressions cos(lt), sin(lt), l = 0, . . . , L, we get:(
α00t

P − α10t
P−1 + · · ·+ (−1)PP !αP0

)
+
(
α01t

P − α11t
P−1 + · · ·+ (−1)PP !αP1

)
cos(t)+(

β01t
P − β11tP−1 + · · ·+ (−1)PP !βP1

)
sin(t) + · · ·+

(
α0Lt

P − α1Lt
P−1 + · · ·

+(−1)PP !αPL
)

cos(Lt) +
(
β0Lt

P − β1LtP−1 + · · ·+ (−1)PP !βPL
)

sin(Lt) = 0 .
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The previous equation is satisfied for every t if and only if all the polynomial coefficients vanish, i.e.

α00 = α10 = · · · = αPL = β00 = β10 = · · · = βPL = 0 ,

which is in contradiction with our initial assumption. �

3.6. Algebraic Properties of Trigonometric Holonomic Functions

The following results can be easily obtained:

Theorem 3.22. If f is a ω-trigonometric holonomic function, then its derivative and anti-derivative
are also trigonometric holonomic functions.

Theorem 3.23. (a) TH(ω) is closed under addition and multiplication.
(b) If f(t) and g(t) are two functions of degree P and Q in TH(ω), respectively, then f(t) + g(t) is

of degree 5 P +Q in TH(ω) and f(t) · g(t) is of degree 5 P ·Q in TH(ω).

Note that this theorem follows in a similar way as for holonomic functions, see e. g. ([19], [18] or [15]).

Remark 3.24. From the above theorem we may deduce that (TH,+, ·) is a commutative unitary ring.

4. Fourier Coefficients of Trigonometric Holonomic Functions

In the previous section we defined the set of trigonometric holonomic functions, and we gave some of
their properties. In this section we present a general algorithm for the computation of the complex
Fourier coefficients of trigonometric holonomic functions.

4.1. Hypergeometric Terms and Closed Forms

In this section, we will deal with recurrence equations (for Fourier coefficients), having interest in
their solutions. The type of solution in which we are mainly interested is a special type of “closed
form” which was given in [17]. We will make this notion more precise in a moment. Mark van Hoeij
presented in [8] a very efficient algorithm to solve recurrence equations in closed form when such
solutions exist. That algorithm is a reviewed and improved version of Petkovšek’s algorithm [16], see
also [4]. Nevertheless in the cases where a closed form solution does not exist, we may return the
Fourier coefficient in any other form, if possible, rather than not to give an output.

Definition 4.1 (Hypergeometric term). An expression an is called hypergeometric term if the ratio
an+1

an
represents a rational function in n.

Definition 4.2 (Closed form). An expression an is said to be of closed form if it is a linear combination
of a fixed number of hypergeometric terms.

Example 4.3. The sum

sn =

[n3 ]∑
k=0

(
n− 2k

k

)(
− 4

27

)k
=

1

9

(
−1

3

)n
+

2(3n+ 4)

9

(
2

3

)n
is in closed form, see e. g. [12], Example 7.2.

4.2. Holonomic Recurrence Equation for Trigonometric Holonomic Functions

Definition 4.4 (Holonomic recurrence equation). A recurrence equation is holonomic if it is homoge-
neous and linear and has polynomial coefficients ∈ K[n].
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4.2.1. Conversion of a Trigonometric Holonomic Differential Equation Into a Recurrence Equation.
We recall that the set of the trigonometric holonomic functions consists of those functions satisfying
a relation of type (3.2) resp. (3.3), namely

P∑
p=0

L∑
l=0

(αpl cos(lωt) + βpl sin(lωt)) f (p)(t) = 0 (4.1)

resp.

P∑
p=0

L∑
l=0

(
γple

−ilωt + δple
ilωt
)
f (p)(t) = 0 (4.2)

for appropriate integers P = 1, L = 0 and ω ∈ R?, where αpl and βpl resp. γpl and δpl ∈ K.

Theorem 4.5 (DE to RE). Let f : [a, b]→ R satisfy a differential equation of the form (3.2) resp. (3.3).

