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Taylor Polynomials of Implicit Functions,
of Inverse Functions, and of Solutions of
Ordinary Differential Equations
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In this note we present a simple and efficient algorithm to calculate Taylor polynomials of implicit func-
tions, of inverse functions, and of solutions of ordinary differential equations. We give implementations
in the Computer Algebra system DERIVE that demonstrate the efficiency of the algorithms in practice.
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1. TAYLOR POLYNOMIALS OF EXPLICIT FUNCTIONS

Assume a real function f : I — R is n times differentiable in an interval I contain-
ing the point xo. Then the polynomial

nofk)
T )= Y - (1

k=0

is called the Taylor polynomial of order n of f. Often it represents a global approx-
imation converging to f(x) in I when n — co. The function

e U if x#0
f(x):= ©)

0 otherwise

has Taylor polynomials T,(f,x,0)=0 for all n e N, which shows that this is not
always the case. Locally near xo, however, the Taylor polynomial T, gives an ap-
proximation of f of order O((x — x0)").

If a function f is explicitly given then (1) is an algorithm for an iterative calcula-
tion of the Taylor polynomials. We mention that in general, however, (1) has to be
replaced by

" i (k)
T, (f, %, x0) := Z l—u—nﬂlé’—!f—iq(x — xo)~.

k=0
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This is as the functional expression by which f is given may not be valid for x = xy.
An example of that type is f(x) = sinx/x (x # 0) at xy = 0 with

f(0):= }"E:)Jf(r) =1,
; Ly . XCOSX —sinx
0): = lim f'(x) = lim —————— =0,
£1(0): = lim f'(x) = lim 225 ,
: 2xcosx + (x? —2)sinx 1
"(0): = lim f"(x) = lim — =—=
f ( ) x—»()f ( ) x—0 x3 3’

and so on. Another example is function (2).

The calculation of Taylor polynomials for explicit functions is implemented in
most Computer Algebra systems available. In this note, we use DERIVE [5], a Com-
puter Algebra system that is especially easy to use, running on every IBM com-
patible personal computer, and on the other hand having strength enough for all
computations we’ll do. However, the following restrictions apply. If the order n
of the Taylor polynomial searched for is too large, DERIVE may fail by reasons of
memory averflow or time restrictions. Further DERIVE does not suppaort all special
functions that may be of interest.

The DERIVE function TAYLOR(fx,x0,n) generates the Taylor polynomial of order
n of f at the point xy with respect to the variable x. For example we get the
following calculations of Taylor polynomials at the origin

function  DERIVE input DERIVE output after

sinx ® x® Xt x
- TAYLOR(SIN(x)/x,x,0,8) 362880 5030 T 10" 6

+1,

e~1/¥*  TAYLOR(EXP(-1/x"2),x,0,10) 0,

3 ! TAYLOR(1/(1 —%),x,0,8) x4+’ + 8+ P+t B+ P+ 1,
—x
cosx — 1 x8 %8 X2 1
—1)/x? ! —_—— et ——— -+ = — —.
x2 TAYLOR((COS() - 1)/x"2:x.0,8) 3628800 40320 720 24 2

We mention that in the case of explicitly given functions also an algorithm (see
[1], [2], and [3]) is available with which in many cases one can find a closed form
representation of the Taylor series

®)(x
Z f ( 0) _ xO)k
for f, i.e. a formula for f®)(xo) for symbolic k.

2. TAYLOR POLYNOMIALS OF IMPLICIT FUNCTIONS

In applications, functions often are given only implicitly by an equation

F(x,y) =0,
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TAYLOR POLYNOMIALS OF IMPLICIT FUNCTIONS

where y = g(x) is considered to be a tunction of the variable x. The implicit func-
tion theorem guarantees under certain weak conditions the local existence of such
a function g for which F(x,g(x)) = 0 in a neighborhood of a given point (xg, yg) for
which F(Xo,yo) = (.

