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1. UNIVALENT FUNCTIONS
We consider functions that are analytic in the unit disk
D:={zeC||z]<1}.

A function is called univalent (or schlicht) if it is one-to-one. The Riemann mapping
theorem guarantees the existence of a univalent map f : D — G for each simply
connected plain domain G # C. Moreover f with given f(0) is uniquely determined
except of the composition with rotations z — €@z of D.

If we speak about convergence of a sequence (f,,) of analytic functions, we mean
locally uniform convergence and write f, — f. The family A4 of analytic functions
of D together with this topology is a Fréchet space, i.e. a locally convex complete
metrizable linear space.

A sequence of univalent functions not converging locally uniformly to oo is nor-
mal, and there is a convergent subsequence. The limit function is univalent or con-
stant.

The family S of univalent functions that are normalized by f(0) =0, f'(0) =1,
i.e.

f(D)=z+az*+ayz+ -, H

is a compact subset of A.
A function f € A is cailed m-fold symmetric if it has the special form (m € N)

f(2)=z+ a1 2" + Ao 22"+ (2)

*This work is part of the author’s “Habilitationsschrift” accepted by the Free University of Berlin in July

1990.
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which is equivalent to the fact that the Riemann image surface F is m-fold sym-
metric with respect to the origin, ie. for all we F, k = 1,...,m also the points
e’™k/my ¢ F. (References: [6], [10], [32].)

2. FUNCTIONS WITH POSITIVE REAL PART

Let P denote the subset of A4 of functions p with positive real part that are normal-
ized by p(0) = 1.
A function of the form

1+xz
r@= [ due, )
where 1 denotes a Borel probability measure on 9D, clearly has positive real part,
because the kernel functions have this property. The famous Herglotz representa-
tion theorem states that the converse is also true. This is equivalent to the fact that
the extreme points of P (i.e. the points which have no proper convex representa-
tion within the convex set P) are the kernel functions of representation (3), which
map D univalently onto the right half-plane {w € C | Rew > 0} (see e.g. [33], [12]);
we write E(P)= {(1+ xz)/(1—xz)| x € 8D}. By the Krein-Milman theorem their
closed convex hull To(EP) is all of P and so their convex hull co(EP) lies dense
in P with respect to the topology of locally uniform convergence (which makes P
compact), so that each function p € P can be locally uniformly approximated by
functions p,, of the form

s 14z o — .
pa(z) = ;;Lk - xe|=1, >0 (k=1,...,n),
4)

14

Z;Lk=l, neN.

k=1

The functions of the form (4) give the so-called Carathéodory boundary of P.

A function f is called subordinate to g, if f = gow for some function w e A4
with w(0) = 0 and w(D) C D; we write f < g. The subordination principle states that
if g is univalent then f <g if and only if f(0)=g(0) and f(D) C g(B), and so
pEePIiff p<(1+2)/(1-2).If f <g then by Schwarz’s Lemma f(D,) C g(B,) for
all r €]0,1] where B, := {z€ C||z| < r}.

By B we denote the family of functions w € 4 with w(0) = 0 and w(D) C D.

A compact family which is similar to P is the class P of functions p normalized
by p(0) = 1 for which there is some a € R such that the real part of €' p is positive.
One sees that p € P iff p < (1+ yz)/(1— z), where y = e~2°,

3. POLYGONS AND SCHWARZ-CHRISTOFFEL MAPPINGS

Let f € A be continuous in D and have a Riemann surface F as image domain
whose boundary consists of a finite number of linear arcs, such that the boundary
correspondence 0D — OF is one-to-one. Then F is called a polygon. Let F have n
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vertices of inner angles g (k = 1,...,n). We do not suppose f to be univalent, so
that g > 2 is possible, whereas for univalent polygons

a <2 (k=1,...,n). (5)
If we have a bounded vertex then
a > 0. (6)
If a vertex lies at infinity we measure the angle on the Riemann sphere and have
ag > 0, (7)
where g = 0 is a zero angle which corresponds to two parallel rays of OF.

Let now x; be the prevertices, i.e. the preimages under f of the vertices [(x;).
Then the Schwarz-Christoffel formula is the representation

Lay=—2y (8)
f et -
where
5 { (1—a)m if f(x;) is bounded ©)
LT i= K
! (1+ ) if f(xx) is unbounded
denote the outer angles. The formula
Y me=1 (10)
k=1

corresponds in the bounded (univalent) case both to the rule for the sum of angles
in an n-gon and to the fact that the increment of the tangent direction is exactly 27
when surrounding the polygon on OF one time.

On the other hand, if f fulfills (8) and (10) with x; € 9D for k = 1,...,n, then the
Riemann image surface f(D) is a polygon.

If f(xx) is bounded then relation (6) yields

e < 3, (11)
whereas for unbounded f (x,) relations (7) and (9) give

e >

[ I
~~

If f is univalent, then (5) leads to
i > —% (k =1,....n). (13)
(References: [20}], [35].)
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4. CONVEX FUNCTIONS

A function f € A is called convex if it maps D univalently onto a convex domain.
Therefore it is necessary and sufticient that

"
l+z’f—,eP. (14)

<

Let K denote the family of convex functions that are normalized by (1).

5. FUNCTIONS OF BOUNDED BOUNDARY ROTATION

The boundary rotation of a polygon F is the total change of the tangent direction
when surrounding the boundary of the polygon one time and can be calculated as
the sum of the absolute value of the outer angles

br(F) =" 2|jul. (15)
k=1

The boundary rotation of the corresponding Schwarz—Christoffel mapping is defined
to be the boundary rotation of its image polygon. A function f has boundary rota-
tion K, if it can be approximated by Schwarz—Christoffel mappings with respect to
locally uniform convergence, i.e. if

=2 [ O (16)
where i is a signed measure on JD with the properties
/ diu(x)=1 (17)
oD
and
br(f)=27r/mldu(x)|=K7r. (18)

Representation (16) is called the Paatero representation of f.

Let V(K denote the family of functions of bounded boundary rotation at most
K7 that are normalized by (1). So V(K) is the locally uniform closure of the corre-
sponding family of normalized Schwarz—Christotfel mappings of bounded boundary
rotation at most K.

Generalized polygons with an infinite number of vertices wy(k € N) of outer an-
gle 2pem with 77 ] < oo are examples of functions of bounded boundary rota-
tion. (References: [27], [35], [13].)
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6. LINEARLY ACCESSIBLE DOMAINS AND CLOSE-TO-CONVEX
FUNCTIONS

A domain F is called (angularly) accessible of order g (g € [0, 1}]), if it is the comple-
ment of the union of rays that are pairwise disjoint except that the origin of one ray
may lie on another one of the rays, such that every ray is the biscctor of a sector of
angle (1 — #)yr which wholly lies in the complement of F. If 3 =1 then F is called
(strictly) linearly accessible (see [4], [34], [31]). A function [ is called close-to-convex
of order 8 ( > 0), if there exist a convex function g and a function p € P such that
the representation

f'=g"p’ (19)

holds. It turns out that for g € [0,1] f is close-to-convex of order 3 if and only if f
is univalent and f (D) is accessible of order /3 (see e.g. [19]).

