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1 Introduction

The Appell polynomials An(x) defined by

f(t)ext =
∞
∑

n=0

An(x)
tn

n!
, (1)

where f is a formal power series in t , have found remarkable applications in different
branches of mathematics, theoretical physics and chemistry [2, 15]. Two special cases
of Appell polynomials are Bernoulli polynomials Bn(x) and Euler polynomials En(x)
that are, respectively, generated by choosing f(t) = t

et−1 and f(t) = 2
et+1 in (1). Also,

Bernoulli numbers Bn := Bn(0) and Euler numbers En := 2nEn(
1
2 ) are of considerable

importance in number theory, special functions, combinatorics and numerical analysis.

Bernoulli numbers are given by

t

et − 1
=

∞
∑

n=0

Bn
tn

n!
(|t| < 2π),

or by the recurrence relation

n
∑

k=0

(

n+ 1

k

)

Bk = 0 for n ≥ 1 and B0 = 1.
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They are directly related to various combinatorial numbers such as Stirling, Cauchy and
harmonic numbers. For example, except B1 we have

Bn = (−1)n
n
∑

m=0

(−1)mm!

m+ 1
S2(n,m), (2)

where

S2(n,m) =
1

m!

m
∑

j=0

(−1)j
(

m

j

)

(m− j)n,

denotes the second kind of Stirling numbers [5, 7] with S2(n,m) = 0 for n < m .

There are some algorithms for computing Bernoulli numbers. One of them is Euler’s
formula

B2n =
(−1)n−12n

22n(22n − 1)
Tn,

where {Tn} , known as Tangent numbers, are generated by

tan t =

∞
∑

n=1

Tn
t2n−1

(2n − 1)!
.

In 2001 , Akiyama and Tanigawa [1] (see also [13]) found an algorithm for computing
An,0 := (−1)nBn without computing Tangent numbers as

An+1,m = (m+ 1)(An,m −An,m+1),

where A0,m = 1
m+1 .

Later on, a modified version of the above-mentioned algorithm was proposed by Chen
[4] for computing Cn,0 := Bn as

Cn+1,m = mCn,m − (m+ 1)Cn,m+1

where C0,m = 1
m+1 .

Bernoulli numbers have found various extensions such as poly-Bernoulli numbers, which
are somehow connected to multiple zeta values. For recent extensions of poly-Bernoulli
numbers see e.g. [3, 6, 8, 9, 14]. In [12], the author has defined a new family of poly-
Bernoulli numbers in terms of Gaussian hypergeometric functions and obtained its basic
properties. He has also presented an algorithm for computing Bernoulli numbers and
polynomials and showed that poly-Bernoulli numbers are related to the certain regular
values of the Euler-Zagiers multiple zeta function at non-positive integers of depth p ≥ 1 ,
i.e.

ζ(s1, s2, . . . , sp) =
∑

0<n1<n2<···<np

1

ns1
1 ns2

2 · · · n
sp
p

,
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where s1, s2, . . . , sp are positive integers with sp > 1 .

Another combinatorial aspect of Bernoulli numbers is that they have several symmetry
properties with Cauchy numbers. The first kind of Cauchy numbers is defined by [5, 11]

Cn =

∫ 1

0
t(t− 1) · · · (t− n+ 1) dt = n!

∫ 1

0

(

t

n

)

dt,

having the generating function

t

log(1 + t)
=

∞
∑

n=0

Cn
tn

n!
,

and the second kind is defined by

Ĉn =

∫ 0

−1
t(t− 1) · · · (t− n+ 1) dt = n!

∫ 0

−1

(

t

n

)

dt.

Both Cn and Ĉn can be explicitly written as

Cn = (−1)n
n
∑

m=0

(−1)mS1(n,m)

m+ 1
and Ĉn = (−1)n

n
∑

m=0

S1(n,m)

m+ 1
,

such that S1(n,m) are the first kind of Stirling numbers given by

(t)n = t(t+ 1) · · · (t+ n− 1) =
n
∑

m=0

S1(n,m)tm,

where S1(n,m) = 0 for n < m .

This paper is organized as follows: In the next section, we introduce an extension of
Bernoulli polynomials and present several basic properties of them in section 3. We also
compute the Fourier expansion of the extended polynomials in section 4 and obtain some
new series involving Bernoulli numbers.