A typical example is the equation of the unit circle

-

Flxy)=x*+y* 1=0,

where for each (xo,yo) with x§ + y3 = 1 and y, > 0 the function

g+(x):=+V1-x2,
and for each (g, yo) with x§ + ¥y = 1 and y < 0 the function
g-(x):=—/1-x2

are corresponding explicit functions locally.
Here we present an iterative procedure to generate the Taylor polynomials of an

TRCIC Y presed

implicitly given function. Differentiaiing ihe defining equation
F(x,g(x))=0
by the two-dimensional chain rule, we get

oF

OF
a_x(xﬁy) + F(xay)gl(x) = O’
Y y=8(x)
and thus
OF
E(X,,V) ’
()= —— =-'F1(-¥,)’)!
O (xy) |
oy |.v=g(x)

To get the higher derivatives of g successively, we may differentiate now F; by the
chain rule to produce

OF OF,
g'(0) = S () + T;(x,y)g’(X)
OF, OF),
= —(x,y)+ —(x,V)Fi(x,y) =: FK(x, ,
ax( ) By (X, Fi(x,y) =: Fa(x,y) e
further
"x)= @(;{-,};) + é@(t’y)Fl(Y”v) =: Fa(x 1\
ox 'y ’y=g('X)

and so on, inductively. By this procedure we produce a list of the first n derivatives
of g in terms of x and y, and by taking the limits for y — y; and x — xy, we may
produce the Taylor polynomial of order .
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As an example we consider again
2, .2
Fl,y)=x"+y —1=0,

with (xg,y0) = (0,1). By the above procedure we get

o
, x x x
X)=———=—-—=——=:F(x,y),
g'(x) oF 2 ; 1(x,y)
E(XLV)
and iteratively
2,2
g = 2y + 0 (rym(r = = T ),
y oy - )
, 3x(x? +y? ,
g'"(r)= (x,v)= —L—v—‘ =: Fa{x.V),
. I ,
and
, OF OF; 3(x 2+ y))(5x% +
£ (0= Pen s Py = 2T gy

The fourth order Taylor polynomial thus is given by

Fk(xo,}’o) k Xt xf
Tu(g,%,(0,1)) = )’0+Z =1

DERIVE (like other Computer Algebra systems) does not directly support the calcu-
lation of Taylor polynomials of implicit functions. On the other hand, we can easily
implement our given algorithmic procedure into DERIVE. The DERIVE function

IMPLICIT TAYLOR AUX(,x, ., x0,y0, n, aux) : =
yO + SUM(LIM(LIM(ELEMENT(aux, k), y, y0),x, x0) /k_*(x — x0)"k_k_,1,n)

calculates the Taylor polynomial of order n of the function y = g(x) given by
the equation F(x,y) = 0 using limits where aux represents the list of derivatives g,
g",...,g". If yprime is the first derivative, then the derivative list is produced by

the command
ITERATES(DIF(g_, y)*yprime + DIF(g_,x),g_, yprime,n— 1}.
Thus the DERIVE function IMPLICIT TAYLOR(f,x,y,x0,y0,n), given by

IMPLICIT TAYLOR YPRIME(f,x,y, x0,Y0, n,yprime) :=
ITERATES(DIF(g_, y)*yprime + DIF(g_,x),g_ yprime,n— 1))
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IMPLICIT TAYLOR AUX(f,x,y,x0,y0,n,
IMPLICIT TAYLOR(f,x,y,x0,y0,n) :=
IMPLICIT TAYLOR YPRIME(f, x,y, x0,y0.n, — DIF (f,x)/DIF (£, y))

results in the desired Taylor polynomjal where we used (1) to calculate g'. Here is a
list of example calculations.