7. INVARIANTS UNDER SIMILARITIES AND THE NEHAR! CRITERION

If /€8,
malized composition g of f with a univalent automorphism w : D — D of the unit
disk

i.e. [ is a univalent function that is normalized by (1), then the renor-

Z+a
= D =1 20
w(z) X]+Ez’ aecD, |x| , 20
given by
fow— fow()
gr=—"1 (20

(fow)(0)

lies in S. Pommerenke [29]-{30] called families with this property linearly invariant,
and showed that many results about univalent functions are effected by this prop-
erty. The function g is called Koebe transform of [, it has (in the univalent case)
a range G which is similar to the range F of [, ie. G =aF + b(a,b€ ), and all
normalized functions with a similar domain have this form. The second coefficient
of g has for x = 1 absolute value

"

(i) = )] = | -a+ 30~ laP) (@), (22)

We call & the Koebe expression of f.
For a locally univalent function f we define the order of f by

ord(f):= supk(f;a).
a€D
It represents the order of the linearly invariant family Lin(f") generated by f, and it
is bounded if and only if Lin(f) is normal (see [29], Folgerung 1.1).
For an analytical expression to have a geometrical meaning the expression must
have a certain invariance property with respect to the composition with automor-
phisms of D, because the range is invariant under this composition.
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We have for the Koebe expression

LEMMA 1 If f € A is locally univalent and w is defined by (20), then for g = fow
holds
r(g;z) = k(/;w(z))  (z€D). (23)

Proof The relations

and

Z+da z+a 1— )¢
1 )212:]74-'— =\ N
()| l1+azl+ )

imply

r;(S’ZZ)z:i 7+;(1 izj2)<x(lla’ / (w) - ,,z:f,)f

| f+ﬁz:)2 f’ I +az

/ = 3 = 1 /1 1125871 [PRPAN rali \
_f Z+d +li\l*§4; L —ial /lil (w)

(\ 1+az 2 (1+az) I’ )

z+va 1(1-|z)A-lal)_(f"
'(_1+a7+2 (1+az)? (w)))

10 —jzP)1-laP) (z+a [T7 N

2 (1+az)(1+az) 1+az"

LA 2P —faP) | 1"
4 (1+az)*>(1+az)? | [

z+a f”

N 2
U‘})}Jrl+az f’ }

= R(f;w(2))". u

(w)

Moreover, k as a function of f does only depend on f"/f', so that it is also
invariant under similarities of the range. From this it followsp@i#Ir{for univalent f)
the expressions

ord(f) and algg K(f;a)

as well as
limsupk(f;a) and liminf &(f;a)
a—0D a—080
represent geometric properties which are invariant under similarities.
The same is true for the expression ¢, which is defined with the aid of the

Q

Schwarzian derivative Sy of f, i.e
1 " & 2
5 = (F -5(%) (24)

a(f;a):= (1= lal*)’|S¢(a)l. (25)

namely (a € D)
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LEMMA 2 If [ € A is locally univalent and w is defined by (20), then for g = [ow
holds

o(g:2) = o(fiw(z))  (z€D). (26)
Proof The well-known invariance property of the Schwarzian derivative
Sg = S(w)- (w')?
implies the result similarly as in the above case. |

We call o the Nehari expression of f, because Nehari has shown that o(f;2) <2
implies univalence, and on the other hand univalent functions satisfy o(f;z) <6.
Moreover, convex functions fuifiii o(f;z) < 2 (see [25], [26] and [21]).

8. LOGARITHMIC DERIVATIVE AND THE BECKER CRITERION

Annﬂ\pv nnn wtant um vy g!tl\

SulEts i
LT Uit

due to Beckcr We call (a € D)

Alf;a):=

A 7" -

the Becker expression of f. Beckers criterion states that A(f;2z) < 1 implies the uni-
valence of f. On the other hand univalent functions satisfy A(f;z) <6 (see [2]).

Let us note the following correspondence between the Nehari and Becker condi-
tions.

ILEMMA 3 Lot f € A be II)(‘[I!/\) univalent. Then
\ \/[ I s \/‘\.1?
(a) supA(f;z) < A= supo(f;z) <4A+ A7
z€D :eD 2
o\ 1/2
(b) supo(f;z) < o= squ\(f;Z)SZ(H-) +2.
zeD zeD 2

Proof Statement (a) is proved in [7]. (A sharper version of it is given in [37]).
For to prove (b) observe that the functions f satisfying o(f;z) <o (z € D) form a
linearly invariant family of order (14 a/2)1/2 (see [29], Folgerung 2.3). Therefore
k(f;2) < (1+0/2)!/% (see [29], Lemma 1.2) which implies the result. |

9. THE KOEBE, NEHARI AND BECKER EXPRESSIONS FOR POLYGONS

Let £ = f(D) be a polygon with inner angles a7 (k = 1,...,n), so that f has a
Schwarz—Christoffel representation

_(Z)Z*ZZ;/_LL, xef=1 (k =1,...,n),
(28)
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where 2y m (k =1,...,n) are the outer angles (9) and x; (k = 1,...,n) are the
prevertices.
We write z = re'? and define

—Zx

bi(z):= (29)

z—xk'

Obviously |bi| =1 (k = 1,...,n) for all ze D. We get then for the Koebe, Becker
and Nehari expressions

_ 1 2 H
k(f;2)=|-2+ 5(1— |z )7(2)
= !z +(1+ r)z /u Z/lkbk(z)j (30)
i k=1 [k=1
" i n - |
Mfi2)=(1—|z f—(z) =201+ 1=r | (31)
A Pkt
and, since for the Schwarzian derivative one has

n 2
i
Sf(z)—ZZ xk)z <k2=:12_xk>
Y it

2
Ly, (32)
jk=1

Z—Xry
finally
o(f;2)=(1-2I*)’IS;(2)|

n 2 n 2
20+ 2y (z]_—x’k) ik — (Z zl:xrk/uc>

k=1 k=1

3w (b(2) — (). (33)

jk=1

It

The following lemma will be used to examine the boundary behaviour of these
expressions.

LEMMA 4 Let |xx| = 1, then
I i-r [ —Xk if 6=argx
l —_— = -
r—1ret? — x; { 0 otherwise
Proof We have
1-r 1

= Xl = 1)
retv — x; 1—rex;
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If now % # xy, then the last fraction is bounded, so that the right hand side tends
to zero, while for ¢’ = x; we have (1 —r)/(1 —re'®x;) = 1. |
Therefore we get from (30)-(33):
LEMMA 5 If f is a Schwarz-Christoffel mapping (28), then

11— 2] = g if 6 =argx;

(@)  limk(fire')= {

1 otherwise

I4|[Lk! if 6 =argx;

(b) HmA(f;re'®) =
r—1 1 0 otherwise
(R, (1 - M = 201 _ a2l F4 = aro v,
{,,_\ T o r —‘-‘ve\ o ‘ K’l’lrk\l - ,‘k }, - | ‘(kl 1K i (lls./\k
(¢ nmaoyyire " )= i
r—1 1 0 otherwise

Now it follows

_— I P

HEOREM 1 If [ is a Schwarz—Christoffei mapping (28), then

(al) limsup(f; z)— max |1 — 2] = JIaxX
70D <k<

(a2) hmmfn(f z)= )r(r}‘m |1 — 24| = n}(m y,

(b) limsupA(f;z) =4 max. |/Lk|
2—0D

{©) limsupo(f;z)=8 max. “lk(l — ) =2 max. \1 - adl,
2—HD

where jio := 0 and g := 1.

We remark that (a) can be interpreted in the following way: the limsup of the
Koebe expression measures the largest inner angle divided by w, where we have
to take into consideration the angle 7 of each smooth boundary point, whereas
the liminf of the Koebe expression measures the smallest inner angle divided by
. It is a special property of polygons that every boundary point is either smooth
or a vertex. We shall see later that these considerations can be generalized to a
larger class of functions whose images have this property, namely to functions with
bounded boundary rotation.

On the other hand, by reason of (11)-(12) the limsup of the Becker expression

measures whether the polygon is bounded:

COROLLARY 1 If f is a Schwarz-Christoffel mapping (28), and if o <2 (k =
1,...,n) (in particular, if [ is univalent), then
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10. DOMAINS WITH THE ANGLE PROPERTY

Let F be a simply connected plain domain or Riemann surface. Then we say that
F has the angle property, if each boundary point is either smooth, i.e. there is a
tangent there, or it is a vertex, ie. there exist two halftangents corresponding to the
left and right derivatives of some parametric representation of the boundary curve.
An analytic function f : D — F which extends continuously to the boundary of D
has the angle property if its Riemann image surface F has it.

If F has the angle property, then at each boundary point we define the inner
angle to be the angle between the halftan;,ents measured from the interior of F.
The inner angle always exists and equals @ at each smooth boundary point. With
max T and ™ we denote the supremum and the infimum of the inner angles of
inner angle of F.