Then the complex Fourier coefficients c
(p)
n of the derivatives f (p)(t) satisfy the recurrence equation

P∑
p=0

2αp0c
(p)
n +

P∑
p=0

L∑
l=1

(
c
(p)
n+l(αpl + iβpl) + c

(p)
n−l(αpl − iβpl)

)
= 0 (4.3)

resp.

P∑
p=0

L∑
l=0

(
δplc

(p)
n−l + γplc

(p)
n+l

)
= 0 (4.4)

After replacing c
(p)
n±l for p > 0 according to Equation (2.2) in terms of cn±l this yields a holonomic

recurrence equation for the complex Fourier coefficients cn of f(t), given as

0 =

P∑
p=0

2αp0

(
−2nπ

iT

)pcn − p−1∑
j=0

(−T )j
( i

2nπ

)j+1

(f (j)(b)− f (j)(a))e−inωa


+

P∑
p=0

L∑
l=1

[
(αpl + iβpl)

(
2(n+ l)πi

T

)p

·

cn+l − p−1∑
j=0

(−T )j
( i

2(n+ l)π

)j+1

(f (j)(b)− f (j)(a))e−i(n+l)ωa

 (4.5)

+ (αpl − iβpl)
(

2(n− l)πi
T

)p
·

cn−l − p−1∑
j=0

(−T )j
( i

2(n− l)π

)j+1

(f (j)(b)− f (j)(a))e−i(n−l)ωa


resp.

0 =

P∑
p=0

L∑
l=1

[
δpl

(
2(n− l)πi

T

)p

·

cn−l − p−1∑
j=0

(−T )j
( i

2(n− l)π

)j+1

(f (j)(b)− f (j)(a))e−i(n−l)ωa

 (4.6)

+ γpl

(
2(n+ l)πi

T

)p
·

cn+l − p−1∑
j=0

(−T )j
( i

2(n+ l)π

)j+1

(f (j)(b)− f (j)(a))e−i(n+l)ωα


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Proof. Starting from the differential equation (4.1), we will construct two relations which are linear
combinations of the real Fourier coefficients of the successive derivatives of the function f . Then we
will combine both relations to get a linear combination between the complex Fourier coefficients of
the successive derivatives of f , which will be converted into a recurrence equation for the complex
Fourier coefficients of f itself.
Multiplying (4.1) by 2

T cos(nωt) and integrating over the interval [a, b] we get

2

T

∫ b

a

(
P∑
p=0

αp0f
(p)(t)+

P∑
p=0

L∑
l=1

(αpl cos(lωt)+βpl sin(lωt)) f (p)(t)

)
cos(nωt)dt = 0

⇐⇒ 2

T

∫ b

a

[
P∑
p=0

αp0f
(p)(t) cos(nωt) +

P∑
p=0

L∑
l=1

(αpl cos(lωt) cos(nωt)+

βpl sin(lωt) cos(nωt)) f (p)(t)
]
dt = 0 .

Using the trigonometric addition theorems the previous equation becomes

2

T

∫ b

a

[
P∑
p=0

αp0f
(p)(t) cos(nωt) +

P∑
p=0

L∑
l=1

(
1

2
αpl (cos((n+ l)ωt) + cos((n− l)ωt)) +

1

2
βpl (sin((n+ l)ωt)− sin((n− l)ωt))

)
f (p)(t)

]
dt = 0 ,

which leads to the relation
P∑
p=0

αp0
2

T

∫ b

a

f (p)(t) cos(nωt)dt+

P∑
p=0

L∑
l=1

[
1

2
αpl

(
2

T

∫ b

a

f (p)(t) cos((n+ l)ωt)dt+
2

T

∫ b

a

f (p)(t) cos((n− l)ωt)dt

)
+

1

2
βpl

(
2

T

∫ b

a

f (p)(t) sin((n+ l)ωt)dt− 2

T

∫ b

a

f (p)(t) sin((n− l)ωt)dt

)]
= 0 .

