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1. Introduction

The Appell polynomials An(x) defined by

f(t)ext =

∞󰁛

n=0

An(x)
tn

n!
, (1.1)

where f is a formal power series in t, have found remarkable applications in dif-
ferent branches of mathematics, theoretical physics and chemistry [1, 8, 14, 18]. A
special case of Appell polynomials are Bernoulli polynomials Bn(x), generated by
f(t) = t/(et − 1) in (1.1). Also, Bernoulli numbers Bn := Bn(0) are of consider-
able importance in number theory, combinatorics and numerical analysis. They are
represented as

t

et − 1
=

∞󰁛

n=0

Bn
tn

n!
(|t| < 2π),
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or by the recurrence relation
n󰁛

k=0

󰀕
n+ 1

k

󰀖
Bk = 0 for n ≥ 1 and B0 = 1.

Bernoulli numbers are directly related to several combinatorial numbers such as
Stirling, Cauchy and harmonic numbers. For example, except B1 we have

Bn = (−1)n
n󰁛

m=0

(−1)mm!

m+ 1
S2(n,m), (1.2)

where

S2(n,m) =
1

m!

m󰁛

j=0

(−1)j
󰀕
m

j

󰀖
(m− j)n,

denote the second kind of Stirling numbers [5, 7] with S2(n,m) = 0 for n < m.
They have found various extensions such as poly-Bernoulli numbers, which are

somehow connected to multiple zeta values. Al-Salam [2] introduced the first q-
extension of Bernoulli numbers and polynomials and gave many of their properties.
The q-extension of Bernoulli numbers and polynomials has now found many appli-
cations in combinatoric, statistics and various branches of applied mathematics.

Recently in [9], the authors introduced a new kind of bivariate Bernoulli polyno-
mials and studied their main properties. As a valuable application of these extended
polynomials, they introduced an extension of the well-known Euler-Maclaurin quadra-
ture formula. In this paper, we introduce a q-extension of the aforesaid bivariate
Bernoulli polynomials and establish their properties. Several connection and inver-
sion formulas are stated and proved. In the following section, some preliminaries
and definitions are given and in Section 3, a bivariate kind of q-Bernoulli polyno-
mias is introduced and some of its basic properties are stated and proved.

2. Preliminaries and definitions

For any complex number a, the basic number and the q-factorial are defined,
respectively, by

[a]q =
1− qa

1− q
, q ∕= 1 (2.1)

[n]q! = [n]q[n− 1]q · · · [1]q =
n󰁜

k=1

[k]q, n ∈ N, [0]q! = 1, (2.2)

and the q-Pochhammer is defined as

(a; q)0 = 1, (a; q)n =

n−1󰁜

k=0

(1− aqk), n ∈ N. (2.3)
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The limit lim
n→∞

(a; q)n is denoted by (a; q)∞, provided that |q| < 1. Then,

(a; q)n =
(a; q)∞
(aqn; q)∞

, n ∈ N0, |q| < 1, (2.4)

and for any complex number α,

(a; q)α =
(a; q)∞

(aqα; q)∞
, |q| < 1, (2.5)

where the principal value of qα is taken.

The so-called q-power basis (see e.g. [13]) is defined by

(x⊖ y)nq =

󰀫
(x− y)(x− yq) · · · (x− yqn−1) n = 1, 2, . . . ,

1 n = 0.

It should be noted that

(x⊖ y)nq = xn
󰀓y
x
, q
󰀔

n
, x ∕= 0.

The q-binomial coefficient is defined for positive integers n, k, as
󰀗
n
k

󰀘

q

=
[n]q!