Thc detmm()ns also dpp]y 1f Fis unh()undcd considering tangent% and ha]ftan-

Foand we speak about the lareest and the spuilles
i CRLivE ¥Y O }\.,ul\ aunuun Lll\/ Lkllb(. I Adliug LHio )IILLlllC

=2

an inner dnglc: also at cach pmm on OF which is unbounded.
The outer angle at some vertex is defined as in the case of polygons by (9),
1e

\C tha tonmogan tho At
1

d absoh '}} uic llllLLlll UllL(.ll\‘ll (ll lllC YCIicx

and its absolute v
discarding the direction of the change. The outer angle at some smooth boundary
point equals zero. By 2pimam and 2jimi, ™ we denote the supremum and the infimum
of the absolute value of the outer angles of F. Remark that in the unbounded case
the outer angle has not the same geometrical meaning as in the bounded case, in
particular if oo is a smooth boundary point, then the corresponding outer angle

2w does not equal zero but equals 2.

PeeY
i

£arrg tha oho
measures lllL \llﬂ“L\.

11. THE KOEBE, NEHARI AND BECKER EXPRESSIONS FOR
FUNCTIONS OF BOUNDED BOUNDARY ROTATION

In this section we generalize some of the results for Schwarz—Christoffel mappings
to functions of bounded boundary rotation. It is a result essentially due to Paatero
that functions of bounded boundary rotation have the angle property (see [27]), so
that there exist the largest and the smallest inner and outer angles (g, QpinT,
2pmax™ and 2jtinm. This result is contained in the following

THEOREM 2 Ler [ € V(K) have boundary rotation Kn. Then f has the Paatero
representation

I dp(x) _ oy = K
SORE / dpx) /BDd;L(x)—l, /{)D%d/b(X)!— 5 (9

op £ — X

Jor some signed measure p on 9D, and it has a spherically continuous extension [ :
D — C. Each boundary point f(x) (x = &'%) has either

(a) a local tangent of direction
T(6) = limarg (¢/'(re'")) + % (35)
r—

which corresponds 1o the fact that p({x}) =0
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or

(b) o local halftangents, so that f(x) is a vertex of 0f (D) of an outer angle
2u({x})m, which corresponds to the fact that u({x}) # 0.

In particular: f has the angle property. '
Moreover the images of the radial rays fo(r):= f(re'®) (r € [0,1)) divide the inner
angle of Of (D) at f(x) in two equal parts.

Proof Let f have boundary rotation K7. Then there is a Paatero representa-
tion (34). In this context it is more convenient to write (34) as a Stieltjes integral
representation with the distribution function m : [0,27] — R of p defined by

m(r):= 1 (p([0,e”[) + p([0,”])) + C, (36)

where C € R is such that
2T !
/0 (m(t) - 2_7r> dr =0. (37

The Paatero representation (34) then reads

2T

f// 21rdm(t) 2 _ _E
(2= /O [ amw=1, /0 am@) =5 @38)

f! z—e”’

Therefore it follows by integration (using the normalization f'(0) = 1) that

@)= [ o )

= _2/02”1n(1 —eMz)d (m(t)— %) (39)

as 5
/ In(l1—e2)dt =0 (zeD).
0

Observe that m(t) —t/(2m) is periodic with period 27 by (38), so that an integration
by parts gives with the aid of (37) that

Inf'(z) = 21'/02"{;2”2 ( m(t) — _>

27 —it
1+e7 %z t
= P — ——1d
z/(; = (m(t) 27r> ¢ (40)
from which it follows that

arg () = Re | Tl ()= 55 )

=ity

2r 1—]‘2 .
=/o 1—2rcos(t —6) + r? <m(’)—2—7r>dt. (41)
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By the definition (36) of m it follows (see e.g. [10], p. 336) that (z = re'?)

}Lml argf'(2) =27 <m(9) - %),

$0 that
lim1 argzf'(z) = 2m(0)r. (42)
r—
This implies that
N(8):= limlarng'(z) (43)
r—
exists for each 6 € [0,27] and is a function of bounded variation with
In
N(8) =2m(6)x, / AN()| =br(f)= K. (44)
Jo

To get (a) and (b) we now use Paatero’s result that f has a continuous extension to
D, and that at each finite boundary point f(e‘?) there is either a tangent to 0f (D)
of direction T(8) if m is continuous at §, or two half-tangents of direction 7(8 — 0)
and T(# +0) such that 0f (D) has a vertex at f(e'®) whose outer angle equals the
total jump of m at 8 (see [27], §7). An inspection of Paatero’s proof shows that
the same conclusion follows if f(x) = oo, replacing the euclidean by the spherical
distance and measuring angles and directions spherically.

Finally observe that argzf’'(z) gives the normal direction of the level curve f,(f)
= [(re'®)(6 € [0,27]) at the point z = re*?, so that argzf'(z) + 7/2 is the direction
of the tangent. On the other hand the image of the radial ray fy cuts f, perpendic-
ularly for all r €]0,1] as f is locally conformal. By (a) this remains true for r = 1,
if at f(x) there exists a tangent, implying that fy divides the inner angle (namely )
in two equal parts. If f(x) is a vertex of 9f(D), then by (36) the same conclusion
follows. |

Each signed measure j: on 0D has a Lebesgue decomposition as the sum of some
discrete, some continuously singular and some absolutely continuous part with re-
spect to Lebesgue measure Ay, i.e.

= fidisc F Hsing T Habss
(see e.g. [24], p. 218, problem 4.3.12) where

Hdise = Z Joie 6Xk (45)
k=1

(0x is the Dirac measure at x). We WIIte flcon := fsing + flabs fOT the continuous part

of .
The theorem has the consequence that

COROLLARY 2 Let f € V(K) such that the corresponding signed measure i has a
decomposition i = pgisc + fieont. Then Of (D) is smooth up to a countable number of
vertices f(xi) (k € N) of outer angles 2w, say, and there is a one-to-one correspon-
dence between those boundary points and g Such that (45) holds.
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For the largest and the smallest inner and outer angles (tpax™, Qpmin®, 2jlmax™ and
2jtmin® it follows

al ax = 1-2
(al) -~ 1?2a~’§| s
a2 min — i 1-2 »
(a2) @ krrelglol fk|
bl 2l = 2MAX |fik],
(b1) J max ||
(b2) 2Hmin =0y

where g := 1.

Proof We have only to prove that the desired maxima and minima exist. But
this follows easily as (a): e — G for & — oo, and so O is ihe only cluster point of
{31 1k €N} and (b): {y1; 1k € N} is bounded. u

W AR

Part (b2) of the corollary is obviously equivalent to the existence of some smooth
boundary point. The existence of the maxima and minima considered shows that
Wonax Ty Fin®y 2 ® and 2p07m i fact represent the maximum and minimum of
the inner and outer angles.

Now we are ready to generalize Theorem 1 to functions of bounded boundary
rotation. Therefore we deduce the following formulas for the Koebe, Becker and
Nehari expressions for functions of bounded boundary rotation with a representa-
tion (34) similar to (30)-33): let

1 v
1 — ZA

b(zix)i= (46)
then
K(fiz)= ?+(1+r)/80 gd/t(x) = l/m)b(z;x)d;t(x), (47)
1-
A(f;2)=2(1+7T) /onﬁd”()c), (48)
and, since
o[ dmx) ([ Ao
5(2) 2/&0 (z—x) 2(/80 z-x)
1 1)?
- [ a2 - 1) (49)
o(f;z)=2(1+r)? (1= 2dtx - / l_rdt(x)>ZI
2) = X ) /190(2')‘) ) (802~x !
= } /;D)z dp(x)dp(y) (b(z; 1) - b(z;y))z{. (50)
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THEOREM 3 Let [ € V(K) such that the corresponding signed measure (i has dis-
crete part g of form (45). Then

(al) limsupk(f;2z) = @max,
z—08D

(a2) liminf &(f;2) = amin,

(b) limsupA(f; z2) = dpimax,
z—8D

(c) limsupa(f;z)= 8mdx|;1.k(l—yk)|
2 —3D

Proof Let f € V(K) with corresponding signed measure 1. As usual we write
L= [laise T fteone such that (45) holds. Then V‘k Ltd < K/2 Let € >0 be given.
Now choose n @ N large enough that

o6}

3 lml<e (51)
k=n+1
and that the maximal value maxgen |fix] = |jik,| is attained for k¢ < n.

