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Summary: In this paper a new direct proof for the irrationality of Euler’s number

e =

∞∑
k=0

1

k!

is presented. Furthermore, formulas for the base b digits are given which, however, are not com-
putably effective. Finally we generalize our method and give a simple criterium for some fast
converging series representing irrational numbers.

1 Introduction
Let

e =
∞∑

k=0

1
k!

be Euler’s number. It is well-known that e is transcendental. However, whereas transcen-
dency proofs typically are quite hard, it is mostly much easier to show irrationality. In
this paper we will give a new direct irrationality proof for e which can be generalized to
many other constants given by a similar type of series.

Of course e = lim
n→∞

sn for the partial sums

sn :=
n∑

k=0

1
k!

. (1.1)

Our direct proof of irrationality of e will use the identity

bn snc = bn ec (n ∈ N = {0, 1, 2, 3, . . .}) (1.2)

which is interesting in its own. Here

bxc := max{n ∈ N | n 5 x}

denotes the floor function (Gauss bracket). From (1.2) we furthermore deduce an explicit
formula for the base b digits of e, before we consider our method in a more general
setting.
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2 Irrationality of e

To show the irrationality of e, we proceed with several lemmas.

Lemma 2.1 Let c ∈ R>0 be arbitrary, and let the remainder 0 5 Rn < 1 be defined by
the division algorithm as

n c = bn cc + Rn .

Then c is irrational if and only if Rn > 0 for all n ∈ N.

Proof: The proof of this lemma is obvious. 2

Lemma 2.2 (see e. g. [1], p. 198) Let sn be the partial sum given by (1.1). Then

sn < e < sn +
1

n · n!
. (2.1)

Proof: The left-hand inequality is trivial, and the right inequality follows from the com-
putations

e = sn +
∞∑

k=n+1

1
k!

= sn +
1
n!

∞∑
k=n+1

n!
k!

= sn +
1
n!

∞∑
k=1

n!
(n + k)!

< sn +
1
n!

∞∑
k=1

1
(n + 1)k

= sn +
1

n · n!

by evaluating the latter geometric series. 2

For the next lemma we consider the representations

n sn = Mn + Rn

with Mn = bn snc and remainder 0 5 Rn < 1 and

n e = M̃n + R̃n

with M̃n = bn ec and remainder 0 5 R̃n < 1, both given by the division algorithm.

Lemma 2.3 For all n ∈ N the number (n − 1)!Rn ∈ N.

Proof: If we multiply the equation

Rn = n sn − Mn

by (n − 1)!, we get
(n − 1)!Rn = n! sn − (n − 1)!Mn .
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Since

n! sn =
n∑

k=0

n!
k!

∈ Z ,

the conclusion follows from Rn = 0. 2

We remark that Rn > 0 therefore implies the stronger relation Rn = 1
(n−1)! .

The above lemmas result in the following

Theorem 2.4 For all n ∈ N it follows that

(a) Mn = M̃n, hence (1.2),

(b) and R̃n > 0 for all n ∈ N.

(c) Therefore, by Lemma 2.1, e is irrational.

Proof: From Lemma 2.2 we get

0 < n! e − n! sn <
1
n

.

From the definitions of Rn and R̃n it follows furthermore that

n! e = (n − 1)! M̃n + (n − 1)! R̃n

n! sn = (n − 1)!Mn + (n − 1)!Rn

and therefore we get for the difference

0 < n! (e − sn) = (n − 1)!
(
M̃n − Mn

)
+ (n − 1)!

(
R̃n − Rn

)
<

1
n

.

Since R̃n < 1, this gives

−(n − 1)! < (n − 1)!
(
M̃n − Mn

)
− (n − 1)!Rn <

1
n

.

From Lemma 2.3 we know that (n − 1)!Rn ∈ N. Therefore, we deduce that

(n − 1)!
(
M̃n − Mn

)
− (n − 1)!Rn ∈ Z

and since

(n − 1)!
(
M̃n − Mn

)
− (n − 1)!Rn <

1
n

we conclude
(n − 1)!