2 A Bivariate Kind of Bernoulli Polynomials

If p, q ∈ R , it is known that the Taylor expansion of the two functions ept cos qt and
ept sin qt are respectively as follows [10]

ept cos qt =

∞
∑

k=0

Ck(p, q)
tk

k!
, (3)
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and

ept sin qt =

∞
∑

k=0

Sk(p, q)
tk

k!
, (4)

where

Ck(p, q) =

[ k
2
]

∑

j=0

(−1)j
(

k

2j

)

pk−2jq2j , (5)

and

Sk(p, q) =

[ k−1

2
]

∑

j=0

(−1)j
(

k

2j + 1

)

pk−2j−1q2j+1. (6)

By referring to relations (3)-(6), we can introduce two kinds of bivariate Bernoulli poly-
nomials as

tept

et − 1
cos qt =

∞
∑

n=0

B(c)
n (p, q)

tn

n!
(|t| < 2π), (7)

and

tept

et − 1
sin qt =

∞
∑

n=0

B(s)
n (p, q)

tn

n!
(|t| < 2π). (8)

For instance, we have

B
(c)
0 (p, q) = 1,

B
(c)
1 (p, q) = p−

1

2
,

B
(c)
2 (p, q) = p2 − p− q2 +

1

6
,

B
(c)
3 (p, q) = p3 −

3

2
p2 + (

1

2
− 3q2)p +

3

2
q2,

B
(c)
4 (p, q) = p4 − 2p3 + (1− 6q2)p2 + 6q2p+ q4 − q2 −

1

30
,

B
(c)
5 (p, q) = p5 −

5

2
p4 + (

5

3
− 10q2)p3 + 15q2p2 + (5q4 − 5q2 −

1

6
)p −

5

2
q4,

B
(c)
6 (p, q) = p6 − 3p5 + (

5

2
− 15q2)p4 + 30q2p3 + (15q4 − 15q2 −

1

2
)p2 − 15q4p

− q6 +
5

2
q4 +

1

2
q2 +

1

42
,
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and

B
(s)
0 (p, q) = 0,

B
(s)
1 (p, q) = q,

B
(s)
2 (p, q) = 2qp− q,

B
(s)
3 (p, q) = 3qp2 − 3qp− q3 +

1

2
q,

B
(s)
4 (p, q) = 4qp3 − 6qp2 + (2q − 4q3)p+ 2q3,

B
(s)
5 (p, q) = 5qp4 − 10qp3 + (5q − 10q3)p2 + 10q3p+ q5 −

5

3
q3 −

1

6
q,

B
(s)
6 (p, q) = 6qp5 − 15qp4 + (10q − 20q3)p3 + 30q3p2 + (6q5 − 10q3 − q)p− 3q5.

3 Some Basic Properties of the Polynomials B
(c)
n (p, q) and

B
(s)
n (p, q) .

Proposition 1. B
(c)
n (p, q) and B

(s)
n (p, q) can be represented in terms of Bernoulli num-

bers as follows

B(c)
n (p, q) =

n
∑

k=0

(

n

k

)

BkCn−k(p, q), (9)

and

B(s)
n (p, q) =

n
∑

k=0

(

n

k

)

BkSn−k(p, q). (10)

Proof. By noting the general identity

(

∞
∑

k=0

ak
tk

k!

)(

∞
∑

k=0

bk
tk

k!

)

=
∞
∑

k=0





k
∑

j=0

(

k

j

)

ajbk−j





tk

k!
,

we have

∞
∑

k=0

B
(c)
k (p, q)

tk

k!
=

t

et − 1

(

ept cos qt

)

=

(

∞
∑

k=0

Bk

tk

k!

)(

∞
∑

k=0

Ck(p, q)
tk

k!

)

=
∞
∑

k=0





k
∑

j=0

(

k

j

)

BjCk−j(p, q)





tk

k!
,

which proves (9). The proof of (10) is similar.
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Proposition 2. For every n ∈ Z
+ we have

B(c)
n (1− p, q) = (−1)nB(c)

n (p, q), (11)

and

B(s)
n (1− p, q) = (−1)n+1B(s)

n (p, q). (12)

Proof. Applying the generating function (7) gives

∞
∑

n=0

B(c)
n (1− p, q)

tn

n!
=

te(1−p)t

et − 1
cos qt,

as well as

∞
∑

n=0

(−1)nB(c)
n (p, q)

tn

n!
=

−te−pt

e−t − 1
cos(−qt) =

te(1−p)t

et − 1
cos qt.