Let us first consider (b). The integral on the right hand side of (48) can be de-
composed in three terms (z = rp’g\

"

1(z) = /DD Zl:—;d/l.()()

I—r 1-r
- + d Con
Z/tk Z /lk pa— /80 S g AHeom(X)

k=n+1
= 11(Z)+]2(Z)+I3(Z). (52)
For I} we get by Lemma 4

) — e Xy if 6=argx k=1,...,n
liml]l(re‘9)={ P Xk ' Xk ( ),

0 otherwise
so that

limsup!/i(2)! = max |p mdx ul = u
msup ()} = max |l = max il = pro

by the choice of n and by Corollary 2. Thus it remains to show that ; and /5 tend
ta zero as r tends to 1. This follows for I, from (51) and for I1 from the continuity
of fteom (see e.g. [11]), which finishes the proof for (b).
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(a) As above we have a decomposition (see (47))

K(f;z)=

n _ ,

1—Zxyg 1-Zx; 1-2Zx
Z/lk + Z i3 p— +/ — dphcont(X)

k=n+1

= |L(2) + h(z) + I(2)],
for which we conclude

. i0 Xe(1—2p) if 6=argx, (k=1,...,n)
limh(re'®) = ) R
r—1 L 1 otherwise
and iim, _1h(re?) = iim,_ a(re!?y =0, as [b(z;x4)] is bounded by 1 for
z & D and x; € 0D.
(¢) The same procedure shows that for lim, _ o (f; re?) also the discrete part of
jt s decisive. =

As consequence we have

COROLLARY 3 Let f € V(K). Then

limsupA(f;z) =0« f is bounded and 8f (D) is smooth.
z—6D

Proof By Theorem 3 the left hand side is equivalent to jtmax = 0, and this obvi-
ously is equivalent to the fact that 4 = 0, which by Corollary 2 is equivalent to
the smoothness and boundedness of Jf (D). |

Moreover

COROLLARY 4 Let f € V(K) such that the corresponding signed measure pi has dis-
crete part jigs. of form (45). If further we > —1/2 (k € N) (in particular, if f is uni-
valent), then

<2 f is bounded
limil:)p Afin)>2% o { is unbounded
zZ—
=2 f(D) has a vertex of inner angle zero

Proof By Theorem 3 the expression limsup,_ opA(f;2) equals 4jin.,. Let now
first this term be less or greater than 2. Then by Theorem 2 f(D) has vertices of
outer angles 2y, (k € N), and so is bounded and unbounded respectively by the
definition of a vertex at oo. On the other hand, if it equals 2, then necessarily there
is a vertex which corresponds t0 fims = 1/2 of outer angle m, which gives the result.
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Becker ([3], p. 414) conjectured that for f € § with Jordan domain f (D) the con-
dition
limsupA(f;z) <2 (53)
z—0D
implies that f has a quasiconformal extension to C. This conjecture is true for
functions of bounded boundary rotation.

COROLLARY 5 Let [ € S have bounded boundary rotation. Then (53) implies that
[ has a quasiconformal extension to C.

Proof Suppose f € V(K). As f is univalent, by Corollary 4 condition (53) im-
plies that f is bounded. By Theorem 3 it follows moreover that g, =: %(1 —¢) for
some ¢ > 0. So for all vertices the relation {1 — x| < 2pmax = 1 — € holds, and there-
fore € <<y < 2--¢ (k €N), so that there is a vertex of smallest angle ;.7 > em
and a vertex of largest angle ™ < (2 — €)n. Because ji > 0 as k> oo there are
oniy a finite number of vertices with an outer angle near 7 (i.e. an inner an-
gle wpm a0 or agpm = 27), so that the local characterization of quasicircles due to
Ahlfors ([1], see [22], chapter 11, §8) shows that Of (D) is a quasicircie. [

Corollary 2 gives a one-to-one correspondence between the discrete part of the
signed measure j associated with f and the vertices of 9f (D). Therefore it is of
some interest to decide what kinds of boundary smoothness are typical for the parts
of ji absolutely continuous and continuously singular with respect to Lebesgue mea-
sure. Here we get a partial result.

LEMMA 6 Let f € V(K) with f(D)=F and zq = e'% such that f(z0) is a point
where the boundary curve f(e'?) is analytic. Then the function m associated with [
by (38) is a C°-function in a neighborhood of 8.

Proof As OF is analytic at f(zg) the Schwarz reflection principle shows that f
has an analytic extension at zy. So in particular f is analytic in a certain neighbor-
hood U of zy on the boundary of D, and so is f'. We deduce that moreover ['(z;) #
0 for z; = €'% € U. Suppose the contrary, then [’ has an expansion («a; # 0)

(@) =ay(z— ) +a(z — )1 +
for some k € N, which leads to

fll _ k
f, (Z) - 7
with H analytic in U. By the identity theorem for analytic functions (54) holds also
in D so that by Theorem 2 Jf(D) has a vertex at f(z;) (of outer angle —kw), 1

contrast to the (md]ycny Thcrefore f'(z1) #0, and so k =0 in (54), i.e. f"/f"i 's

nalytic ai z;, and s0 1s in{f ) In particuiar argj (¢’ ") i1s in C™ at #; and so in U.
By (42) the conclusion follows. |

+ H(z) (54)
1

From this we get
THEOREM 4 Let f € V(K) with f(D)=F such that OF is analylic except al a
countable number of points where OF has a tangent. Then the signed measiire ji asso-

ciated with [ by (34) is absolutely continuous with respect 10 A,
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Proof If OF is analytic everywhere, then by the Lemma m is in C>([0,27]) and
dm = m'(8)df, where m’ in particular is integrable and its integral gives m, so m
and thus g is absolutely continuous. If there is at most a countable number of points
of nonanalycity on Jf (D), then—as there is no vertex—m is the sum of the above
constructed absolutely continuous part and some continuously singular part mg,,
with mg, = 0 a.e. Moreover mg, is continuous in [0,27] except of some countable
set 0 by the Lemma. So it has a unique continuous extension to [0,27]\Q2 which
vanishes. Finally pi,, must vanish as it is continuous in [0,27] and its support  is
countable.

THEOREM 5 Let f € V(K ) with f(D) = F such that OF is analytic except of at most
a countable number of points where OF has a fangent and a countable number of ver-
tices wi = [(x;) of outer angle 2jw(k € N). Then the signed measure p associated
with [ fudfills 11 = jigisc + ftans Such that (45) holds.

12. THE KOEBE, NEHAR! AND BECKER EXPRESSIONS FOR CONVEX
FUNCTIONS

The results of the last section apply to convex functions. In this section we shall
show that in the special case of convex functions also corresponding results for
the terms sup, .pk(2), inf,¢pk(z) and sup, .50 (z) are available. On the other hand
our results give analytic representations for amax, ®min and 2jim.x. We remark that
Pommerenke gave the following representation for the maximal outer angle

i (max ')
o =) T
1-r
(see [28], Theorem 1).
THEOREM 6 Let f € K, then
(al) suph(f;2z) = amax = 1,

z€D
in fact, (al) is equivalent to the convexity of f.
{ 2(1 = tmin) if f is bounded

b limsupA(f;2) = dptma = ’
(b) PA(f;2)=4p 2(1 + amin) if f is unbounded

z— 8D

(c1)  limsupa(f;2) = Bptmax(l = fimax) = 2(1 = ).
z2—8D

If furthermore f is unbounded, then
(a2) Inf w(f12) = min,

(c2) supo(f;z) = 2(1 - al;,),
z2€D
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and oy s the angle of Of (D) at .
Proof

(al) That this is equivalent to the convexity of f follows from the fact that the
universal linearly invariant family of order 1 is the family of convex functions
(see [29], Folgerung 1.1 and Folgerung 2.4). On the other hand by Theorem 3
this is equivalent to the geometrical fact that all nonsmooth boundary points
of 9f (D) have interior angles less than 7 and the existence of some smooth
boundary point.

(b) For convex functions and all k € N we have p; €]0,1], so that because of
the relation ay = |1 — 2| the value ag, = any, is attained if the distance of
fik, and 1/2 is minimal. If f is unbounded, then pima > 1/2, and this value is
easily seen to minimize the distance to 1/2. Otherwise also the largest value
ftmax < 1/2 minimizes this distance, so that finally

®min = |1 - 2,u‘maxiy (55)

which leads to the result by Theorem 3.
(c1) By Theorem 3 it follows that

limsupo(f;z) = 8max |p (1 — ). (56)
z2—0D kEN
As i > 0 (k € N) and because that value of {j} nearest 1/2 is . We see
that this value maximizes the right hand side of (56) implying the result.
(a2) If f is unbounded, then 8f (D) has a vertex at oo of angle a;T = a7 with
corresponding outer angle 2T = 2f4maxT.