(
M̃n − Mn

)
− (n − 1)!Rn 5 0 .
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From 0 5 Rn < 1 we therefore deduce that

−(n − 1)! < (n − 1)!
(
M̃n − Mn

)
5 (n − 1)!Rn < (n − 1)!

and finally through division by (n − 1)! we deduce

−1 < M̃n − Mn < 1 .

Since M̃n − Mn ∈ Z, this is equivalent to (a).
From sn < e it follows that

Mn + Rn < M̃n + R̃n ,

and using M̃n = Mn we get for all n ∈ N

0 5 Rn < R̃n .

Therefore the second conclusion (b) follows. Finally, statement (c) is an immediate con-
sequence of Lemma 2.1 applied to the constant c = e. 2

We would like to mention that a simple computation gives the following extension of (b):

0 < R̃n < Rn +
1
n!

connecting the two remainder sequences considered.
In the next section, we will utilize Equation (1.2) in more detail and give explicit

representations for the base b digits of e.

3 Base b Digits
Let b ∈ N=2 be an arbitrary base, and

e = 2 +
∞∑

j=1

cj(b) b−j (cj(b) ∈ {0, 1, . . . , b − 1}) (3.1)

be the base b representation of Euler’s number e. For b = 10 this is the usual decimal
representation. Since

e = 2.7182818284590452353... ,

we have for example c1(10) = 7, c2(10) = 1, c3(10) = 8, . . . . We would like to
find explicit representations for the digits cj(b) in (3.1). We get the following relation
between this representation and the partial sums sn.

Theorem 3.1 For the truncated series in (3.1) the identity

bbk sbkc
bk

= 2 +
k∑

j=1

cj(b) b−j (3.2)
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is valid. Therefore, by telescoping, the explicit representation

ck(b) = bbk sbkc − b · bbk−1 sbk−1c (3.3)

follows.

Proof: Let (3.1) be valid. Then fix an arbitrary k ∈ N>0 and consider the decomposition

e = 2 +
k∑

j=1

cj(b) b−j +
∞∑

j=k+1

cj(b) b−j . (3.4)

From the construction of the base b representation through iterative division by b (see
e. g. [4]), it follows for the remainder part

∞∑
j=k+1

cj(b) b−j <
1
bk

,

hence

0 5 bk ·
∞∑

j=k+1

cj(b) b−j < 1 . (3.5)

From (3.4), we conclude

bk · e = 2 bk +
k∑

j=1

cj(b) bk−j + bk ·
∞∑

j=k+1

cj(b) b−j .

Now we get using (3.5)

bbk · ec = 2 bk +
k∑

j=1

cj(b) bk−j .

Theorem 2.4 (a) leads to the conclusion

bbk · sbkc = 2 bk +
k∑

j=1

cj(b) bk−j

and therefore to (3.2). By telescoping formula (3.3) is generated. 2

The computation

c2(10) = b100 s100c − 10 · b10 s10c = 271 − 10 ·
⌊

98641010
3628800

⌋
= 271 − 270 = 1
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gives gives c2(10). Since

s100 = 4299778907798767752801199122242037634663518280784714275131782
8133465975238709567206600082275449499964960577581750509066713
47686438130409774741771022426508339

/
1581800261761765299689817607733333906622304546853925787603270
5744952135592072867052362959995958731912924355579801224365805
28562896896000000000000000000000000 ,

it is obvious that the explicit formula (3.3) clearly cannot be used to compute the base
b digits in an efficient way. For the computation of the tenth decimal digit c10(10),
e. g., one has to compute the partial sum s10.000.000.000, a clearly impractical approach.
With rational arithmetic, this is not feasible, and even with robust decimal arithmetic this
computation is slow. Although not computably efficient, our formula (3.3) seems to be
interesting from a theoretical point of view.