[k]q![n− k]q!
=

(q; q)n
(q; q)k(q; q)n−k

=

󰀗
n

n− k

󰀘

q

. (2.6)

The basic hypergeometric or q-hypergeometric series rφs is defined as

rφs

󰀣
a1, · · · , ar
b1, · · · , bs

󰀏󰀏󰀏󰀏󰀏 q; z
󰀤

:=

∞󰁛

n=0

(a1, · · · , ar; q)n
(b1, · · · , bs; q)n

󰀓
(−1)nq(

k
2)
󰀔1+s−r zn

(q; q)n
,

where (a1, · · · , ar)n := (a1; q)n · · · (ar; q)n.
The following so-called q-binomial theorem [12, p. 16] can be written as

1φ0

󰀣
a

−

󰀏󰀏󰀏󰀏󰀏 q; z
󰀤

=

∞󰁛

n=0

(a; q)n
(q; q)n

zn =
(az; q)∞
(z; q)∞

, 0 < |q| < 1, |z| < 1. (2.7)

The q-derivative operator is defined by [10, 12, 13]

Dqf(x) =
f(x)− f(qx)

(1− q)x
, x ∕= 0,

satisfying the important product rule

Dq(f(x)g(x)) = f(x)Dqg(x) + g(qx)Dqf(x). (2.8)
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In this sense, note that when we deal with functions f(x1, x2, . . . , xn) of more
than one variable, we denote Dqf by Dq,xif to make clear that the derivative is
taken with respect to the variable xi.

The q-integral operator is defined by [10, 12]

󰁝 z

0
f(z)dqt = z(1− q)

∞󰁛

k=0

qkf(zqk).

This definition can be established based on a simple geometric series.
The usual exponential function may have two different natural q-extensions,

denoted by eq(z) and Eq(z), which are defined, respectively, by

eq(z) := 1φ0

󰀣
0

−

󰀏󰀏󰀏󰀏󰀏 q; (1− q)z

󰀤
=

∞󰁛

n=0

zn

[n]q!
, 0 < |q| < 1, |z| < 1, (2.9)

and

Eq(z) := 0φ0

󰀣
−
−

󰀏󰀏󰀏󰀏󰀏 q,−(1− q)z

󰀤
=

∞󰁛

n=0

q(
n
2)

[n]q!
zn, 0 < |q| < 1. (2.10)

It is worth noting that eq(z) and Eq(z) are linked by the well known relation

eq(z)Eq(−z) = 1. (2.11)

In [16], Schork has studied Ward’s ”Calculus of Sequences” and introduced a
q-addition x⊕q y by

(x⊕q y)
n =

n󰁛

k=0

󰀗
n
k

󰀘

q

xkyn−k,

and although this q-addition was already known to Jackson, it was generalized later
on by Ward and Al-Salam. For more informations about different q-additions, see
e.g., [6]. Similarly the q-subtraction can be defined in the same way by [11]

(x⊖q y)
n =

n󰁛

k=0

󰀗
n
k

󰀘

q

xk(−yn−k) = (x⊕q (−y))n.

By noting (2.9), the following relation holds [6, 11]

(∀x, y ∈ R) eq(x)eq(y) = eq(x⊕q y). (2.12)
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2.1. q-Appell sets, q-Bernoulli polynomials and some related properties

Let {Pn(x)}∞n=0 be a polynomial set, where the polynomial Pn(x) is of exact
degree n. {Pn(x)}∞n=0 is a q-Appell set if

DqPn+1(x) = [n+ 1]qPn(x).

Such sets were first introduced by Sharma and Chak [17] and they called them q-
harmonic.

The following characterization theorem holds in this regard.

Theorem 2.1 (see [17]). Let {Pn(x)} ba a polynomial set. The following as-
sertions are equivalent:

1. {Pn(x)} is a q-Appell polynomial set.

2. There exists a sequence (ak)k≥0 independent of n; a0 = 1, such that

Pn(x) =

n󰁛

k=0

ak
[n]q!

[n− k]q!
xn−k.

3. {Pn(x)} is generated by

A(t)eq(xt) =

∞󰁛

n=0

Pn(x)
tn

[n]q!
,

where

A(t) =

∞󰁛

k=0

ak
tk

[k]q!
, a0 = 1.

