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Introduction

Maple’s sum command is a general purpose procedure
to calculate different types of sums. Algorithms for the
computation of both indefinite and definite sums are
available.

Roberto Pirastu [1] gave an excellent overview about
rational summation, and we take his article as a starting
point for ours, and thus will not focus on the rational
case.

We will instead discuss three important methods for
more general summation,

1. Gosper’s algorithm [2] (and an extension of the
author [3]) for indefinite summation,

2. Zeilberger’s algorithm [4]-[6] (and an extension of
the author [3]) for definite summation,

3. and the representation of sums as hypergeometric
functions.

We further deal with some particularly important sim-
plification issues, and we present examples of new im-
plementations in Maple that are available with Release
V.4

The sum command of the new Maple release contains
considerable improvements to the rational function case
(done by Jacques Carette), so that for example

> sum((k~2+3) / (k™ 2% (k+2) ~3% (k+3) ~2%
> (k~2+2) * (k~2+2xk+3) ~2) ,k) ;

(see [1]) can be computed now. To free the sum com-
mand from doing number crunching, the new release
contains the commands add and mul (done by Michael
Monagan), that should be used for the calculation of
finite sums and products.

Finally, the sum command includes my improvements
of the Gosper algorithm, and a version of Zeilberger’s
algorithm. These algorithms are also directly available
through the package sumtools:

> with(sumtools);

[Hypersum, Sumtohyper,
extended_gosper, gosper,
hyperrecursion, hypersum,
hyperterm, simpcomb,
sumrecursion, sumtohyper]

*Konrad-Zuse-Zentrum fiir Informationstechnik Berlin, Heil-
bronner Str. 10, D-10711 Berlin, koepf@zib-berlin.de

Gosper’s algorithm

Gosper’s algorithm [2] deals with the problem of indef-
inite summation: Given aj, one wants to find s; such
that

Ak = Sky1 — Sk

i.e., an antidifference of a;. In the affirmative case, any
sum with summand aj can be calculated by an evalua-
tion of s at the boundary points

n
E A = Sp4+1 — Sm
k=m

if a does not depend on m and n, similarly to the in-
tegration case when an antiderivative is known.

Gosper’s algorithm is a decision procedure which
finds an antidifference sy, if it is a hypergeometric term,
ie., if

Skt
Sk
is a rational function in k. In this case, the input func-
tion ap must itelf be a hypergeometric term.

Gosper’s algorithm either returns a hypergeo-
metric term antidifference s; of a; or the statement
‘no hypergeometric term antidifference exists‘.

Gosper’s algorithm is accessible via the two argu-
ment version of Maple’s sum command some examples
of which are

>  sum(kx*k!,k);
k!

> sum(binomial (k,n),k);
(k —n)binomial( k,n )
n+1

>  sum((-1) " (k+1) * (4*k+1) *(2*k) !/
> (k!'*4"k*(2%k-1) * (k+1)!) ,k);

(k+1)(=1)k+1) (2f)!
E'4F (2k—1)(k+1)!

which leads to

> sum((-1) "~ (k+1) *(4*k+1) *(2%k) !/
> (k!*4"kx(2%k-1)*(k+1)!) ,k=1..infinity);

1
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Therefore the latter infinite sum—which solves a ques-
tion raised in SIAM Review [7]—was computed by an
application of Gosper’s algorithm, and an appropriate
limit computation.

Which algorithms are used by sum, can be checked
via infolevel, (because of sum’s remember table, you
must use a new Maple session):

> infolevel[sum]:=3:

> sum((-1) ~(k+1) *(4xk+1)*(2%k) !/
> (k!*4"kx(2%k-1)*(k+1)!) ,k=1..infinity);

sum/infinite: infinite summation
sum/indefnew: indefinite summation
sum/extgosper: applying Gosper algorithm to

a(k) :=(-1) " (k+1) * (4*k+1) * (2*k) ! /

k!/(4°k)/(2*xk-1) / (k+1)!
sum/gospernew: a( k )/a( k -1):=

-1/2% (4%k+1) / (4%k-3) / (k+1) * (2%k-3)

sum/gospernew: Gosper’s algorithm applicable
sum/gospernew: p:=  4xk+1

sum/gospernew: q:=  —-2%k+3

sum/gospernew: r:=  2%k+2

sum/gospernew: degreebound:= 0
sum/gospernew: solving equations to find f
sum/gospernew: Gosper’s algorithm successful
sum/gospernew: f:= -1

sum/indefnew: indefinite summation finished

1

In the case of rational function input, Maple does not use
Gosper’s algorithm, but utilizes different methods, as
discussed in [1], although Gosper’s algorithm is always
successful if a rational antidifference exists.