Finally, we therefore obtain

P∑
p=0

αp0a
(p)
n +

P∑
p=0

L∑
l=1

[
1

2
αpl

(
a
(p)
n+l+a

(p)
n−l

)
+

1

2
βpl

(
b
(p)
n+l−b

(p)
n−l

)]
=0 . (4.7)

Hence we reveived an identity between the sine Fourier coefficients b
(p)
n+l and the cosine Fourier coeffi-

cients a
(p)
n+l of the successive derivatives of a function f .

Starting from the same relation (4.1) and using the same process as previously, but multiplying
this time by 2

b−a sin(nωt) instead of 2
b−a cos(nωt), we get

2

b−a

∫ b

a

(
P∑
p=0

αp0f
(p)(t)+

P∑
p=0

L∑
l=1

(αpl cos(lωt)+βpl sin(lωt))f (p)(t)

)
sin(nωt)dt=0 .

This leads to the following second relation which is again a linear combination of the sine Fourier

coefficients b
(p)
n+l and the cosine Fourier coefficients a

(p)
n+l of the successive derivatives of the function f

P∑
p=0

αp0b
(p)
n +

P∑
p=0

L∑
l=1

[
1

2
αpl

(
b
(p)
n+l+b

(p)
n−l

)
+

1

2
βpl

(
a
(p)
n−l−a

(p)
n+l

)]
= 0 . (4.8)

Aiming to find a recurrence equation for the complex Fourier coefficients

cn =
1

2
(an − ibn)
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of the function f , we combine the relations (4.7) and (4.8) in the form (4.7)−i(4.8) which (after
simplification) leads to (4.3) finishing the first part of the proof. Equation (4.4) can be proved in a
similar way.

Finally we convert (4.3) into a recurrence equation for the complex Fourier coefficients of f . From
(2.2) we deduce that

c
(p)
n−l =

(
2(n− l)πi

T

)p(
cn−l − (4.9)

p−1∑
j=0

(−T )j
(

i

2(n− l)π

)j+1

(f (j)(b)− f (j)(a))e−i(n−l)ωa

)
and that

c
(p)
n+l =

(
2(n+ l)πi

T

)p(
cn+l − (4.10)

p−1∑
j=0

(−T )j
(

i

2(n+ l)π

)j+1

(f (j)(b)− f (j)(a))e−i(n+l)ωa

)

Substitution of (4.9) and (4.10) in (4.3) leads to (4.5) which is a holonomic recurrence equation satisfied
by the complex Fourier coefficients of f . By the same process we obtain the relation (4.6). �

Remark 4.6. Note that Theorem 4.5 shows, in particular, that the order of the resulting recurrence
equation for the Fourier coefficients is at most 2L. Therefore the type L(ω) should be kept as small
as possible.

Remark 4.7. In practice for the conversion of a differential equation of the form (3.3) into a recurrence
equation, we will retrieve from the differential equation the coefficients γpl and δpl and substitute them
in (4.6). This process is summarized in Algorithm 3.

4.3. Some examples of Fourier coefficients

Example 4.8. As we saw in Example 3.9, the function f : [0, 2π]→ C defined by

f(t) = eie
it

.

satisfies the differential equation

f ′(t) + eitf(t) = 0 . (4.11)

The retrieval of the coefficients γpl and δpl from the previous differential equation gives

γ00 = 0, γ01 = 0, γ10 = 0, γ11 = 0

and

δ00 = 0, δ01 = 1, δ10 = 1, δ11 = 0 .

Substituting the previous γpl and δpl in (4.6) we obtain the recurrence equation

cn−1 + incn = 0 .

Solving with one initial value we get that the Fourier coefficients of f are given as

cn =

{
in

n! ∀n = 0

0 otherwise .
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Algorithm 3: Fourier coefficients in the general case.

input : A function f ∈ C(N)[a, b] for N large enough.
output : Either the complex Fourier coefficients of f on I, or the recurrence equation satisfied by

the complex Fourier coefficients of f and enough initial values, or ”This algorithm is not
applicable for the computation of the Fourier coefficients of f”.