The q-Bernoulli polynomials are essentially defined by the generating func-
tion [2]

teq(xt)

eq(t)− 1
=

∞󰁛

n=0

Bn,q(x)
tn

[n]q
,

in which

Bn,q(x) =

n󰁛

k=0

󰀗
n
k

󰀘

q

Bk,qx
n−k,

where the Bk,q = Bk,q(1) stands for the k-th q-Bernoulli numbers (see also a de-
terminant approach to q-Bessel polynomials in [15]). It is not difficult to see that
since

DqBn,q(x) = [n]qBn−1,q(x),

q-Bernoulli polynomials belong to q-Appell set.
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3. A bivariate kind of q-Bernoulli polynomials

Let x, y ∈ R. It is well-known that the Taylor expansion of the two functions
ext cos yt and ext sin yt are as follows [9]

ext cos yt =

∞󰁛

k=0

Ck(x, y)
tk

k!
, (3.1)

and

ext sin yt =

∞󰁛

k=0

Sk(x, y)
tk

k!
, (3.2)

where

Ck(x, y) =

[ k2 ]󰁛

j=0

(−1)j
󰀕
k

2j

󰀖
xk−2jy2j , (3.3)

and

Sk(x, y) =

[ k−1
2 ]󰁛

j=0

(−1)j
󰀕

k

2j + 1

󰀖
xk−2j−1y2j+1. (3.4)

Here we introduce a q-extension of the two above polynomials Ck(x, y) and Sk(x, y)
as follows:

Theorem 3.1. Let x, y ∈ R. Then the generating functions

eq(xt) cosq yt =

∞󰁛

k=0

Ck,q(x, y)
tk

[k]q!
(3.5)

and

eq(xt) sinq yt =

∞󰁛

k=0

Sk,q(x, y)
tk

[k]q!
(3.6)

hold, such that

Ck,q(x, y) =

[ k2 ]󰁛

j=0

(−1)j
󰀗

k
2j

󰀘

q

xk−2jy2j (3.7)

and

Sk,q(x, y) =

[ k−1
2 ]󰁛

j=0

(−1)j
󰀗

k
2j + 1

󰀘

q

xk−2j−1y2j+1. (3.8)
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PROOF. Since

cosq(z) =

∞󰁛

n=0

(−1)nz2n

[2n]q!
=

∞󰁛

n=0

1 + (−1)n

2[n]q!
(iz)n,

we have

eq(xt) cosq(yt) =

󰀣 ∞󰁛

n=0

(xt)n

[n]q!

󰀤󰀣 ∞󰁛

n=0

1 + (−1)n

2[n]q!
(iyt)n

󰀤

=

∞󰁛

n=0

󰀣
n󰁛

k=0

󰀗
n
k

󰀘

q

1 + (−1)k

2
(iy)kxn−k

󰀤
tn

[n]q!

=

∞󰁛

n=0

󰀳

󰁅󰁃
[ k2 ]󰁛

j=0

(−1)j
󰀗
n
k

󰀘

q

xk−2jy2j

󰀴

󰁆󰁄
tn

[n]q!
,

which proves (3.5). The proof of (3.6) is similar. The following series manipulation
holds true

󰀣 ∞󰁛

k=0

ak
tk

[k]q!

󰀤󰀣 ∞󰁛

k=0

bk
tk

[k]q!

󰀤
=

∞󰁛

k=0

󰀳

󰁃
k󰁛

j=0

󰀗
k
j

󰀘

q

ajbk−j

󰀴

󰁄 tk

[k]q!
. (3.9)

Proposition 3.1. The following derivative rules are valid

Dq,xCk,q(x, y) = [k]qCk−1,q(x, y), (3.10)

Dq,yCk,q(x, y) = −[k]qSk−1,q(x, y), (3.11)

Dq,xSk,q(x, y) = [k]qSk−1,q(x, y), (3.12)

Dq,ySk,q(x, y) = [k]qCk−1,q(x, y). (3.13)

PROOF. Relation (3.5) yields

∞󰁛

n=1

Dq,xCn,q(x, y)
tn

[n]q!
= teq(xt) cosq yt =

∞󰁛

n=0

Cn,q(x, y)
tn+1

[n]q!