We mention that Gosper’s algorithm needs a disper-
sion computation (see [1]). The dispersion set of the two
polynomials g, and r is given by

J:={j € No | ged(qr,rr+j) Z1} .

The Maple V.3 implementation uses resultants to com-
pute the dispersion set, an approach which is inherently
very time consuming:

term:=3"k* (3¥k~2+2*axk-4xk-2-a) /

((2xk+2+a) * (2xk+a) * (k+1) *k) *binomial (n,k) :

term:=normal (subs (k=k+3,term)-term) :
TIME:=time() : sum(term,k): time()-TIME;

926.700

vV V V V

In the new implementation, a faster approach using ra-
tional factorization is used ([8], [9]):

term:=3"kx* (3xk"~2+2*xaxk-4xk-2-a) /

((2xk+2+a) * (2xk+a) * (k+1) *k) *binomial (n,k) :

term:=normal (subs (k=k+3,term)-term) :
TIME:=time() : sum(term,k): time()-TIME;

21.520

vV V V V

We give a brief review of Gosper’s algorithm:
e Input a;: Assume

agy1 by C
ok , by, cr polynomials in & .
G Ck

If the summand ay, is given, one needs to determine
the polynomials by and c.

e Polynomial part: Find a representation
b _ Prtr Gr
Ck Pk Tk+1

where pg, qx, ' are polynomials in k, for which

ged (g, rryj) =1 forallj e Ny .

The polynomial p;, corresponds to the polynomial
part, and (gi,ry) to the factorial part of ap. This
step needs a dispersion computation.

e Crucial observation: fj, defined by

Sk+1 Pk+1
Af+1 Tk+1

k=

(sg denoting the unknown antidifference) is ratio-
nal, but because of the above gcd-condition, fj, is
in fact a polynomial in & which satisfies the inho-
mogeneous linear recurrence equation

Pk = Q41 fo — Tk fe—1 - (1)

e Degree bound: An upper bound for the degree
of fj is determined by the following algorithm.

1. Let n = deg(qr+1 + 7r)
2. If n < deg(qr+1
deg(qr+1 —Tk) -
3. Otherwise let a be the coefficient of k™ in the
polynomial ¢j41 + 7, and b be the coefficient
of k"1 in qpi1 — 7.
If —2b/a ¢ Ny then

—7), then deg fir, = deg pr, —

deg fr, =degpr —n+1.
Otherwise
deg fr. < max{—2b/a,degp; —n + 1}.

If deg fr < O then return ‘no hypergeometric
term antidifference exists®.

e Calculate f;: Given the maximal degree of fj, by
equating coefficients in Equation (1), this is pure
linear algebra. If no such fj exists, return ‘no
hypergeometric term antidifference exists®.
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e Output: s = ;—’; fr_1ag.

Note that the degree bound is found by an inspection
of Equation (1).
We give an example of Gosper’s algorithm. Assume

ar = (Z), i.e., we want to know whether or not the sum

m
> (5
k
k=0
has a hypergeometric term representation for arbitrary

m, therefore extending the binomial theorem.
In the given case, since

agr1  n—k
[e7% Tk +1°

we get pp, = 1, ¢ = n —k+ 1, and rp, = k. Gosper’s
degree bound for fi leads to the value —1, therefore
proving that the antidifference of ay is not expressible
as hypergeometric term.

We change the example a little bit, and consider now
ar = (—1)* (}), the alternating binomial coefficients. In
this case, we get pr = 1, ¢y = k—n—1, and ri, = k, and
the degree bound for f, gives 0. So there is a chance for a
hypergeometric term antidifference! We take the generic
polynomial f;, = ¢ for some constant ¢, and substitute
this into Equation (1). Hence we get the identity

1=(k-n)c—kec=—nc

with the obvious solution ¢ = —1/n, so that fr = —1/n,
and finally
Tk k k e
L — —— L , — — — ,, — — — —]_ .
sk = frar = —sa= =0 (-1 <k>

Therefore, Maple’s sum command yields

> sum((-1) “k*binomial (n,k) ,k);
k(-1 )¥ binomial(n, k)
n

The sum command (and its Gosper implementation) in
Maple V.3 had, however, several severe problems. We
give some examples.