DERIVE input DERIVE output after | Expand
8 6 4 2
IMPLICIT TAYLOR(XA 2 4+ yA2— 1,%,y,0,1,8) -2 - % _ X 4y

128 16 8 2
IMPLICIT TAYLOR(x + y"3—v,x,y,0,0,8) 12x7 +3x% + x3 + x,

3x5  105x* x% 3x?2 «x

MPLICIT TAYLOR(X + y*3 - y,xy,0,1,5) - — >
IMPLICIT_ x+y"3-y%y.0.1,5) 2 18 2 8 2

3x> 105x% x3 3x2 x
IMPLICIT TAYLOR(x + y*3 —y.x,v.0, - 1,5) _ + E——— - = -1
IMPLICIT_TAYLOR{x + y"3 — y,X,¥ ) > 198 > 8 3 ;
1 5 4 3x3
IMPLICIT TAYLOR(+EXP(y) —x x,y.0,0,5) 2ox_ 80 3% oy

24 3 2
IMPLICIT TAYLOR(x"2+LN(y) + 1,x.y,0,0,3) 0.

The last example is equivalent to the explicit example (2). Here the order of taking
the iterated limit in IMPLICIT TAYLOR AUX is essential as a two dimensional
limit does not exist.

We mention that for implicitly given algebraic functions, i.e. if F(x,y) is a poly-
nomial in both x and y, then again, an algorithm [4] is available with which in many
cases one can find a closed form representation of the Taylor series.

3. TAYLOR POLYNOMIALS OF INVERSE FUNCTIONS

The local inverse function g~!(y) of g(x) in a neighborhood of x = 0 is a special
case of an implicit function: It is the local solution of the equation

F(xy):=g(y)—x=0

near (0,g(0)). An application of the general algorithm of the last section generates
the Taylor polynomial of g1 at the point g(0). This procedure is covered by the
DERIVE function

INVERSE TAYLOR(g,y,x, n) := IF{(LIM(DIF(g,y),y.0) = 0,
“Taylor expansion of inverse does not exist”,
IMPLICIT_TAYLOR(g — x,x,y, LIM(g,y,0),0, n)

)
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We get for example

DERIVE input DERIVE output after

INVERSE TAYLOR(EXP(X) — 1,x,y,8) DA SN A AN AR A A
8 7 6 5 4 3 2
INVERSE TAYLOR(SQRT(X), X, Y, 5) 2,
INVERSE_TAYLOR(x"2,x,y,5) “Taylor expansion of inverse does not exist”,
SN ARPD AND 44
INVERSE TAYLOR(LN(1 +x),x,y, 5] —t —+ =+ =4y,
- (LN(T +).x.y.9) 120 22 6 2 7
3y5 y3
INVERSE TAYLOR((#e"x — #e" —x)/2,x,y,5) +y,

40 6

INVERSE TAYLOR((#e"x + #e" —x)/2,x,y,5) “Taylor expansion of inverse does not exist”,

INVERSE _TAYLOR(EXP(x"2 — 1).x.y,5) “Taylor expansion of inverse does not exist”,
5° 1yt 4
INVERSE_TAYLOR(EXP(SQRT(x)) — 1,X,y,5) 6 + 12 ¥2 oty

125y5  8y* 3y3
- -+ y2 4y,

INVERSE_TAYLOR(x+EXP(x),X, Y, 5) -t

One may use DERIVE’s graphical capabilities to explore the quality of the given
approximations by plotting both g and the calculated Taylor polynomials of gL
We consider the last example. The function g(x):= xe* has a local minimum at
x = —1 of value —e~! ~ —0.367879. It follows from complex analysis that the radius
of convergence of the Taylor series of the inverse function does not exceed e '.
Thus only in the interval (—e~!,e~!) can we expect that the Taylor polynomials
converge to g ~(y). As an illustration Figure 1 shows the graph of g together with
the first five Taylor polynomials 77,...,75 of g‘1 that can be calculated by DERIVE

simplifying
VECTOR(INVERSE_TAYLOR(x+EXP(x),x,v,k), k, 1,5).

We mention that the calculation of Taylor polynomials for inverse functions is
implemented in some Computer Algebra systems, e.g. in MATHEMATICA [6], where

the function
InverseTaylor[g_,x_,y_,n] := InverseSeries[Series[g,{x, 0, n}],y]

does the job desired. This method of inverting the Taylor polynomial of order n of
g to get the Taylor polynomial of order n of g ~!, however, is static with respect to
the order n. If we decide to calculate the Taylor polynomial of order n+ 1 later,
we have to redo the whole calculation. With our method, in principle it is possible
to work dynamically in the order as one may store the derivatives and limits up to
order n that are already calculated in memory, i.e. one may work with streams and
lazy evaluation.
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FIGURE 1. The graph of g(x) = xe* and the first 5 Taylor polynomials of g ~1.