Similarly, property (12) can be proved.

Corollary 1. Relations (11) and (12) imply that

B
(c)
2n+1(

1

2
, q) = 0,

and

B
(s)
2n (

1

2
, q) = 0.

Proposition 3. For every n ∈ N , the following identities hold

B(c)
n (1 + p, q)−B(c)

n (p, q) = nCn−1(p, q), (13)

and

B(s)
n (1 + p, q)−B(s)

n (p, q) = nSn−1(p, q). (14)

Proof. We have

∞
∑

n=0

B(c)
n (1 + p, q)

tn

n!
=

tept(et − 1 + 1)

et − 1
cos qt = tept cos qt+

tept

et − 1
cos qt

=
∞
∑

n=0

Cn(p, q)
tn+1

n!
+

∞
∑

n=0

B(c)
n (p, q)

tn

n!

=
∞
∑

n=1

nCn−1(p, q)
tn

n!
+

∞
∑

n=0

B(c)
n (p, q)

tn

n!
,

which proves (13). The proof of (14) is similar.
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Corollary 2. Relations (13) and (14) first imply that

B
(c)
2n+1(1, q) −B

(c)
2n+1(0, q) = (2n+ 1)(−1)nq2n,

and

B
(s)
2n (1, q) −B

(s)
2n (0, q) = 2n(−1)n+1q2n−1.

Hence, combining proposition 2 respectively yields

B
(c)
2n+1(1, q) = −B

(c)
2n+1(0, q) =

2n + 1

2
(−1)nq2n,

and

B
(s)
2n (1, q) = −B

(s)
2n (0, q) = n(−1)n+1q2n−1.

Corollary 3. For every n ∈ N and m ∈ Z
+ we have

m
∑

p=0

Cn−1(p, q) =
B

(c)
n (1 +m, q)−B

(c)
n (0, q)

n
,

and

m
∑

p=0

Sn−1(p, q) =
B

(s)
n (1 +m, q)−B

(s)
n (0, q)

n
.

We recall that Cn−1(p, 0) = pn−1 and therefore

m
∑

p=1

pn−1 =
Bn(m+ 1)−Bn

n
.

Proposition 4. For every n ∈ Z
+ the following identities hold

B(c)
n (p+ r, q) =

n
∑

k=0

(

n

k

)

B
(c)
k (p, q)rn−k, (15)

and

B(s)
n (p+ r, q) =

n
∑

k=0

(

n

k

)

B
(s)
k (p, q)rn−k. (16)

Proof. Apply (7) to obtain

∞
∑

n=0

B(c)
n (p+ r, q)

tn

n!
=

(

tept

et − 1
cos qt

)

ert =

(

∞
∑

n=0

B(c)
n (p, q)

tn

n!

)(

∞
∑

n=0

rn
tn

n!

)

=

∞
∑

n=0

(

n
∑

k=0

(

n

k

)

B
(c)
k (p, q)rn−k

)

tn

n!
,
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which proves (15). The result (16) can be similarly proved.

Proposition 5. We have

n
∑

k=0

(

n+ 1

k

)

B
(c)
k (p, q) = (n+ 1)Cn(p, q), (17)

and

n
∑

k=0

(

n+ 1

k

)

B
(s)
k (p, q) = (n+ 1)Sn(p, q). (18)

Proof. From (15), one can conclude that

B
(c)
n+1(p + 1, q)−B

(c)
n+1(p, q) =

n
∑

k=0

(

n+ 1

k

)

B
(c)
k (p, q).

Hence, by referring to (13), the result (17) is derived. The proof of (18) can be done in a
similar way.

Corollary 4. Relations (17) and (18) imply that

n
∑

k=0

(

n+ 1

k

)

B
(c)
k (0, q) = (n+ 1)qn cosn

π

2
=







(−1)m(2m+ 1)q2m n = 2m even,

0 n = 2m+ 1 odd,

and

n
∑

k=0

(

n+ 1

k

)

B
(s)
k (0, q) = (n+ 1)qn sinn

π

2
=







0 n = 2m even,

(−1)m(2m+ 2)q2m+1 n = 2m+ 1 odd.