The first example has a rational antidifference:

> sum(1/(k+1)-1/k,k);
Y(k+1)—(k)

This fact is not realized since the sum command uses
linearity, and treats each summand separately; that is
the default if the first argument of sum is a finite sum.
This situation can be resolved by the input

> sum(normal (1/(k+1)-1/k) ,k);
1

k

which is not a satisfactory solution since not every user
might be aware of the problem. Algorithms for indefinite
summation like Gosper’s are highly non-linear, so that
linearity should be avoided. The new version of the sum
command takes care of this situation.

For more difficult examples, normal may not help,
like in the case

> sum(normal (

> binomial(n+1,k) /2" (n+1)-binomial(n,k)/2°n),
> k);

Z(binomial( n+1,k)2"
k
— binomial(n, k) 2(" 1)) /(2(n+1) gny

Here linearity is not the issue since the normalized input
is not a sum. Instead, simplification of ay41/ay fails to
decide that this term ratio is rational. Therefore, the
fact that Gosper’s algorithm is a decision procedure, is
completely lost, and the infolevel-message Gosper’s
algorithm fails is erroneous!
In the new release, one has

> sum(

> binomial(n+1,k)/2‘(n+1)—binomia1(n,k)/2‘n,

> Kk);

k binomial(n + 1,k)  binomial(n, k)

2k—1-n ( 2(n+1) B 2n )

To give you an idea what the problem is, we consider the
following simplification issues that are connected with
the above failure: With Maple V.3, the simplification of
factorial and Gamma function as well as of power terms
did not work adequately. For example

> a:=simplify(factorial(k)+factorial (k+1));
a:=T(k+1)+D(k+2)

> ratio:=simplify(subs(k=k+1,a)/a);
(k+2)+T(k+3)
T(k+1)+T(k+2)

The fact that the first simplify command keeps two
different GAMMA terms that are rational multiples of each
other, makes it impossible in the second step to decide
that agy1/ar is rational. The new release will give in-
stead

ratio 1=

> a:=simplify(factorial (k)+factorial(k+1));
a:=(k+2)T(k+1)

> ratio:=simplify(subs(k=k+1,a)/a);
(k+1)(k+3)

tio 1=
ratio )
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This new simplification code is independent of the new
summation features, and was done by Mike Monagan.
Similarly, for powers, Maple gives

> a:=simplify(m“k+m" (k+1));

a:=m" +m(k+1)

> ratio:=simplify(subs(k=k+1,a)/a);
m(k+1) ¢ (k+2)

mF + mk+1)

ratio :=

In [3], we presented an extension of Gosper’s algorithm
for the case that ap4/ay is rational for some | € N,I >
1. This extension is also covered by Maple’s new sum
command, e.g.

>  sum(k*(k/3)!,k);
1 1 1 1 2
Z ! = - ! sk+3)!
3<3k>.+3<3k‘+3>.+3<3k‘ 3>

> sum(binomial (k/2,n),k);

1 1
(5 k— n) binomial (5 k, n)

n+1

<% k+ % — n) binomial (% k+ %,n) /
(n+1)
The new Gosper implementation is directly available
loading the package sumtools:
> gosper(1/(1-k~2) ,k);
1(k+1)(2k-1)
2 k(1-k?)

+

> extended_gosper (kx(k/2)!,k);

1 1 1
kN Z ~ )1
2 <2k>.+2 <2k+2>.

The function simpcomb, loaded with sumtools, simpli-
fies any factorial-I'-binomial input by conversion in I'-
notation, at the same time deciding whether or not it is
rational:

> simpcomb(

> (binomial(n+1,k+1)-binomial(n,k+1))/
> (binomial(n+1,k)-binomial(n,k)));

k—1-—n
k

For the previous power expression, we get

> a:=simplify(m“k+m" (k+1));

a:=mk +m(k+1)

> simpcomb (subs(k=k+1,a)/a);

ml

Another reason why Maple’s simplify command does
not simplify some expressions that simpcomb does is be-
cause some assumptions are needed to make those sim-
plifications and simpcomb makes those implicitly.