4. TAYLOR POLYNOMIAL SOLUTIONS OF FiRST ORDER DIFFERENTIAL
EQUATIONS

We consider the solution of an initial value problem given by an explicit first order
differential equation

y' = F(xy) &)

and initial data
y(x0) = Yo- (4)

Then—if the solution g(x) of (3)~(4) is n times differentiable—we search for its
nth Taylor polynomial. A typical situation is an initial value problem (3)-(4) for a
complex function g with analytic right hand side F. In this case the solution g is
analytic in a neighborhood of the initial point xp (we hold on to use the symbol x
rather than the usual z). To find its Taylor coefficients, we use the same method as
before. Obviously

L E)(x

k=1

(x — xo)k,
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and with the derivatives list

£'(x)=F(x,y)ly=¢tn)

") aF(X )+8F o2 OF o OF N Folx v

= = s A A = S 3 el ’ = 2 ’

g (x)= =Xy ay(lf,y)g ()= 57 &Y) &v( YIF(x y)i._gm 2(X,5)
OF OF,_

®x) = klx, + klx,Fx, =: Fp(x

§7 ()= =g (oY) 5= () y)y:g(x) k(%,¥)

]
5
=
o
=
—r
c
foi
¢
c
1%
ht .
o
[
173}
e
=
o
&

!
=
Q
-t

g
&
=3

s
=3
e
5

an application of the algorithm fo
The DERIVE function

DSOLVE1t TAYLOR(f, x,y,x0,y0,n) :=

IMPLICIT TAYLOR_AUX({f,x,y.x0,yo, n, |

-
[}

e bl S TO § ¥ /7L, T | P 1
USES tMS dapprodcit. We give unc followin CXampics.

DERIVE input DERIVE output after |Expand | w.r.t. x
DSOLVE1 TAYLOR(y/x,X, y.X0,y0, 5) Yot
Xo
10 8 6 4 2
DSOLVE1 TAYLOR(x/y.x..0,1,10) AB S A
256 128 16 8 2

337x5  37x%  17x®  3x?

DSOLV YLOR(x"2 +y"3 015 4+ 4+ 7 4+ 4x+
E1._TAYLOR(x"2+y"3,x,y,0,1,5) 20 3 5 >t 1,

5 4 3 2

X
2

X X

X
— + =+
120 24 6

DSOLVE1 TAYLOR(y,x,y,0,1,5) +x+1,

18x5  s5x*  5x8 2
tog et

DSOLVE1 TAYLOR(EXP(x)+y,x,,0,1,5)

30 8

49x% 5x*  x®  x2
SOLVE1 TAYLO 1,5 + 2 e e,
D E1_ TAYLOR(EXP(x+y),X,y,0,1,5) ot Tty T

Ok +14k2+1)  x3(k2+1) ty
120 6 ‘

DSOLVE1 TAYLOR(SQRT((1 — y"2)«
(1 — K 2xy"2)},%,y,0,0,5)
For the algorithmic construction of the Taylor series solution of homogeneous linear
differential equations with poiynomial coefficients (of arbitrary order) rather than
Taylor polynomial approximations we again refer to [1].
We remark further that the same method can be applied to solve explicit first
order systems, with the only difference that here 9F;/8y then denotes the Jaco-

bian.
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5. TAYLOR POLYNOMIAL SOLUTIONS OF HIGHER ORDER
DIFFERENTIAL EQUATIONS
In the case ot an explicit second order differential equation
Y =F(xy,y) )
with initiai data
y(xo)=yo and  y'(x0) =y (6)

the nth order Taylor polynomial of the solution of (5)—(6) has the form
T,(8.x,x0) = yo + y1(x — xo) + zg ’; 0)( - Xo)ka

and we can apply the same method as before after calculation of g%)(xy) (k > 2).