4 Irrationality of Series of Exponential Type
Although e and therefore e−1 are irrational, it is not immediately clear that

cosh 1 =
e + e−1

2
and sinh 1 =

e − e−1

2

are also irrational. Nevertheless, our method yields this result, too. This will follow in a
more general context from the following considerations.

Let a sequence (dk)k∈N be given which has the following properties:

(a) dk ∈ N for all k ∈ N,

(b) dk > 0 for infinitely many k ∈ N,

(c) dk 5 K for all k ∈ N and some constant K ∈ R.

Now assume

a =
∞∑

k=0

dk

k!
,

and by

ŝn =
n∑

k=0

dk

k!

let us denote the corresponding partial sums. Then we get

Lemma 4.1 For all n ∈ N the inequality

ŝn < a < ŝn +
K

n n!

is valid.



Irrationality of certain infinite series 7

Proof: The left-hand inequality follows directly from property (b), and the right-hand
inequality is proved with the aid of property (c) in a similar way as Lemma 2.2. 2

Next we use again the decompositions

n ŝn = M̂n + R̂n

with M̂n = bn ŝnc and remainder 0 5 R̂n < 1 and

n a = M̃n + R̃n

with M̃n = bn ac and remainder 0 5 R̃n < 1, both given by the division algorithm. We
get

Lemma 4.2 For all n ∈ N the number (n − 1)! R̂n ∈ N.

Proof: The proof mimics the proof of Lemma 2.3. 2

This gives us the ingredients to prove

Theorem 4.3 For all n ∈ N with n = K it follows that

(a) M̂n = M̃n, hence (1.2),

(b) and R̃n > 0.

Proof: As in the proof of Theorem 2.4, initially we arrive at the inequality

−(n − 1)! < (n − 1)! M̃n − (n − 1)! M̂n − (n − 1)! R̂n <
K

n

for all n ∈ N. Now, if n = K, then K
n < 1, and therefore the rest of the proof continues

in the same way as in Theorem 2.4. 2

To deduce irrationality from Theorem 4.3, we need a refinement of Lemma 2.1.

Lemma 4.4 Let c ∈ R>0 be arbitrary, and let the remainder 0 5 Rn < 1 be defined by
the division algorithm as

n c = bn cc + Rn .

If Rn > 0 for almost all n ∈ N, i. e. for all but finitely many n ∈ N, then c is irrational.

Proof: Assume that Rn > 0 for almost all n ∈ N and c is rational. Then c = p
q with

p ∈ Z and q ∈ N>0. We get q c = p and therefore

bq cc = p = q c ,
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hence Rq = 0. However, for arbitrary m ∈ N>0 we have c = m p
m q implying Rmq = 0 as

well. This contradicts the assumption Rn > 0 for almost all n ∈ N. 2

Combining Lemma 2.1 and Lemma 4.4 yields

Lemma 4.5 Under the same conditions of Lemma 4.4 we have: If Rn > 0 for almost all
n ∈ N then Rn > 0 for all n ∈ N.

Now we are in the position to prove the essential

Theorem 4.6 Assume

a =
∞∑

k=0

dk

k!
,

and let dk have properties (a)–(c). Then a is irrational.

Proof: This is an immmediate consequence of Theorem 4.3 and Lemma 4.4. 2

Theorem 4.6 should be compared to the irrationality result given in [3], Satz 8.4.

Example 4.7 As an example, we show the irrationality of cosh 1 and sinh 1 as an-
nounced. For this purpose we set

dk =
{

1 for even k
0 for odd k

.

This sequence obviously has properties (a)–(c) with K = 1. Therefore

cosh 1 =
∞∑

k=0

dk

k!

is irrational. In a similar way, the irrationality of

sinh 1 =
∞∑

j=0

1
(2j + 1)!

follows. We would like to mention that this leads to similar representations for the base
b representations of cosh 1 and sinh 1 as in Theorem 3.1.
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