Proposition 6. For every n ∈ N , the following partial differential equations hold

∂

∂p
B(c)

n (p, q) = nB
(c)
n−1(p, q), (19)

∂

∂q
B(c)

n (p, q) = −nB
(s)
n−1(p, q), (20)

∂

∂p
B(s)

n (p, q) = nB
(s)
n−1(p, q), (21)

and

∂

∂q
B(s)

n (p, q) = nB
(c)
n−1(p, q). (22)
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Proof. Relation (7) yields

∞
∑

n=1

∂B
(c)
n (p, q)

∂p

tn

n!
=

t2ept

et − 1
cos qt =

∞
∑

n=0

B(c)
n (p, q)

tn+1

n!

=
∞
∑

n=1

B
(c)
n−1(p, q)

tn

(n − 1)!
=

∞
∑

n=1

nB
(c)
n−1(p, q)

tn

n!
,

proving (19). Other equations (20), (21) and (22) can be similarly derived.

Corollary 5. By combining the above results and proposition 2 and corollary 2, we obtain

∫ 1

0
B

(c)
2n (p, q) dp = (−1)nq2n,

∫ 1

0
B

(c)
2n+1(p, q) dp = 0,

∫ 1

0
B

(s)
2n (p, q) dp = 0,

and
∫ 1

0
B

(s)
2n+1(p, q) dp = (−1)nq2n+1.

Proposition 7. If B
(c)
n (p, q) and B

(s)
n (p, q) are sorted in terms of the variable p , then

they are polynomials of degree n and n− 1 respectively, such that we have

B(c)
n (p, q) = pn −

n

2
pn−1 + · · · , (23)

and

B(s)
n (p, q) = nqpn−1 −

(

n

2

)

qpn−2 + · · · . (24)

Also, if they are sorted in terms of the variable q , then

B(c)
n (p, q) =











(−1)
n−1

2 n(p− 1
2)q

n−1 + (−1)
n+1

2

(

n
3

)

(p3 − 3
2p

2 + 1
2p)q

n−3 + · · · (n odd),

(−1)
n
2 qn + (−1)

n+2

2

(

n
2

)

(p2 − p+ 1
6)q

n−2 + · · · (n even),

(25)
and

B(s)
n (p, q) =











(−1)
n+2

2 n(p− 1
2)q

n−1 + (−1)
n
2

(

n
3

)

(p3 − 3
2p

2 + 1
2p)q

n−3 + · · · (n even),

(−1)
n−1

2 qn + (−1)
n+1

2

(

n
2

)

(p2 − p+ 1
6 )q

n−2 + · · · (n odd).

(26)
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Proof. We first prove (23) by induction. It is known from (17) that

B
(c)
0 (p, q) = 1, B

(c)
1 (p, q) = p−

1

2
and B

(c)
2 (p, q) = p2 − p− q2 +

1

6
.

Therefore (23) holds for n = 0, 1, 2 . Now assume that it is valid for n− 1 . By referring
to (19), we have

∂

∂p
B(c)

n (p, q) = npn−1 −
n(n− 1)

2
pn−2 + · · · .

To complete the proof, it is enough to integrate the above equation with respect to the
variable p to get the result (23). By referring to relation (22), the result (24) can be
similarly derived.
To prove (25), suppose that it first holds for 0, 1, · · · , n − 1 . If n = 2m , then from (17)
we have

B
(c)
2m(p, q) = −

1

2m+ 1

2m−1
∑

k=0

(

2m+ 1

k

)

B
(c)
k (p, q) +

m
∑

k=0

(−1)k
(

2m

2k

)

p2m−2kq2k. (27)

Hence, the coefficient of q2m in the right hand side of (27) is equal to

(−1)m
(

2m

2m

)

p2m−2m = (−1)m,

and the coefficient of q2m−2 is equal to

−
1

2m+ 1

(

(

2m+ 1

2m− 1

)

(−1)m−1(2m− 1)(p −
1

2
) +

(

2m+ 1

2m− 2

)

(−1)m−1

)

+ (−1)m−1

(

2m

2m− 2

)

p2 = (−1)m+1

(

2m

2

)

(p2 − p+
1

6
).