Because [(D) can be approximated by unbounded convex polygonal do-
mains with fixed angle a;m at oo, it is sufficient to consider those Schwarz—
Christoffel mappings with p; = (1+a)/2 and 37 _,m = (1—a;)/2.
Therefore we get with (30) as || =1 (k = 1,...,n)

Z#kbk
k=1

K(f;2) =

o+ ZﬂkbkE
k=2

Theorem 3 shows that liminf,_sp&(f;2z) = a;, which gives the result.
(c2) Without loss of generality consider the same unbounded convex polygons
with fixed angle agm at co. Then by (33) and (30) we get

o(f32)= | 3w (bi(2) = ()" < 3 pinnelbj(2) ~ b(2)P?

jk=1 jk=1
2

<2|1- =2(1-k(f;2)’) <20 -ak).  (57)

> bi(2)
k=1
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On the other hand by (c1) limsup, _550(f;2) = 2(1 — a2, ), which finishes
the proot. |

We remark that (c2) for unbounded convex functions in much stronger than the
result given in [18], Theorem 3, where the question was solved, which convex func-
tions attain the maximal value 2 for the supremum of the Nehari expression.

We conjecture that the statement (c2) remains true if f is bounded, because it
seems to be true numerically. Moreover we conjecture that for bounded convex
functions inf,epr(f;2) = 0.

The statement (al) shows in particular that for the Koebe expression the sup
and the limsup coincide. We shall show in the sequel that for convex functions the
Koebe expression satisfies moreover a certain maximum principle. Therefore we
need the

LEMMA 7 Let f(z) = z +axz* + ayz®> + --- be locally univalent. If the Koebe expres-
sion k(f;z) has a local maximum at zy = 0, then

1 a3
= = (1+2|ay|”
a3 = 5 o (1 2l
in particular
|3a; — 2a3| = 1. (58)
Proof Let
1 "o
F(r.0):=re™"—5(1- rz)%(re’e)
and

G(r,9) = F(r,()) fzr—,g—) = Ii(f;reio)z,

then for a local maximum of k(f;z) at the origin obviously

oG
=0 59
or |, (59)
holds for all # € R. From
oG OF —
or ~Re (W F )

and

OF oo L e (SN e T s
Er—(r,b?)—e ~§(l—r)e (f’) (re )+rfl(re )

we get therefore for all § € R the relation

Rc{ (e‘”’ - %e"" (%)l(())) (%(0))} = 0. (60)
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This implies either a; = O—which leads to a local minimum of x(f; z) at the origin—
or, using the notations (p > 0)

- () -

i
3as — 243 %(%) (0)y=:x+iy =b,

and

we get for all e R
Re {(cosf — ising — (cosé + isin@)(x + iy))p(cosp + isinp)}
= p-Re{{(! — x)cos# + ysin6 — i((1 + x)sin@ + ycos8))(cosp + isinp)}
= p(cosH[(1 — x)cosy + ysinp]+sinflycose + (1 + x)sinp]) = 0,

so that the coefficients of the terms cosé and sinf must vanish. This implies the

relations
(1—x)cosp = ysing, (61)
(1+ x)sinp = —ycosp, (62)
from which we deduce by multiplication that
|b> = x* + y* =1,

and so (58). Now we substitute b= x + iy =:¢'? into (61) and (62), and a short
calculation gives the two equations

cos(p + 3) = cosyp, (63)
sin(p + ) = —singp, (64)
which finally lead to the unique solution 8 = —2¢ implying the resuit. |

The next lemma shows that only every special convex functions satisfy (58).
LEMMA 8 Let f € K. Then relation (58) implies that
" t 1—1¢
U —(z)= - 2

f! —x z+4x

(65)

for some t € [0,1] and some x € 9D, in particular: f (D) is either a half-plane, a sector
or a parallel strip.

Proof If f(z)=z+az®+a32>+---€K, then p(z)=1+z(/"/f")2)=
1+ piz+ prz+---€P.So

|p2| = |6a3 — 4a3| < 2
with equality if and only if

+ 32\ 1-x
o= () va-0(12)
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for some 1 €[0,1] and some x € 9D (see e.g. [32], Corollary 2.3). This gives the
result. [

Now we have

THEOREM 7 Let [ € K. Then the Koebe expression k(f;z) satisfies a maximum
principle, i.e. it takes its maximum over each domain D which is properly contained
in D (such that its closure lies in D, too) at the boundary of D. In particular: the
Junction

1 5 1"
K(r):= sup \f?+ =(1- lzl“)f,—,(z)
lz]=r | 2 7

e monotonicallv faereaving o
iy lh(/ruu(//uuh’:’) l’llblt‘h‘\l’l‘lb" /u‘l’ rc [(). l{

Prool We shall prove that for f € K a local maximum ot the expression x(f:2)
can only occur at 4 point zg € D if (D} is either a half-plane or a sector, and in
those cases the extremal value is attained at a curve joining z¢ with the boundary,
namely at a Steiner circle, i.e. the image of the segment 1 — 1, 1] under an automor-
phism of D, which gives the result.

Suppose first that £(f;2) has a4 local maximum at 0. Then by Lemma 7 (58) holds
and by Lemma & [ is of form (65). From this representation one deduces that

1 , 1" _ 1— r2
zZ— é(l - r')—]rl (z)=2+ m(l(zﬁ-x%&(l — 1)z — x)),
and especially for z := rx (r €]—1,1]) it follows that
1 "o .
7500 rz)%(z) =(1-2n)x.

So k(f;z) is constant on some diameter of D, which was to prove. In the case of a
parallel strip (1 = 1/2) the extremal value of k(f;z) obviously is a minimum, so that
this case must not be considered.

On the other hand, if x(f;z) has a local maximum at a point z5 # ), then by
Lemma 1 the information which we deduced at the origin can be transformed by
an automorphism w of B, as the family K of convex functions is linearly invariant.
This gives the result. |

13. CONVEX FUNCTIONS WITH VANISHING SECOND COEFFICIENT

Supposce, fm has the special form {m CN)
— m+1 m+2 PR
Sm(2) =z + ams12 + a0z + ., (66)

then f,, — z as m — oo. Hence f,,(D) tends to a disk in the sense of Carathéodory
kernel convergence (it f,,, are univalent). So it seems to be plausible 1hat the geom-
etry of f,,(D) will be restricted in some sense in connection with the restriction of
some analytic properties.
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The next theorem gives a sharp version of these considerations in the case of
convex functions. Therefore we need the

LEMMA 9 Ler f < g and r €]0,1]. Then
sup (1 [z)If'(2)| < sup (1 - |z[)lg'(2)]
2€D, zeD,

(see e.g. [32], p. 35, formula (4)).

THEOREM 8 Let m € N and fn, € K of form (66). Then A(fm;z) < 4/m, and this
result is sharp for the function G,, with

1

G,(2)= —s—.
’”( ) (l—zm)“/”‘

G(0)y=0. (67)

By Theorem 6 this has the geometric consequence that for f,,(D) hold
(H) 2/l'nmx7r < (1/m)27r,

(b) for m > 2 moreover apinm > (1 —2/m)m,
(¢) and for m >3 f,, is bounded.

Proof For a convex function of the given form it is well-known that

1
!
[ < m (68)
(see e.g. [9])- This statement is equivalent to Inf,, <Inh':= —(2/m)In(1 - z), so
that by the lemma we only have to observe that
h" 2 1 4
sup(1—z|*)|—(2)| = sup —(1 — |z|? = —.
For the function G,,, defined by (67), one gets, choosing z = r > 0, that
G! 2. pm-1 2. rm-l r—1 4
1— 2 m =(1- 2 =(1+ —,
( 'ZI)G;,,(Z)] ( r)l—r'" ( r)1+r+---+r”’—1_'m
which establishes the statement about equality. |

We remark that the statements (b) and (c) are obvious geometrical facts for m-
fold symmetric convex functions, and the theorem generalizes these facts.
For convex functions with vanishing second coefficient we have as a

COROLLARY 6 Let [ € K with ay(f) = 0. Then either f is bounded or f is un-
bounded and has a zero angle at ~o.
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Proof Applying the theorem for m =2 we get fimax < 1/2. By the geometrical
interpretation as outer angle the result follows. |

Finally we have the

COROLLARY 7 Let f[(z)=z+az* + a3z +--- € Kwitha, =az = as =0. Then f
fulfills the Becker univalence criterion.