Many more examples of non-trivial applications of
Gosper’s algorithm (in particular examples for the Wilf-
Zeilberger method [10]) are given in [3].

Zeilberger’s algorithm

Zeilberger’s algorithm [4]-[6] deals with definite sums.
Here we mean sums of the form

S(n) =) F(nk), (2)

kEZ

the sum to be taken with respect to all £ € Z. In par-
ticular, this covers sums of the type

ko

Z F(n,k)

k=k1

if F(n,k) =0 for k < k1 and k > ko, e.g.

-0 -5 )

Zeilberger’s algorithm applies if F'(n, k) is a hypergeo-
metric term with respect to both n and k. It generates a
holonomic recurrence equation, i.e. a homogeneous lin-
ear recurrence equation with polynomial coefficients, for
Y (n), given by Equation (2). If the recurrence equation
is first order, then—if n is assumed to be an integer—
Y (n) is easily converted to a hypergeometric term.
Here is a brief description of Zeilberger’s algorithm:

e Iteration: Iterate on J: Set

J
ay = F(n,k)-{—ZUj(n)F(n—l-j,k)

=1

with as yet undetermined variables o; depending
on n, but not depending on k.

e Gosper algorithm: Apply a simple adaption of
Gosper’s algorithm to ag; in the last step, solve
a linear system for the coefficients of fi, and at

the same time for the unknowns o; (j =1,...,J).
In the affirmative case, Gosper’s algorithm finds
G(n, k) with

G(n,k+1)—G(n,k) =ay .
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e Output: By summation:
J
Y(n) + Zaj(n) Y(n+j)=0
j=1

for ¥(n), given by Equation (2).

Note that there is an upper bound for the order J of the
resulting recurrence equation for input of special type
(see [11], § 5.8), so that the algorithm terminates.

As an example, we consider the sum

0= (3)

with F(n,k) = (}). If we start with J = 0, then the
whole procedure is Gosper’s, and yields no antidifference
as we saw earlier. Therefore, we try J = 1. Then we

have
ap = " +o0o ntl
k — k 1 k })

a1 (n+1-Fk)(n—k+on+o1)
agy, (n+l—k+omn+o)(k+1)"

hence

(3)

The dispersion calculation shows that we have pr, = n +
1—k+o1n+o1, gy = n+2—k, and 7, = k (notice the shift
of the factors in numerator and denominator of (3)).
The degree bound for f;, turns out to be 0. Substituting
the generic polynomial f, = ¢ in Equation (1) yields the
identity

n+l—k+on+or=Mn+1—-k)c—kc

and equating coefficients of like powers of k gives the
linear equations

—142c¢ = 0
n+l+on+o,—(n+1l)c = 0

that we solve with respect to the unknowns {c, o1}, with
the solution

{c=1/2,01 = —1/2} .

Therefore fi, = 1/2, but the more important information
is 0y = —1/2 which leads us to the discovery of the
recurrence equation

1
Y(n) — §Z(n+ 1)=0.
By £(0) = 1, we have X(n) = 2".

Zeilberger’s algorithm was not implemented in Maple
V.3. There is a package by Zeilberger [6] supporting only

input of special form, and one by Koornwinder [8]. The
latter was designed for hypergeometric input only, but
it introduced the resultant-free dispersion computation,
and served as the starting point of our implementation
[3].

With Maple V.3, instead, in several instances definite
sums could be explicitly calculated using a conversion to
hypergeometric form

> sum(binomial(n,k) ,k=0..n);

2n

> sum(binomial (n,k) “2,k=0..n);
I‘(l +*211)
M(n+1)2

were computed by this method, whereas the correspond-
ing infinite sum

> sum(binomial(n,k) ,k=-infinity..infinity);

oo

Z binomial(n, k)

could not be solved.

The new Maple release includes an implementation
of Zeilberger’s algorithm. To use this implementation,
the user must make an assumption of the form

> assume(n,integer);

to declare an integer variable, n, say. For infinite
sums this is essential information to be able to calcu-
late initial values which, together with the holonomic
recurrence equation, may yield a hypergeometric term
result.

Having done this, we get e.g.!