So, (25) is true for n = 2m . In the second case, taking n = 2m+ 1 in (17) gives

B
(c)
2m+1(p, q) = −

1

2m+ 2

2m
∑

k=0

(

2m+ 2

k

)

B
(c)
k (p, q) +

m
∑

k=0

(−1)k
(

2m+ 1

2k

)

p2m+1−2kq2k.

(28)

Hence, the coefficient of q2m in the right hand side of (28) is equal to

−1

2m+ 2

(

2m+ 2

2m

)

(−1)m + (−1)m
(

2m+ 1

2m

)

p = (−1)m(2m+ 1)(p −
1

2
),
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and the coefficient of q2m−2 is equal to

−
1

2m+ 2

(

(

2m+ 2

2m

)

(−1)m+1

(

2m

2

)

(p2 − p+
1

6
) +

(

2m+ 2

2m− 1

)

(−1)m−1(2m− 1)(p −
1

2
)

+

(

2m+ 2

2m− 2

)

(−1)m−1

)

+ (−1)m−1

(

2m+ 1

2m− 2

)

p3 = (−1)m+1

(

2m+ 1

3

)

(p3 −
3

2
p2 +

1

2
p),

which completes the proof of (25). By combining (22) and (25), we can also obtain the
result (26).

Proposition 8. The following identities hold

B(c)
n (p, q) =

[n
2
]

∑

k=0

(−1)k
(

n

2k

)

B
(c)
n−2k(p, 0)q

2k , (29)

and

B(s)
n (p, q) =

[n−1

2
]

∑

k=0

(−1)k
(

n

2k + 1

)

B
(c)
n−2k−1(p, 0)q

2k+1, (30)

in which B
(c)
n−2k(p, 0) = Bn−2k(p) and B

(c)
n−2k−1(p, 0) = Bn−2k−1(p) are usual Bernoulli

polynomials.

Proof. According to (20) and (22), first we have

∂2k

∂q2k
B(c)

n (p, q) = (−1)k
n!

(n− 2k)!
B

(c)
n−2k(p, q) for k = 0, 1, · · · , [

n

2
],

and

∂2k+1

∂q2k+1
B(c)

n (p, q) = (−1)k+1 n!

(n− 2k − 1)!
B

(s)
n−2k−1(p, q) for k = 0, 1, · · · , [

n− 2

2
],

because B
(c)
n (p, q) is a polynomial of degree n for even n and of degree n − 1 for odd

n in terms of the variable q according to the proposition 7. The Taylor expansion of

B
(c)
n (p, q) gives

B(c)
n (p, q + h) =

n
∑

k=0

1

k!

∂k

∂qk
B(c)

n (p, q)hk,

in which h ∈ R . Since B
(s)
n (p, 0) = 0 for every n ∈ Z

+ , by replacing q = 0 and h = q ,
we obtain the relation (29). In a similar way, equality (30), can be derived.



12 On a bivariate kind of Bernoulli polynomials

Proposition 9. If m ∈ N and n ∈ Z
+ , then we have

B(c)
n (mp, q) = mn−1

m−1
∑

k=0

B(c)
n (p +

k

m
,
q

m
), (31)

and

B(s)
n (mp, q) = mn−1

m−1
∑

k=0

B(s)
n (p+

k

m
,
q

m
). (32)

Proof. To prove (31), it is enough to consider the relation

∞
∑

n=0

B(c)
n (p +

k

m
,
q

m
)
tn

n!
=

te(p+
k
m
)t

et − 1
cos(

q

m
t),

and then take a sum from both sides of the above equation to obtain

m−1
∑

k=0

(

∞
∑

n=0

B(c)
n (p +

k

m
,
q

m
)
tn

n!

)

=
tept

et − 1
cos(

q

m
t)

m−1
∑

k=0

(

e
t
m

)k

= m
t
m
emp t

m

e
t
m − 1

cos(q
t

m
) =

∞
∑

n=0

m1−nB(c)
n (mp, q)

tn

n!
.

In a similar way, equality (32) can be proved.

For m = 2 , relations (31) and (32) respectively yield

B
(c)
2n (

1

2
, q) = 21−2nB

(c)
2n (0, 2q) −B

(c)
2n (0, q),

and

B
(s)
2n+1(

1

2
, q) = 2−2nB

(s)
2n+1(0, 2q) −B

(s)
2n+1(0, q).