14. CONVEX FUNCTIONS WITH ANGLE ar AT oo

In Corollary 6 geometrical conditions had been given for f € K with a>(f)=0:
either [ is bounded or f is unbounded and f(D) has a zero angle at oo.
In this section we consider unbounded convex functions with given angle at oo

and get results in the opposite direction.
For « € [0, 1] let K («) C K denote the family of unbounded convex functions with

inner angle am at oc. Obviously K (1) consists only of half-plane mappings, so

z
1—xz’

K(1)={feK]f(z)= xean}.

The family K () is a linearly invariant family of order 1.

The compactness of K shows that if @ — 1 then f, € K () implies that f, — [ €
K (1), and 50 |a,(fs)l — 1 for all n € N. The following theorem gives more detailed
information for the second and third coefficients.

THEOREM 9 Let a € [0,1) and f € K(«a). Then

(@) |a2(f)| > inf,eph(f32) = @,
(b) limsup,_5pA(f32) = 2(1 + a),
(©) 6las(f)— a2())] < sup,epo(f:2) = 21— a?).

If 7(f;a) = |as(f ow — [ ow(0)/(f ow) ()], w(z)=(z+a)/(1+az) and p=
(1+ @)/2, then for a>1/2(V13-3) = 0.3027... furthermore

(d) Jas()] > infoenT(f32) = S(4p2 +2p—3) = §(@? + 3a — 1),
For all { € K holds
(e) liminf,_op7(f32) = 3(3 — 8ftmax + Bftfnan);
in particular for f € K(a)
(f) liminf,_op7(f;2) = L(3 — 8+ 8u?) = (1 + 2a?).
Proof The statements (a), (b) and (c) are obvious consequences of Theorem 6.

Let us now consider the absolute value 7(f;a) of the third coefficient of the Koebe

transform h:= (f ow — fow(0))/(f ow)'(0). If f is a polygonal function with an
angle am at co then without loss of generality i, = p, and so Y_; _,pk = 1—p. By
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(29)-(33), and as |bi(a)] < 1 (k = 1,...,n), we have

i = 2O
_ (= jal) " (a) - 6a(l - lal*)f"(a) + 6a>(1 - |a)f (@)
6| (1-la)f'(a)
1 . 2
- g laPysy@) + (—a+ 501~ laP )7(a>)
= Z i (bila)y — by u)) (L/lkbk([])\' '
Y ik=1 k=1 [
= l N pbi(ay +2 7 /t,z;b.l:((l))
2 td k=1 / !
1 n n n 2 I
272 2 T -
=3|n + Z;/l,kh;bl +2 (,u“ + 2[L;/Lkbkb1 + (kzzz“kbkbl) )
> (p+2p’ = (1= py—dp(l — p)— 2(1— p)?)

[SC R UV RN

(A +2p—3) = %(az +3a—1),

which gives the result by approximation.
(e), (f): This is proved in a way similar to the proof of Theorem 3. |

We remark that the right hand side of inequality (d) tends to 1 as a — 1, and
so gives a rather sharp estimate for values of @ near 1. The statement (a) shows
that K (a) is an example of a linearly invariant family for which inf;cgmlaz(f)] is
bounded from below.

15. THE KOEBE, NEHARI AND BECKER EXPRESSIONS FOR
CLOSE-TO-CONVEX FUNCTIONS

By C.(3) we denote the family of m-fold symmetric close-to-convex functions of
order /3. It is easy to see using the original development [14] that the correspondin

function p € P is of the specml form

[¢4-]

p(2)=14+cpuz™+ ComZ™ + -+, (69)
For to consider those functions we need the following

LEMMA 10 Lef x € 0D, A€ R* and h' < ((1+ xz)/(1—2))*?. Then A(h;z) < A.
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Proof  As we have Inlt' < X/2In((1 + xz)/(1 — z)), Lemma 9 implies that

h'! | 11+ x|

sup (1 — ) 1+ iy
z2eD,
and so the result follows. |
Now we have
THEOREM 10 Let meN, f >0 and f(z)=z+am412""" + aam12°™ "+ an

m-fold symmetric close-to-convex function of order . Then A(f;z) < (4/m) + 28,
and this Is sharp for the function F,, given by

(14 zm)yY

(W, nl(\)) — l) (70)

Fo(z)=

Proof Let [ have the properties considered. Then there is an m-fold symmetric
convex function g, a complex number x € 9D and a function p < (1+ xz)/(1-2)
such that f" =g’ p”. Thus we have by Theorem 8 and Lemma 10 with p := #'

sup(1 - 121/ <z>i<sup<1 |z|)\ (z)\wsup(l—lzl)
4
<~ 42p,

For the function F,,, defined by (70), one gets, choosing z = r > 0, that
m—1 2m-r™m- (r-ﬂl) 4

2m

— +2p,

(z)—(1~r) +ﬁ(]—r)

which establishes the statement about equality. |

We remark that for m = 1 the statement is an immediate consequence of the
linearly invariance of C(f3) because for [ € C(8) one has k(f;z) <1+ [ (see e.g.
[29], Lemma 1.2), implying that

| I

(1- (z)' ‘ Z+ (]A|z|) (z)i+2|z|<4+25

The theorem gives

COROLLARY 8 Ler f<1/2, m>4/(1-208) and f € C,.(B). Then [ fulfills the

Becker univalence criterion.
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16. INTEGRAL MEANS
For f € A and r € [0,1] let

1 pAd ‘ I/p
xwmn:(gﬂ ww%wﬁ (p €10,D,

Moc(r.f):= max [f(re')|

9€[0.27]

denote the pth integral means. For p € ]0,oc] let HP denote the family of functions
f for which M, (r, f) remains bounded as r — 1.

M, (r.f) turns out to be a nondecreasing function of r and also nondecreasing as
function of p. For [ € H? the radial limit

f(e"):= lim f(re'”)
r—
turns out to exist for almost all 8 € {0,27] and is in L?(|0,27]), and

1 2n ) 1/p
mun;<gﬂ|ﬂwww) = lim M, (r. ). (7)

The Linlewood subordination theorem states that f < F implies that M,(r,f) <
M(r,F) for all p €]0,~] and all r € [0,1].

If the derivative [’ of some function f € A4 is in H? for some p € ]0,oc], then so
is [, i.e.
feH> if p>1

Te H = {
/ f e HPIU-P)  otherwise

(73)

Moreover if f € § maps D onto some bounded Jordan domain, then
[ e H' & 9f (D) is rectifiable.

For functions f which are in H? for some p € ]0,00] we define the Hardy-dimension
of | by
dimy-(f):=sup{p €]0,00] | f € H?}.