=

∞󰁛

n=1

Cn−1,q(x, y)
tn

[n− 1]q!

=

∞󰁛

n=0

[n]qCn−1,q(x, y)
tn

[n]q!
,
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proving (3.10). The other equalities (3.11), (3.12) and (3.13) can be similarly
proved.

Proposition 3.2. The following identities hold

Ck,q(x, y) =

n󰁛

k=0

󰀗
k
j

󰀘

q

Cj,q(x, 0)x
k,

Sk,q(x, y) =

n󰁛

k=0

󰀗
k
j

󰀘

q

Sj,q(x, 0)x
k,

and are straightforward to prove.

Proposition 3.3. The following power representations hold

y2n =

2n󰁛

k=0

(−1)n−kq(
k
2)
󰀗
2n
k

󰀘

q

C2n−k,q(x, y)x
k, (3.14)

and

y2n+1 =

2n+1󰁛

k=0

(−1)n−kq(
k
2)
󰀗
2n+ 1

k

󰀘

q

S2n+1−k,q(x, y)x
k. (3.15)

PROOF. Multiplying both sides of (3.5) by Eq(−xt) and using (2.11), it follows
that

∞󰁛

n=0

(−1)ny2n
t2n

[n]q!
=

󰀣 ∞󰁛

n=0

q(
n
2)
(−x)ntn

[n]q!

󰀤󰀣 ∞󰁛

n=0

Cn,q(x, y)
tn

[n]q!

󰀤

=

∞󰁛

n=0

󰀣
n󰁛

k=0

(−1)kq(
k
2)
󰀗
n
k

󰀘

q

Cn−k,q(x, y)x
k

󰀤
tn

[n]q!
,

which proves (3.14). The proof of (3.15) is similar.

We can now introduce two kinds of bivariate q-Bernoulli polynomials as

teq(xt)

eq(t)− 1
cosq(yt) =

∞󰁛

n=0

B(c)
n,q(x, y)

tn

[n]q!
, (3.16)

and
teq(xt)

eq(t)− 1
sinq(yt) =

∞󰁛

n=0

B(s)
n,q(x, y)

tn

[n]q!
, (3.17)

and give some basic properties of them in the sequel.
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Proposition 3.4. B
(c)
n,q(x, y) and B

(s)
n,q(x, y) can be represented in terms of q-

Bernoulli numbers as follows

B(c)
n,q(x, y) =

n󰁛

k=0

󰀗
n
k

󰀘

q

BkCn−k,q(x, y), (3.18)

and

B(s)
n,q(x, y) =

n󰁛

k=0

󰀗
n
k

󰀘

q

BkSn−k,q(x, y), (3.19)

PROOF. Using the relation (3.9), we have

∞󰁛

n=0

B(c)
n,q(x, y)

tn

[n]q!
=

t

eq(t)− 1
eq(xt) cosq(yt)

=

󰀣 ∞󰁛

k=0

Bk
tk

[k]q!

󰀤󰀣 ∞󰁛

k=0

Ck,q(x, y)
tk

[k]q!

󰀤

=

∞󰁛

k=0

󰀳

󰁃
k󰁛

j=0

󰀗
k
j

󰀘

q

Bj,qCk−j,q(x, y)

󰀴

󰁄 tk

[k]q!
,

which proves (3.18). The proof of (3.19) is similar.