Proposition 10. For every n ∈ N and q ∈ R , the two following propositions are valid:

Pn : The function p 7→ (−1)nB
(c)
2n−1(p, q) is positive on (0, 12 ) and negative on (12 , 1) .

Moreover, p = 1
2 is a unique simple root on (0, 1) , i.e. the aforesaid function has no zero

in the intervals (0, 12) and (12 , 1) .

Qn : The function p 7→ (−1)nB
(c)
2n (p, q) is strictly increasing on [0, 12 ] and strictly

decreasing on [12 , 1] and always takes a positive value at p = 1
2 .

Proof. The proposition P1 is clear, because −B
(c)
1 (p, q) = −(p − 1

2) = −p + 1
2 . Now

define f(p) = (−1)nB
(c)
2n (p, q) to get f ′(p) = 2n(−1)nB

(c)
2n−1(p, q) . By referring to Pn ,
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we see that f is strictly increasing on [0, 12 ] and decreasing on [12 , 1] . Moreover, since
∫ 1
0 f(p) dp = q2n ≥ 0 (by corollary 5 ) and B

(c)
2n (1 − p, q) = B

(c)
2n (p, q) (from proposition

2), one can conclude that f(12) > 0 .

Finally define g(p) = (−1)n+1B
(c)
2n+1(p, q) to get g′(p) = −(2n+1)(−1)nB

(c)
2n (p, q) . Since

B
(c)
2n (0, q) = B

(c)
2n (1, q) , by noting Qn , only one of the following cases occurs:

i) α ∈ (0, 12) and β ∈ (12 , 1) exist such that

g′(α) = g′(β) = 0 and ∀p ∈ (α, β), g′(p) < 0 and ∀p ∈ [0, α) ∪ (β, 1], g′(p) > 0.

ii) g′(0) = g′(1) = 0 and ∀p ∈ (0, 1), g′(p) < 0.

iii) ∀p ∈ [0, 1], g′(p) < 0.

In the first case i), by referring to corollary 2 we have

A = g(0) = (−1)n+1B
(c)
2n+1(0, q) =

2n+ 1

2
q2n ≥ 0.

Therefore g(1) = −A ≤ 0 and g takes the following table of variations

p 0 α 1
2 β 1

g′(p) + 0 − 0 +

g(p) A ≥ 0 ր ⌢ ց 0 ց ⌣ ր −A ≤ 0

As g(12 ) = 0 (by corollary 1) and g′(12 ) > 0 , p = 1
2 is a simple root of g . We can similarly

observe that the two other cases also hold. So the proof of Pn+1 is complete.

Proposition 11. For every n ∈ Z
+ and q ∈ R we have

sup
p∈[0,1]

|B
(c)
2n (p, q)| = max{|B

(c)
2n (0, q)|, |B

(c)
2n (

1

2
, q)|}, (33)

and

sup
p∈[0,1]

|B
(c)
2n+1(p, q)| ≤

2n + 1

2
max{|B

(c)
2n (0, q)|, |B

(c)
2n (

1

2
, q)|}. (34)

Proof. The result (33) is clear by referring to propositions 2 and 10. To prove (34), if
p ∈ [0, 12 ] then we have

B
(c)
2n+1(p, q) = B

(c)
2n+1(p, q)−B

(c)
2n+1(

1

2
, q) = (2n+ 1)

∫ p

1

2

B
(c)
2n (t, q) dt.
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Therefore

|B
(c)
2n+1(p, q)| ≤ (2n+ 1)

∫ 1

2

p

|B
(c)
2n (t, q)| dt ≤ (2n+ 1)(

1

2
− p) sup

t∈[p, 1
2
]

|B
(c)
2n (t, q)|

≤ (2n+ 1)(
1

2
− p)max{|B

(c)
2n (0, q)|, |B

(c)
2n (

1

2
, q)|},

which is equivalent to

sup
p∈[0, 1

2
]

|B
(c)
2n+1(p, q)| ≤

2n+ 1

2
max{|B

(c)
2n (0, q)|, |B

(c)
2n (

1

2
, q)|}.

On the other hand, B
(c)
2n+1(1− p, q) = −B

(c)
2n+1(p, q) completes the proof of (34).

Proposition 12. For every n ∈ N and q > 0 , the two following propositions are valid:

Pn : The function p 7→ (−1)nB
(s)
2n (p, q) is positive on [0, 12) and negative on (12 , 1] .