1 begin
2 Compute the complex Fourier coefficients of f by the defining integral.

3 if the computation is successful then
4 return The complex Fourier coefficients of f in the interval I.

5 end

6 Compute the complex Fourier coefficients of one of the successive derivatives or anti-derivatives
of f on I.

7 if the computation is successful then
8 Apply Algorithm 1 to f in the interval I.

9 end

10 if f is a trigonometric holonomic function then
11 if f contains expressions of the form e±iωt where ω = 2π

b−a then

12 Find a differential equation in the form (4.2) and convert it into a recurrence equation of
the form RE (4.6)

13 if Sufficiently many initial values can be computed then
14 Solve RE.

15 if A closed form solution can be found then
16 return that solution

17 else
18 return RE and the initial values

19 end

20 else
21 Apply the steps 12–19 to one of the successive derivatives of f .

22 if Step 13 and 15 is successful then
23 Use Algorithm 1 to deduce the sought Fourier coefficients.

24 else
25 return RE

26 end

27 end

28 end

29 end

30 return This algorithm is not applicable for the computation of the complex Fourier coefficients of
f .

31 end

Example 4.9. Consider now the function defined on I = [0, 2π5 ] by

f(t) = cos(5t) ln(2 + cos(5t)) .

ω = 2π
2π
5 −0

= 5. f satisfies the differential equation

DE : (−500000 + 843750 cos(5t))f ′(t) + 28125 sin(5t)f ′′(t)

+(54375 cos(5t)− 45000)f (3)(t) + 4625 sin(5t)f (4)(t) + (825 cos(5t)− 1200)f (5)(t)

+120 sin(5t)f (6)(t) + (−4 cos(5t)− 8)f (7)(t) = 0 .

The conversion of DE into a recurrence equation for the complex Fourier coefficients cn of f gives

RE : (n− 1)(n+ 2)(n+ 1)(n− 2)2(2n+ 1)2cn−1 + 16(n− 2)(n+ 2)n(n+ 1)2(n− 1)2cn

+(n− 1)(n− 2)(n+ 1)(n+ 2)2(2n− 1)2cn+1 = 0 .
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Solving RE using 2 initial values, we get

cn =



(−2+
√
3)n(
√
3+2n)

(n+1)(n−1) ∀n = 2
√

3− 7
4 + 1

2 ln(2 +
√

3)− 1
2 ln(2) if n = 1

2−
√

3 if n = 0
√

3− 7
4 + 1

2 ln(2 +
√

3)− 1
2 ln(2) if n = −1

(−2+
√
3)−n(

√
3−2n)

(−n+1)(−n−1) ∀n 5 −2 .

Since f is even, bn = 0 and an = 2cn. Hence the Fourier series of f on I is given as

f(t) = 2(2−
√

3) +

(
2
√

3− 7

2
+ ln(2 +

√
3)− ln(2)

)
cos(5t)

+

∞∑
n=2

2(−2 +
√

3)n(
√

3 + 2n)

(n+ 1)(n− 1)
cos(5nt) .

Example 4.10. Let us aim to compute the complex Fourier coefficients of the function

f(t) =
1

(2 + cos(t))20

in the interval [0, 2π]. f satisfies the following trigonometric differential equation

DE : (2 + cos(t))f ′(t)− 20 sin(t)f(t) = 0

and its complex Fourier coefficients satisfy the holonomic recurrence equation RE

RE : i(n+ 19)cn−1 + 4incn + i(−19 + n)cn+1 = 0 . (4.12)

Solving RE we get ∀n = 0

cn =
(−2 +

√
3)n

21549064602123362304000
·(

3n19 + 380
√

3n18 + 68400n17 + 2587230
√

3n16

+ 207784608n15 + 4189258320
√

3n14 + 198221547000n13

+ 2507083241260
√

3n12 + 77548709950608n11

+ 658724628579160
√

3n10 + 13910290044027000n9

+ 81271048798518540
√

3n8 + 1179246535908242448n7

+ 4686690914390935200
√

3n6 + 45298720378942521900n5

+ 115724365700595819470
√

3n4 + 678681872501747249208n3

+ 956086266762532871940
√

3n2 + 2598373260585253340700n

+ 1139118803030468009750
√

3
)

and since f(t) is even of course c−n = cn and an = 2 cn for all n ∈ N.
The whole computation for this example took about 6 seconds.3 Note that this example can also

be successfully solved by the algorithm given in Example 3.13. The detection of the constant-coefficient
recurrence REconst for this example is very fast. However, this recurrence equation has order 40. Its
characteristic polynomial χ(z) has a simple factorization

χ(z) = (z2 + 4z + 1)20 .