Similiarly, we can prove that

B(c)
n,q(x, y) =

[n2 ]󰁛

k=0

(−1)k
󰀗
n
k

󰀘

q

Bn−2k(x)y
2k, (3.20)

and

B(s)
n,q(x, y) =

[n−1
2 ]󰁛

k=0

(−1)k
󰀗

n
2k + 1

󰀘

q

Bn−2k−1,q(x)y
2k+1. (3.21)

Equality (3.20) follows since

∞󰁛

n=0

B(c)
n,q(x, y)

tn

[n]q
=

teq(xt)

eq(t)− 1
cosq(yt),
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i.e.,

∞󰁛

n=0

B(c)
n,q(x, y)

tn

[n]q
=

󰀣 ∞󰁛

n=0

Bn,q(x)
tn

[n]q!

󰀤󰀣 ∞󰁛

n=0

1 + (−1)n

2[n]q!
(iyt)n

󰀤

=

∞󰁛

n=0

󰀣
n󰁛

k=0

󰀗
n
k

󰀘

q

1 + (−1)k

2
(iy)kBn−k,q(x)

󰀤
tn

[n]q!

=

∞󰁛

n=0

󰀳

󰁅󰁃
[n2 ]󰁛

k=0

(−1)k
󰀗
n
k

󰀘

q

Bn−2k(x)y
2k

󰀴

󰁆󰁄
tn

[n]q!
.

The proof of (3.21) is similar.

Proposition 3.5. The polynomials Cn,q(x, y) and Sn,q(x, y) can be represented
in terms of the polynomials B(c)

n,q(x, y) and B
(s)
n,q(x, y) as follows

Cn,q(x, y) =

n󰁛

k=0

1

[k + 1]q

󰀗
n
k

󰀘

q

B
(c)
n−k(x, y), (3.22)

and

Sn,q(x, y) =

n󰁛

k=0

1

[k + 1]q

󰀗
n
k

󰀘

q

B
(s)
n−k,q(x, y). (3.23)

PROOF. From (3.16), we have

∞󰁛

n=0

B(c)
n,q(x, y)

tn

[n]q!
=

t

eq(t)− 1
eq(xt) cosq(yt)

=
t

eq(t)− 1

∞󰁛

n=0

Cn,q(x, y)
tn

[n]q!
.

Hence, it follows that

∞󰁛

n=0

Cn,q(x, y)
tn

[n]q!
=

eq(t)− 1

t

∞󰁛

n=0

B(c)
n,q(x, y)

tn

[n]q!

=

󰀣 ∞󰁛

n=0

1

[n+ 1]q

tn

[n]q!

󰀤󰀣 ∞󰁛

n=0

B(c)
n,q(x, y)

tn

[n]q!

󰀤

=

∞󰁛

n=0

󰀣
n󰁛

k=0

1

[k + 1]q

󰀗
n
k

󰀘

q

B
(c)
n−k(x, y)

󰀤
tn

[n]q!

and (3.22) follows. The proof of (3.23) is similar.
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Proposition 3.6. For every n ∈ N, the following identities hold

B(c)
n,q((1⊕q x), y)−B(c)

n,q(x, y) = [n]qCn−1,q(x, y), (3.24)

B(s)
n,q((1⊕q x), y)−B(s)

n,q(x, y) = [n]qSn−1,q(x, y). (3.25)

PROOF. We have

∞󰁛

n=0

B(c)
n,q((1⊕q x), y)

tn

[n]q!
=

teq((1⊕q x)t

eq(t)− 1
cosq(yt)

=
teq(xt)[eq(t)− 1 + 1]

eq(t)− 1
cosq(yt)

= teq(xt) cosq(yt) +
teq(xt)

eq(t)− 1
cosq(yt)

=

∞󰁛

n=0

Cn,q(x, y)
tn+1

[n]q!
+

∞󰁛

n=0

B(c)
n,q(x, y)

tn

[n]q!
,

which proves (3.24). Eq. (3.25) is proved similarly.