> sum(binomial(n,k) "2,k=-infinity..infinity);
F(2114-1)
(F(n+ 1))

with assumptions on n

and also

> sum((-1) “k*binomial (n,k) "2,
> k=-infinity..infinity);

—F(n) Y (-1)n irem(n =
! nT (n/2)* (m.2) =0 (4)
0 irem(n,2) =1

with assumptions on n

lwith interface (showassumed=2);
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Here, the resulting term has different representations
for even and odd n, and is given by Maple’s piecewise
function.

With the sumtools package, one can use the algo-
rithm directly: The statement

> sumrecursion(
> (-1) "k*binomial (n,k)"2,k,s(n));

calculates the recurrence equation
4(n—1)sp—2+ns, =0
satisfied by
o] n 2 n n 2
= X 0t (1) =)
k=—o00 k=0

which can be solved using the initial values so = 1 and
s1 = 0. This is, how (4) is obtained.
The result

> sum(binomial(n,k) “2*binomial (n+k,k) "2,
> k=-infinity..infinity);

RESol ({(n—1)3_F(n—2)—
(2n—1)(17n* - 17Tn+5)
F(n—1)+_F(n)n*=0,
F(0) =1, F(1) :5},_F(n))

with assumptions on n

on the other hand, shows that no hypergeometric type
solution was found, and therefore the recurrence equa-
tion and initial values of
n 2 2
n n+k
F =
m=3() (")

k=0

the so-called Apéry numbers, are returned (see [12]).

This recurrence equation played an important role in
Apéry’s proof of the irrationality of

oo

=)

k=1

To present another example, we use this new feature
of the sum command to generate three-term recurrence
equations satisfied by families of orthogonal polynomi-
als: The discrete Charlier polynomials, e.g., have a hy-
pergeometric representation ([13], 2.7.3.1)

dM(x) = 2 Fo( —n, —x | —1/p)

S HIWEICH]

and therefore

> sum(
> binomial(n,k)*binomial (x,k)*k!*(-1/mu) "k,
> k=-infinity..infinity);

Y

RESol ({_F(l) =1-

(n—1)F(n-2)
+(zx—n+1—p) F(n-1)

+ F(n)p=0,F(0)= 1},

_F(n)>

with assumptions on n

TR

gives the recurrence equation with respect to n. If we
wish to calculate the recurrence equation with respect
to x, we enter
n:=’n’:
sum (

>
>
> binomial(n,k)*binomial (x,k)*k!*(-1/mu) "k,
> k=-infinity..infinity);

assume (x,integer):

RESol <{_F(O) =1,(z-1)F(z—2)

—(z—n—-1+4+p) F(z-1)

+ () p=0,F(1) = —ﬁ},

L
_F(a:))

with assumptions on n

Hypergeometric Notation

If all else fails and no closed form solution is found, it
may be helpful to give a hypergeometric representation
of sums. This is done by the convert/hypergeom pro-
cedure, for example for the Apéry numbers

> sum(binomial(n,k) “2*binomial (n+k,k) "2,
> k=0..n);

hypergeom([_nv -n,n+1,n+ 1])[1; 1, 1]7 _]-)

The sumtools package contains a procedure sumtohyper
which does the conversion of an infinite sum into hy-
pergeometric notation. It uses the simpcomb procedure
for simplifications, and is mightier than the Maple V.3
convert/hypergeom procedure. However, the
convert/hypergeom in Maple V.4 gives similar results.
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As an example, we consider the Legendre polynomi-
als P,(x), given by

£ (7)) o

We get

> legendreterm:=binomial(n,k)*
> binomial(-n-1,k)*((1-x)/2) k:
> sumtohyper (legendreterm,k) ;

1 1
hypergeom ([ -n,n+1],[1], 373 a:)
which is the hypergeometric equivalent of Equation (5).
Note that we can easily derive further interesting hyper-
geometric representations for m-fold differences of suc-
cessive Legendre polynomials:

> sumtohyper (subs(n=n+1,legendreterm)-
> legendreterm,k) ;

(—n+nz—1+ x) hypergeom ([n—l— 2,-n],

o143

> sumtohyper (subs(n=n+2,legendreterm)-
> legendreterm,k) ;

(—2n+2nzx—3+3z) hypergeom(

[n+2,—n—1],[2],%—%w>
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