Nevertheless, the bottleneck is the fact that 40 initial values have to be computed. The computation
time for this part was 300 seconds. Of course the two results agree.

3Computations were done with Maple 17 on a PC with 64-bit Intel processor i7-3820QM with 2.7 GHz and 8 GB RAM.
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5. Factorization of Holonomic Recurrence Operators

This section deals with the factorization of holonomic recurrence operators. An algorithm for com-
puting a first order right factor of such operators was first given by Petkovšek in [16]. Its application
is limited to the cases in which the product of the leading and trailing coefficients of the considered
operators do not have too many factors, because the algorithm computes more combinations than
necessary. Mark van Hoeij addressed those problems in [8] by introducing the concept of finite singu-
larities. We present in the second section a different method, involving Fourier series, to compute a
right factor of holonomic recurrence operators, which in some cases returns the smallest order right
factor. In the first section we give some resources to achieve that goal.

5.1. Conversion of a Holonomic Recurrence Equation Into a Trigonometric Holonomic Differential
Equation

Section 4 described the conversion of trigonometric holonomic differential equations into recurrence
equations for the Fourier coefficients, which may be homogeneous or not. In this section we do the
reverse of that conversion, focussing on homogeneous recurrence equations. To do so we look if for a
given homogeneous holonomic recurrence equation RE one may find coefficients αpl and βpl (resp. γpl
and δpl) such that RE is the conversion of a differential equation of the form (3.2) (resp. (3.3)) with
some initial values. In this case the sought trigonometric holonomic differential equation will be the
one satisfied by a function defined in an interval [a, b] such that F (j)(a) = F (j)(b), (j = 0, . . . , P − 1).

Theorem 5.1. For a given real number ω = 2π
b−a with a < b, each holonomic recurrence equation can

be converted into a differential equation with side conditions either of the form
P∑
p=0

L∑
l=0

(αpl cos(lωt) + βpl sin(lωt)) f (p)(t) = 0

f (j)(a) = f (j)(b) (j = 0, . . . , P − 1)

(5.1)

for appropriate integers P = 1 and L = 0, where αpl and βpl are constants, or of the form
P∑
p=0

L∑
l=0

(
γple

−ilωt + δple
ilωt
)
f (p)(t) = 0

f (j)(a) = f (j)(b) (j = 0, . . . , P − 1)

(5.2)

for appropriate integers P = 1, L = 0, where γpl and δpl are constants.

Proof. This can be handled by using the equations in Theorem 4.5 in the backward direction. For
details, see [15], page 74. �

We summarize this search in Algorithm 4. Examples will be given in the next subsection.

Algorithm 4: Conversion of a holonomic recurrence equation into a differential equation with
side conditions (ReverseTHDEtoRE).

input : A holonomic recurrence equation RE and an interval [a, b].
output : A differential equation with side conditions of the form (5.1) (resp. (5.2)).

1 begin
2 ω ← 2π

b−a .

3 Search for coefficients αpl and βpl (resp. γpl and δpl) such that an equation of the form
(4.5)−RE = 0 (resp. (4.6)−RE = 0) is valid.

4 Return a differential equation with side conditions of the form (5.1) (resp. (5.2)).

5 end
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5.2. Holonomic Recurrence Operators

Let K be a field of characteristic zero. We denote by KN the set of all sequences (an)
∞
n=0 whose terms

belong to K.

Definition 5.2. The function N : KN −→ KN which acts on each an in the following way: N(an) = an+1,
is called the shift operator.