Moreover, p = 1
2 is a unique simple root on [0, 1] , i.e. the aforesaid function has no zero

in the intervals [0, 12) and (12 , 1] .

Qn : The function p 7→ (−1)nB
(s)
2n+1(p, q) is strictly increasing on [0, 12 ] and strictly

decreasing on [12 , 1] and always takes a positive value at p = 1
2 .

Proof. The proposition P1 is clear, because −B
(s)
2 (p, q) = −q(2p− 1) = q(1− 2p) . Now

define f(p) = (−1)nB
(s)
2n+1(p, q) to get f ′(p) = (2n + 1)(−1)nB

(s)
2n (p, q) . By noting Pn ,

we see that f is strictly increasing on [0, 12 ] and decreasing on [12 , 1] . Moreover, since
∫ 1
0 f(p) dp = q2n+1 > 0 (by corollary 5 ) and B

(s)
2n+1(1− p, q) = B

(s)
2n+1(p, q) (from propo-

sition 2), one can conclude that f(12) > 0 .

Finally define g(p) = (−1)n+1B
(s)
2n+2(p, q) to get g′(p) = −(2n + 2)(−1)nB

(s)
2n+1(p, q) .

Since B
(s)
2n+1(0, q) = B

(s)
2n+1(1, q) , by noting Qn , only one of the three following cases

occurs:

i) α ∈ (0, 12) and β ∈ (12 , 1) exist such that

g′(α) = g′(β) = 0 and ∀p ∈ (α, β), g′(p) < 0 and ∀p ∈ [0, α) ∪ (β, 1], g′(p) > 0.

ii) g′(0) = g′(1) = 0 and ∀p ∈ (0, 1), g′(p) < 0.
iii) ∀p ∈ [0, 1], g′(p) < 0.

In the first case i), by referring to corollary 2, we have

A∗ = g(0) = (−1)n+1B
(s)
2n+2(0, q) = (n+ 1)q2n+1 > 0.

Therefore g(1) = −A∗ < 0 and g takes the following table of variations
As g(12 ) = 0 (by corollary 1) and g′(12) < 0 , then p = 1

2 is a simple root of function g .
Similarly, we can observe that the two other cases also hold.
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p 0 α 1
2 β 1

g′(p) + 0 − 0 +

g(p) A∗ > 0 ր ⌢ ց 0 ց ⌣ ր −A∗ < 0

Corollary 6. For every n ∈ N and q ∈ R we have

sup
p∈[0,1]

|B
(s)
2n+1(p, q)| = max{|B

(s)
2n+1(0, q)|, |B

(s)
2n+1(

1

2
, q)|},

and

sup
p∈[0,1]

|B
(s)
2n (p, q)| ≤ nmax{|B

(s)
2n−1(0, q)|, |B

(s)
2n−1(

1

2
, q)|}.

Proposition 13. Let m and n be two positive integers and

I(c) =

∫ 1

0
B(c)

m (p, q)B(c)
n (p, q) dp.

If m+ n is odd then I(c) = 0 and if it is even then

I(c) =
m+n
∑

k=0

1

(k + 1)!





B
∑

j=A

(

k

j

)

n!m!

(n− j)!(m − k + j)!
B

(c)
n−j(0, q)B

(c)
m−k+j(0, q)



 ,

where A = max{0, k −m} and B = min{n, k} .

Proof. First, suppose that m+ n is odd. By using (11) we have

I(c) =

∫ 1

0
B(c)

m (1− p, q)B(c)
n (1− p, q) dp = (−1)m+n

∫ 1

0
B(c)

m (p, q)B(c)
n (p, q) dp = −I(c).

Now, assume that m + n is even. Since degp
(

B
(c)
m B

(c)
n

)

= m + n (from proposition 7),
by referring to (19) we obtain

B(c)
m (p, q)B(c)

n (p, q) =
m+n
∑

k=0

(

∂k

∂pk

(

B(c)
m (p, q)B(c)

n (p, q)
)

) ∣

∣

∣

∣

p=0

pk

k!

=

m+n
∑

k=0





k
∑

j=0

(

k

j

)(

∂j

∂pj
B(c)

n (p, q)
∂k−j

∂pk−j
B(c)

m (p, q)

)∣

∣

∣

∣

p=0





pk

k!