(References: [23], [5].)

i7. INTEGRAL MEANS FOR POLYGONS

If f is a polygonal mapping normalized by (1), then by the Schwarz—Christoffel
formula (8) one has

n

f(z)= H xz)“k €D (k=1..,n), > m=1 (4

k=1
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From this rcprucntdtion one can see at once that f' € H? for some p >0 (namely
for all p < 1/2, see e.g. {12}, p. 80), so that f'(e'?) exists for almost all 8 € [0,27]

and
2r

tim [Cipeeniran= [T iceniras. (75)

For to get a sharp H7”-result for a polygonal mapping f depending only on the
parameters of the Schwarz—Christoffel formula, hence on the geometry of the image
surface of f, we assume without loss of generality that g >0 (k = 1,...,m) and
Vg '= —jlgym >0 (k =1,...,n—m) and write y; := x4, (k = 1,...,n— m). Then

k]

- ! H?i”'(l — Viz)™
H 24 T\

T )
ey TS (= Tz

and so
- A2
k-1 2

m LY
szg i Xz |2

Lx~nom " . !
AS D i e <Y p | =K /2 we get

I £17 0\
|/(2)] <

1
' pp— ) 76
R Taey (76)
By (75) we have to check the finiteness of
2mr
B 6
4 (77

o I 1|1 Teefprr’

Therefore suppose without loss of generality that x;, (kK = 1,...,m) are ordered suc-
cessively on 0D and define (x4 1= X))

d = min{dist(xy, x; 1) | k = 1,...,m}. (78)

Clearly d > 0 as the points x; (k = 1,...,m) are isolated. (On the other hand the
value of d depends heavily on n and for all sequences (xg )ken Of unimodular num-
bers d — 0 as n - co.) Now we decompose the integral (77) in m components.
Choose 1 := J(arg(x;) + arg(xx 1)) (k = 1,...,m), and observe that

. . d
|lfx7e’9|=|e’9—xk|>§ (k =1,...,m) (79)
for 6 ¢ [4i _1,te ). (w41 1= 11). Now it follows for j = 1,...,m that

/2N Kp fj+1 do
<= . S

(NP as
\d) Jy =xeopur
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which is finite if and only it p < 1/(2p;). So (77) is finite iff p < 1/(2i7. ), where
P = max{yx |k = 1,...,n}. This gives
LEMMA 11 Let [ be a Schwarz—Christoffel mapping. Then f'e H? for all p <
U/ (24t 4 ) and this bound is sharp, i.e.

1

dimy (f') = i

Analogously one gets for 1/f'

T rnanga 17 T ot £ hp o Codivomnry £ srictndfol saanmizg Thhos 1/ 60 — IID fae All 2 -
LLIZIVEIVIA 1 o 1.C1 j e \)LILWL[IL—L,ILIL)I(IJJ [ ,’“"[III"‘S' 1ricre l/j Ll i1 j(ll il [ “
1/ (- 1), and this bound is sharp, i.e.

dimup(l'/f’) =
Mmax — 1

Proof The same procedure as above shows that 1/f' ¢ HP for all p < 1/(205.4)
where Vo c= max{ig (k= 1,.. ., n m}. By (9) it follows that 2rg.. = (1 - amax).

18. INTEGRAL MEANS FOR FUNCTIONS OF BOUNDED BOUNDARY
ROTATION

For functions of bounded rotation K7 we have the usual representation (34)
" dp(x
= [ D)
I Jop Z—X
for some signed measure ¢ with Lebesgue decomposition ft = jigise + ficom- Then
Hdise = 2 opoq k0, for xp € 9D (kK € N) and 7 || < K/2. Let now €> 0 be
given and choose m € N large enough that

o0

> ml<e (80)

k=m+1

and that the maximal value fin.. = |, | 1s attained for kg < m. We write y; 1= xg,
(k > m) and get

/" i L / dftcom(¥)
l = _ - - 72 .
f,(z) 2227,(]( 2 Z Z—= Vi I:] z-X

k=1 k=m+1 B
For the last expression we write
d Leont (X k"
) / /7‘() =: —(2), (81)
Jop Z—X K’

so that an integration gives (without loss of generality [ is always assumed to be
normalized by (1)),

f'iz)y = ki(z
J =) N

n 1 e ) ]

N
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From this representation one can see at once that f' € H? for some p >0 (namely
for all p < 1/2, see e.g. [12], p. 80), so that f'(e'?) exists for almost all § € [0,27]
and

27 ) 2 }
tim [ reyran = [ ipetyeas. (75)

For to get a sharp H7”-result for a polygonal mapping f depending only on the
parameters of the Schwarz—Christoffel formula, hence on the geometry of the image
surface of f, we assume without loss of generality that p; >0 (k =1,...,m) and
Up = —jipem >0 (k = 1,...,n—m) and write y, := x44p (k = 1,...,n—m). Then

f’(z)=f[ 1 _[Lera-yeey™
o (= I (1 - Tz

and so
n—m ~2p,
k=1 2

11— Xgpz|2me

(@)= i,

As ST < S0 C I =1 K /2 we get
1

[Tios 11—z

By (75) we have to check the finiteness of

f'(2)) < 2% (76)

p2m
- ayv
/0 HTzlll—x_kei(’]Z#kP' (7

Therefore suppose without loss of generality that x; (k = 1,...,m) are ordered suc-
cessively on 9D and define (xp 41 1= X1)

d := min{dist(xg, xx+1) |k = 1,...,m}. (78)

Clearly d > 0 as the points x; (k = 1,...,m) are isolated. (On the other hand the
value of d depends heavily on n and for all sequences (xx)ren Of unimodular num-
bers d — 0 as n — oc.) Now we decompose the integral (77) in m components.
Choose #; := %(arg(xk) +arg(x,_1)) (k = 1,...,m), and observe that
+oif I d
11— xe'®| = |e —xkl>5 (k=1,...,m) (79)

for 6 ¢ [tx_1,tk], (tm+1 := 11). Now it follows for j = 1,...,m that

L1 de < 2 Kp /tj*l de
i HZI:I 11— Eeie;z‘u"p d 1 [1- x_jeiG'Zyjp

)" [ et
- d 0 |1—X_j€i0r2”fp,
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which is finite if and only if p < 1/(2x;). So (77) is finite iff p < 1/(2pt4 ), Where
jer = max{yi | k = 1,...,n}. This gives
LEMMA 11 Let [ be a Schwarz-Christoffel mapping. Then f'e€ HP for all p <
1/pt ), and this bound is sharp, i.e.

1

dim]lf’(fl) = 2/l,+ ‘
max

Analogously one gets for 1/f'

LEMMA 12 Let [ be a Schwarz-Christoffel mapping. Then 1/f' € H? for all p <
1/(amax — 1), and this bound is sharp, i.e.

1

Mmax — 1

dimy, (1/f") =

Proof The same pmcedure as above shows that 1/f' € H? for ail p < 1/(2Vmax)
where vy = max{r |k = 1,. m}. By (9) it follows that 20, = —(1 — Qma).

18. INTEGRAL MEANS FOR FUNCTIONS OF BOUNDED BOUNDARY
ROTATION

For functions of bounded rotation K7 we have the usual representation (34)

" M- -2 / dp(x)

Z—X

for some signed measure j with Lebesgue decomposition jt = figisc + ftcon- Then
fldise = 9 pey fkdx, for xx €D (k €N) and Y 07, k] < K/2. Let now € >0 be
given and choose m € N large enough that

>l <e (80)
k=m+1

and that the maximal value jtmax = |ptk,| is attained for ko < m. We write y; 1= xy,
(k > m) and get

f dconl)
fr=2y e a Y s [ dhen®)

For the last expression we write

_ d/"conl(x) —. k_”
2 [ e 22 (81)

Z—X

so that an integration gives (without loss of generality f is always assumed to be
normalized by (1)),

1 )
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Now we go on as In the case of polygonal functions. Suppose without loss of gen-
erality that x, (kK = 1,...,m) are ordered successively on 9D and define (now set
Xmi1:=x1)d >0 by (78) Choose 1 := L(arg(x;) +arg(xx_y)) (k = 1....,m) so that
(79) holds for 8 ¢ [1x_1, 1], (m+1:= 1)-

Suppose now that k' = 1. Then it follows for j = 1,...,m that

[ ) Tis1 do
If (e do =
[} e | e T e

i J

2\P do
<(Z> L[ 11— TGet02me - T2, 11— Vielf|2mep

i

K 2
AN d8
= '\ d) o "o 1612 oo 11 1412
- ¥ ; vl 2urp
\d VUL T RIS § ASRL I T
. K= 2x P
AN /“‘ de
-~ \\d'} Jo ;1 _ xf]eiﬁi:’p(;:/ )
by (80} {for the last step see also [12], p. 80) which is finite if and only if p <
1/(2(js; +€)). As ¢ was arbitrary we see that f € HF for all p < I/(Z/l,[m, where

Prnax := MaXken i as in the polygonal case. This gives

THEOREM 11 Let f € V(K) with (D) = F such that OF is linear except of a count-
able number of vertices wi = f(xi) of outer angle 2p;. (kK € N). Then

dimy (f') =

2
e (82)

and
I

Mpax — l'

dimy(1/f') = (83)

The result given here holds also if the function k' defined by (81) is bounded
in B. We conjecture that (82)—«83) hold for all functions of bounded boundary ro-
tation. Theorem 11 should be compared with results of Warschawski and Schober
who showed the validity of (82) and (83) firstly for bounded univalent functions
of bounded boundary rotation whose boundary curves df (D) are furthermore of
bounded arc length-chord length ratio and secondly for bounded univalent functions
whose ranges have only a finite number of vertices and for which some further tech-
nical conditions hold ([36], Theorems 2 and 3). We remark that our result does not
at all depend on boundedness or univalence.