Corollary 3.1. The following relations hold

B
(c)
2n+1,q(1, y)−B

(c)
2n+1(0, y) = [2n+ 1]q(−1)ny2n,

B
(s)
2n,q(1, y)−B

(s)
2n (0, y) = [2n]q(−1)n+1y2n−1.

PROOF. If we replace n by 2n+ 1 in (3.24), and x by 0, we obtain

B
(c)
2n+1,q(1, y)−B

(c)
2n+1,q(0, y) = [n]qC2n,q(0, y).

The first relation is proved since from (3.7) we have C2n,q(0, y) = (−1)ny2n. The
second relation is proved similarly.

Proposition 3.7. For every n ∈ N, the following identities hold

B(c)
n,q((x⊕q z), y) =

n󰁛

k=0

󰀗
n
k

󰀘

q

B
(c)
k,q(x, y)z

n−k, (3.26)

and

B(s)
n,q((x⊕q z), y) =

n󰁛

k=0

󰀗
n
k

󰀘

q

B
(s)
k,q(x, y)z

n−k. (3.27)
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PROOF. We have

∞󰁛

n=0

B(c)
n,q((x⊕q z), y)

tn

[n]q!
=

teq((x⊕q z)t)

eq(t)− 1
cosq(yt)

=
teq(xt)

eq(t)− 1
cosq(t)× eq(zt)

=

∞󰁛

n=0

B(c)
n,q(x, y)

tn

[n]q!

∞󰁛

n=0

(tz)n

[n]q!

=

∞󰁛

n=0

󰀣
n󰁛

k=0

󰀗
n
k

󰀘

q

B
(c)
k,q(x, y)z

n−k

󰀤
tn

[n]q!
,

which proves (3.26). The proof of (3.27) is similar.

Proposition 3.8. The following equations can be concluded

n󰁛

k=0

󰀗
n+ 1
k

󰀘

q

B
(c)
k,q(x, y) = [n+ 1]qCn,q(x, y), (3.28)

n󰁛

k=0

󰀗
n+ 1
k

󰀘

q

B
(s)
k,q(x, y) = [n+ 1]qSn,q(x, y). (3.29)

PROOF. From (3.26), we have

B
(c)
n+1,q((x⊕q 1), y)−B

(c)
n+1(x, y) =

n󰁛

k=0

󰀗
n+ 1
k

󰀘

q

B
(c)
k,q(x, y).

Hence, by using (3.24), relation (3.28) is derived. The proof of (3.29) is concluded
in a similar way.

Corollary 3.2. Relations (3.28) and (3.29) imply that

n󰁛

k=0

󰀗
n+ 1
k

󰀘

q

B
(c)
n,k(0, y) =

󰀫
(−1)m[2m+ 1]qy

2m if n = 2m is odd,

0 if n = 2m+ 1 is even,

and

n󰁛

k=0

󰀗
n+ 1
k

󰀘

q

B
(s)
n,k(0, y) =

󰀫
0 if n = 2m is odd,

(−1)m[2m+ 2]qy
2m+1 if n = 2m+ 1 is even.
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Corollary 3.3. For every n ∈ N, the following partial q-differential equations
hold

Dq,xB
(c)
n,q(x, y) = [n]qB

(c)
n−1,q(x, y),

Dq,yB
(c)
n,q(x, y) = −[n]qB

(c)
n−1,q(x, y),

Dq,xB
(s)
n,q(x, y) = [n]qB

(s)
n−1,q(x, y),

and
Dq,yB

(c)
n,q(x, y) = [n]qB

(s)
n−1,q(x, y).

Corollary 3.4. The following equalities are valid

󰁝 1

0
B

(c)
2n,q(x, y)dqx = (−1)nq2n,

󰁝 1

0
B

(s)
2n+1,q(x, y)dqx = (−1)nq2n+1,

which are proved by combining Proposition 3.3 and Corollary 3.1 using the defini-
tion of the q-integral.
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