Note that N is linear, and that the set of all linear operators with addition defined pointwise
and with the functional composition as multiplication is a (non-commutative) ring. N satisfies the
commutation relation Nn = (n+ 1)N .

Definition 5.3. Operators of the form L =
r∑

k=0

akN
k, where ak ∈ KN and N is the shift operator are

called recurrence operators on KN, see [17]. If ar 6= 0 and a0 6= 0, then the order of L is r. Equations
of the form

L(un) = 0, i.e. arun+r + ar−1un+r−1 + · · ·+ a0un = 0

are called recurrence equations. A recurrence equation is holonomic if ak ∈ K[n] (0 5 k 5 r).

5.2.1. A New Factorization Method. The idea behind the method described in this study is to consider
the holonomic recurrence equation RE corresponding to a given holonomic recurrence operator as the
one satisfied by the Fourier coefficients of a trigonometric holonomic function in an interval [a, b],
which may be w.l.o.g. the interval [0, 2π]. To do so, we compute the differential equation with side
conditions corresponding to RE either of the form (5.1) or of the form (5.2). Then we solve it to get
possible choices of the corresponding trigonometric holonomic functions. Applying Algorithm 2, we
may find a lower order trigonometric holonomic differential equation satisfied by f , which may lead
to a recurrence equation of lower order. The corresponding holonomic recurrence operator clearly is a
right factor of the input recurrence operator since the Fourier coefficients of f are solutions of both.
Algorithm 5 below provides an overview of this procedure.

Algorithm 5: Search for a right factor of a holonomic recurrence operator.

input : A holonomic recurrence operator L.
output : A right factor of L or ”A right factor of L cannot be found using this method, since no

solution of DE found”.

1 begin
2 Convert L into a recurrence equation RE.

3 Use Algorithm 4 to convert RE into a differential equation with side conditions DE.

4 Solve that differential equation with side conditions.

5 if DE cannot be solved then
6 return A right factor of the given operator cannot be found using this algorithm, since DE

cannot be solved
7 else
8 Set f a solution of DE.

9 Apply Algorithm 2 to f to search for a new holonomic differential equation DE satisfied by
f of as low order as possible which leads this time to the lowest order holonomic recurrence
equation RE.

10 Convert this RE into a holonomic recurrence operator.

11 return the right factor of the given holonomic recurrence operator

12 end

13 end

Instead of searching for the smallest recurrence, one could also try to compute several recurrences,
and then compute the greatest common right divisor.
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5.2.2. Some Factorization Examples of Holonomic Recurrence Operators.

Example 5.4. Consider the following holonomic recurrence operator, as given in [17].

L = (n− 1)N2 − (n2 + 3n− 2)N + 2n(n+ 1) .

The corresponding holonomic recurrence equation with respect to cn is

RE1 : (n− 1)cn+2 − (n2 + 3n− 2)cn+1 + 2n(n+ 1)cn = 0 . (5.3)

Applying Algorithm 4 returns the differential equation with side conditions

DE1 :

{
(−4e−it + 3e−2it)f(t) + i(−e−it + e−2it + 2)f ′(t)− (e−it − 2)f ′′(t) = 0

f (j)(0) = f (j)(2π) (j = 0, 1) .

Solving this DE1 we get one of the solutions

f(t) = e−it−e
−it
∈ sTH .

Applying Algorithm 2 to f with ω = 2π
2π−0 = 1 leads to

DE2 : (−1 + eit)f(t)− ieitf ′(t) = 0 .

Now converting DE2, considering the interval [0, 2π], into a holonomic recurrence equation we get

RE2 : cn+1 − (n+ 1)cn = 0 .

The above RE2 shows that a first order right factor of the holonomic recurrence operator L is given
by N − n− 1, which exactly corresponds to one of the right factors found in [17].

Of course this is a trivial example since it can be easily solved using Petkovšek’s or van Hoeij’s
algorithm generating the two right factors N − n − 1 and N − 2 corresponding to the solution basis
(2n,Γ(n+ 1)) of (5.3).