19. INTEGRAL MEANS FOR CONVEX FUNCTIONS WITH VANISHING
SECOND COEFFICIENT

For convex functions the results of the last section apply. Moreover we get for
functions with vanishing second coefficient
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THEOREM 12 Let m € N and f,, € K of form (66). Then f,, € H? for all p < m/2.
This result is sharp for the convex function [ with ['(z) = 1/(1 - z™)¥/™.

Proof By (68) in the given situation f(z) < 1/(1 - z)?/™ =: F'(z), so that the
result follows by the Littlewood subordination theorem as 1/(1—2)* € H? for all
p<l/a

For f'(z) = 1/(1 — z™)*/™ = F'(z™) we have

2T 2m

2m
/0 [f’(re"’)}pd():/o [F'(re"""’)|1’d9=/0 |F'(re'?)|? df

where the last equation follows by the substitution # — m# and from the periodicity
of the exponential function. so that the result is sharp. |

As a corollary we have a generalization of Theorem 8(c).
st A ranc £} o £ P 25 s — . 1 AP —~
COROLLARY 9 Lel [(z)=z+azz> +asz* +---€ K with ay=ay=0. Then ' ¢
H' and f(D) has a rectifiable boundary.

Proof The theorem shows that f' € H'. As f is bounded by Theorem 8(c¢) (or
by (73)) and f (D) therefore is a Jordan domain, we get the conclusion. |

We remark that the theorem is a special case of our conjecture as functions of
the given form satisfy 2pF < 2/m (see Theorem 8(a)).

References

N AL Quasiconformal reflections, Acta Math. 109 r10m\ 201-301

1
L. Y. ALIOTS, Luasiconiormai reiiec 1902, L7 2L L.
J. Becker, Lownersche Differentialgleichung und quasxkonform fortsetzbare schlichte Funktionen,
J. Reine Angew. Math. 255 (1972), 23-43.
[3] J. Becker, Some incqualities for univalent functions with quasiconformal extensions, In: General
Inequalities 2, edited by E. F Beckenbach, Birkhduser, Basel, 1980, 411-415.
[4] M. Biernacki, Sur la représcntation conforme des domaines linéairement accessibles, Prace Mat.-Fiz.
44 (1936), 293-314.
[5] P L. Duren, Theory of HP-spaces, Pure and Applied Mathematics 38, Academic Press, New York—
London, 1970.
[6] P. L. Duren, Univalent functions, Grundlehren der mathematischen Wissenschaften 259, Springer-
Verlag, New York-Berlin-Heidelberg-Tokyo, 1983.
[7] P L. Duren, H. S. Shapiro and A. L. Shields, Singular measures and domains not of Smirnov type,
Duke Math. J. 33 (1966), 247-254.
[8] U. Gall, Uber das Randverhalten von Bazilevi¢-Funktionen, Dissertation an der Technischen Univer-
sitat Berlin, 1986.
[9}) G. M. Goluzin, Some bounds on the coefficients of univalent functions (in Russian), Mar. Sb. 3, 45
(1938), 321-330.
[10} G. M. Golusin, Geometrische Funktionentheorie, Hochschulbiicher fiir Mathematik Band 31, VEB
Deutscher Verlag der Wissenschaften, Berlin, 1957.

{11] W, K. Hayman, On functions with positive real part, J. London Math. Soc. 36 (1961), 35-48.
[12] D. J. Hallenbeck and T. H. MacGregor, Linear problems and convexity techniques in geometric func-

tion theory, Monographs and Studies in Mathematics 22, Pitman, Boston-London-Melbourne, 1984.

[13] W. Hengartner, A. Pfluger and G. Schober, On support points in the class of functions with bounded
boundary rotation, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 6 (1981), 213-224.

[14] W. Kaplan, Close-to-convex schlicht functions, Mich. Math. J. 1 (1952), 169-185.

[15] W. Koepf, Extrempunkie und Stitzpunktc in Familien nichtverschwindender schlichter Funktionen,
Complex Variables 8 (1987), 153-171.



09:52 19 February 2009

[ Koepf, Wolfran At:

Downl oaded By:

GEOMETRICAL AND ANALYTICAL PROPERTIES 207

[16] W. Koepf, On the Fckete-Szego problem for close-to-convex functions, Proc. Amer. Math. Soc. 101
(1987), 89-95.

[17] W. Koepf, On the Fekele-Szegd problem for close-to-convex functions 11, Arch. Math. 49 (1987),
420-433.

[18] W. Koepf, Convex functions and the Nehari univalence criterion. In: Complex Analysis, Proc. of the
XIII. Rolf Nevanlinna-Colloquium, Joensuu, August 1987, edited by I. Laine, S. Rickman and T.
Sorvali, Lecture Notes in Mathematics 1351, Springer-Verlag, Berlin-Heidelberg-New York, (1988),
214-218.

[19] W. Koepf, On close-to-convex functions and linearly accessible domains, Complex Variables 11
(1989), 269-279.

[20] M. A. Lawrentjew und B. W. Schabat, Methoden der komplexen Funktionentheorie, Mathematik fir
Naturwissenschaft und Technik Band 13, VEB Verlag Deutscher Wissenschaften, Berlin, 1967.

[21] O. Lehto, Domain constants associated with Schwarzian derivative, Comm. Math. Helv. 52 (1977),
603-610.

[22] O. Lehto and K. 1. Virtancn, Quasikonforme Abbildungen, Grundlehren der mathematischen Wis-
senschaften 126, Springer-Verlag, Berlin-Hcidelberg-New York, 1965.

[23] J. E. Littlewood, Lectures on the theory of functions, Oxford University Press, London, 1944.

[24] A. Mukherjca and K. Pothoven, Real and Functional Analysis, Mathematical concepts and methods
in science and engineering 6, Plenum Press, New York-London, 1978.

[25] Z. Nchari, The Schwarzian derivative and Schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 545-
551.

[26] Z. Nchari, A propcrty of convex conformal maps, J. Anal. Math. 30 (1976), 390-393.

[27] V. Paatero, Uber die konforme Abbildung von Gebieten deren Rénder von beschrinkter Drehung
sind., Ann. Acad. Sci. Fenn. Ser. A. I. Math. 33:8 (1931), 1-78.

[28] Ch. Pommcrenke, On starlike and convex functions, J. London Math. Soc. 37 (1962), 209-224.

[29] Ch. Pommecrenke, Linear-invariante Familien analytischer Funktionen I., Math. Ann. 155 (1964),
108-154.

[30] Ch. Pommerenke, Lincar-invariante Familien analytischer Funktionen II., Math. Ann. 156 (1964),
226-262.

[31] Ch. Pommerenke, On close-to-convex analytic functions, Trans. Amer. Math. Soc. 114 (1965), 176~
186.

[32] Ch. Pommcrenke, Univalent functions, Studia Mathematica/Mathematische Lehrbiicher 25, Vanden-
hoeck & Ruprecht, Gottingen, 1975.

[33] G. Schober, Univalent functions—selected topics. Lecture Notes in Mathematics 478, Springer-Verlag,
Berlin-Hcidelberg-New York, 1975.

[34] T. Sheil-Small, On lincarly accessible univalent functions, J. London Math. Soc. 6 (1973), 385-398.

[35] E. Study, Vorlesungen iiber ausgewihite Gegenstinde der Geometrie, 2. Heft: Konforme Abbildung
einfach-zusammenhdngender Bereiche, Teubner-Verlag, Leipzig-Berlin, 1913.

[36] S. E. Warschawski and G. Schober, On conformal mapping of certain classes of Jordan domains,

Arch. Rat. Mech. Anal. 22 (1966), 201-209.

[37] K.-J. Wirths, Uber holomorphe Funktionen, die einer Wachstumsbeschriankung unterliegen, Arch.

Math. 30 (1978), 606-612.