Let the given right hand side of (5) F(x,y,u) be a function of the three variabies x,
¥, and iU, that is often ("v‘,ugl-s differentiable gd!!’ we 1f@rat1ve]u differentiate the

i ividw 1. £

dpﬁnmu PqLahQn of g

g"'(x) = F(x,8(x),g'(x))

by the chain rule to get

OF OF oF
g"(x)= 5;(%)’,”) + a(x,y,u)g (x)+ *a;(x,y, w)g"(x)

OF OF OF
= E);(x,y,u) + W(x,y,u)u + Bg(x,y,u)F(x,y,u) = F3(x,y,u)i) g(x)),
u =g'(x

and iteratively

OF 1

OF,_ a
g®(x) = (X, y,U) + ak H(ry 0+ (Y F (409, 18)| )

u=g'(x)

To get g%)(xy) (k > 2) we have to evaluate g®)(x) at the point x = xo, i.e. we take
the limit for # — y1, y — yg, and x — xg, which yields the result. This is done by the
DERIVE function

DSOLVE2 TAYLOR(f,x,y, u,x0,y0,y1,n) givenby

SUM(LIM(LIM(LIM(ELEMENT(aux, k; ~1),u,y1),y,y0), %, X0) /K_tx(x — x0) Kk _k ,2,1)

DSOLVE2_TAYLORI(f, x,y,u,x0,y0,y1,n) := DSOLVE2 TAYLOR_AUX(f,x,y,u,x0,y0,y1,n,
ITERATES(DIF(g_, u)xf + DIF(g_,y)*u + DIF(g_x),g_f n—2))
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We present the following examples

DERIVE input DERIVE output after

61x'0  7x8 3x8 x4 x?

DSOLVE2 TAYLOR(y”3,x,y,u,0,1,0,10 A S S S 1
- (73xy,u ) 19200 Ts0 B0 T8 T2
9 7 5 3
DSOLVE2 TAYLOR(-Y,x,V,u,0,0,1, 10) N A N
362880 5040 120 6
x8 ¥ x* x?
OLVE2 TAYLOR(— 0,1,0,8 Ly
DSOLVE2. (=yxy.u0.1.08 40320 720 24 2
DSOLVE2 TAYLOR(25x+U + X 2+y + 3%x,X,V, U,0,0,1,10) AL
% —_— —_—
- y Y BB 3240 * 252 10 8

ext x5 8
+— - —=+x

DSOLVE2 TAYLOR(EXP(u)=y "2 - SIN( ¥, u0,0.1.8) == + o5~ &

This method—as in the first order case—works independent of the linearity of the

differential equation. For the lincar differential equation
y'(x)+ p(x)y'(x) + q(x)y(x) = r(x)
with initial conditions
y(x0)=yo and y'(x0) =y
the DERIVE function
DSOLVE2 LINEAR TAYLOR(p,q,r,x,Y,x0,y0,y1,n) :=
DSOLVE2 TAYLOR(—p+*u — g+y +1,X,Y,U,x0,y0,y1,n)

gives the Taylor polynomial solution of order n. The following are some examples

DERIVE input DERIVE output after

71x%  23x7 3x5 5x8

A R A2,8%x,%,Y,0,0,1,10 —_ + x,

DSOLVE2 LINEAR_TAYLOR(2#x,x"2,3+x,x,y,0,0,1,10) 3240 + 552 0 5 x
5 x4 oyd 2

DSOLVE2 LINEAR_TAYLOR(SIN(x), COS(x),0,x,y,0,1,2,5) 5 + o + = + - +2x +1,
¥ x5 x4 X8 x?

DSOLVE2 LINEAR TAYLOR(1, 1, SIN(X), %y, 0,0.1,6) IR ST S M

We remark that there is an obvious generalization of the given technique to explicit
differential equations of higher order (m € N)

Y™ = F(x,y,y ..,y )
with initial data

Y(%0) = Y6,7'(X0) = Y1yee sy (X0) = V-1
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