Example 5.5. Consider the following holonomic recurrence operator L of order 6

L = N6 − 5N4 + (14− n)N3 + (−n2 − n+ 2)N2 + (n2 + 11n− 14)N + (24− 12n) .

Its lowest order right factor, which is of order 3, was computed by Horn in [9]. The following shows the
computation of the same factor with the method of this study. The conversion of L into a recurrence
equation for cn is

RE1 : cn+6 − 5cn+4 + (14− n)cn+3 + (−n2 − n+ 2)cn+2

+(n2 + 11n− 14)cn+1 + (24− 12n)cn = 0 .

The differential equation with side conditions corresponding to RE1 is

DE1 :


−(−24 + 24e−it − 17e−3it + 5e−4it − e−6it)f(t)
−i(3e−2it − 12 + 9e−it − e−3it)f ′(t) + (−e−it + e−2it)f ′′(t) = 0

f (j)(0) = f (j)(2π) (j = 0, 1) .

0

One of the solutions of this DE1 is

f(t) = e12e
it− 1

2 e
−2it

.

Applying Algorithm 2 to f(t) shows that f(t) satisfies the trigonometric holonomic differential equation

DE2 : (1 + 12e3it)f(t) + ie2itf ′(t) = 0

which leads to the third order holonomic recurrence equation

RE2 : cn+3 + (−n− 1)cn+1 + 12cn = 0 .

Converting the above RE2 in terms of operators leads to

N3 + (−n− 1)N + 12

which corresponds exactly to the one found in [9].
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Remark 5.6. The method presented in this section is much more time efficient than most previous
methods. For the particular case described in Example 5.5 the computation time of the right factor is
less than a second and needs much less memory capacity in comparison to the computation method
described in [9], which needs more than 21 hours and utilizes 32 GB memory capacity to get the
same result. The timing in [9] is high because the algorithm first needs to compute a left factor of a
recurrence operator of order 20.

Additionally an analogous time efficient method via power series can be used to get the previous
right factors. This algorithm is summarized as follows: Convert the holonomic recurrence operator RE
given to a holonomic differential operator for its generating function (see e. g. [10]) and factorize this
differential operator using van Hoeij’s factorization algorithm [7]. Take the right factor of lowest order
and convert it back to a recurrence operator for the coefficients. The result is a right factor of RE.

This method does not require to solve a differential equation, which in some instances turns out
to be complicated. However, unfortunately this method does not always find a right factor even if one
exists.

For the following example, a right factor cannot be found using the method involving power
series which shows that this method is quite rigid whereas the new approach is more flexible.

Example 5.7. Consider the following holonomic recurrence operator

L = (−5− n)N4 + (−20− 4n)N3 − 4N2 + (4n+ 4)N + (n+ 1) .

The corresponding holonomic recurrence equation is

RE1 : (n+ 1)cn + (4n+ 4)cn+1 − 4cn+2 + (−20− 4n)cn+3 + (−5− n)cn+4

which converted into a differential equation with side conditions returns

DE1 :

{
(1−4e−2it−8e−3it−e−4it)f(t)− i(1+4e−it−4e−3it−e−4it)f ′(t) = 0 .

f(0) = f(2π) .

One of the solutions of the above DE is

f(t) =
eit − e−it

e2it + 4eit + 1

whose Fourier coefficients in the interval [0, 2π] satisfy the second order holonomic recurrence equation

RE2 : (n+ 1)(n+ 3)cn+2 + 4(n+ 1)(n+ 3)cn+1 + (n+ 1)(n+ 3)cn

from which we deduce the second order right factor of L

L2 : (n+ 1)(n+ 3)N2 + 4(n+ 1)(n+ 3)N + (n+ 3)(n+ 1) .

Conclusion and Acknowledgments

In this work, we presented an algorithm for the symbolic computation of the Fourier coefficients of
trigonometric holonomic functions which finds either a closed form or at least a holonomic recurrence
equation. The latter gives always an efficient way to compute a finite number of Fourier coefficients.
Furthermore, an algorithm for the factorization of recurrence operators was given.
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