=

m+n
∑

k=0





B
∑

j=A

(

k

j

)

n!m!

(n− j)!(m− k + j)!
B

(c)
n−j(0, q)B

(c)
m−k+j(0, q)





pk

k!
,

which leads to the second result.
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Corollary 7. Let m and n be two positive integers and

I(s) =

∫ 1

0
B(s)

m (p, q)B(s)
n (p, q) dp.

If m+ n is odd then I(s) = 0 and if m+ n is even then

I(s) =

m+n−2
∑

k=0

1

(k + 1)!





B
∑

j=A

(

k

j

)

n!m!

(n− j)!(m − k + j)!
B

(s)
n−j(0, q)B

(s)
m−k+j(0, q)



 ,

where A = max{0, k −m} and B = min{n, k} .

4 Fourier expansions of the polynomials B
(c)
n (p, q) and

B
(s)
n (p, q)

The Fourier series of a periodic function f on [0, L] is given by

f(x) =
a0

2
+

∞
∑

k=1

(

ak cos(
2kπ

L
x) + bk sin(

2kπ

L
x)

)

,

where

a0 =
2

L

∫ L

0
f(x) dx,

ak =
2

L

∫ L

0
f(x) cos(

2kπ

L
x) dx,

and

bk =
2

L

∫ L

0
f(x) sin(

2kπ

L
x) dx.

It can also be extended to complex coefficients so that, by considering a real-valued periodic
function f on [0, L] , we have

f(x) =

∞
∑

k=−∞

cke
2ikπ
L

x,

in which

ck =
1

L

∫ L

0
f(x)e

−2ikπ
L

x dx.
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Figure 1: The graphs of B̃2(p, 2) and B̃3(p, 2)

By periodically extending the restrictions of the introduced bivariate Bernoulli polynomials
to p ∈ [0, 1) , we would encounter with periodic piecewise continuous functions. In other
words, for every real p and q we can define

B̃(c)
n (p, q) = B(c)

n ({p}, q),

B̃(s)
n (p, q) = B(s)

n ({p}, q),

where {p} = p− [p] is the fractional part of the real p .
In figure 1, the graphs of the periodic functions B̃2(p, q) and B̃3(p, q) are displayed for
q = 2 .

Theorem 4.1. Let q ∈ R . Then for any p ∈ (0, 1) we have

B
(c)
1 (p, q) = p−

1

2
= −

1

π

∞
∑

k=1

sin(2πkp)

k
, (35)

and for every n ∈ N we respectively have

B
(c)
2n (p, q) = (−1)nq2n +

∞
∑

k=1

ak,n cos(2πkp), p ∈ [0, 1], (36)

where

ak,n = 2(2n)!(−1)n+1
n
∑

j=1

q2n−2j

(2n− 2j)!(2πk)2j
,
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and

B
(c)
2n+1(p, q) =

∞
∑

k=1

bk,n sin(2πkp), p ∈ (0, 1), (37)

where

bk,n = (−1)n+1(2n + 1)

(

q2n

πk
+ 2(2n)!

n
∑

j=1

q2n−2j

(2n − 2j)!(2πk)2j+1

)

.

Proof. First, let us consider B̃
(c)
1 . It is clear that

c0(B̃
(c)
1 ) =

∫ 1

0
B

(c)
1 (p, q) dp =

∫ 1

0
(p−

1

2
) dp = 0,

and for k ∈ Z\{0} we have

ck(B̃
(c)
1 ) =

∫ 1

0
B

(c)
1 (p, q)e−2iπkp dp =

∫ 1

0
(p−

1

2
)e−2iπkp dp =

−1

2iπk
. (38)

Since B
(c)
1 (0, q) 6= B

(c)
1 (1, q) , according to Dirichlet’s conditions we can conclude that for

every p ∈ R\Z we have

B̃
(c)
1 (p, q) =

∑

k∈Z

ck(B̃
(c)
1 )e2iπkp =

∑

k∈Z\{0}

−1

2iπk
e2iπkp = −

1

π

∞
∑

k=1

sin(2πkp)

k
,

where we use c−k(B̃
(c)
1 ) = −ck(B̃

(c)
1 ) , which proves (35).

We now consider the case B̃
(c)
2n . According to corollary 5 we have

c0(B̃
(c)
2n ) =

∫ 1

0
B

(c)
2n (p, q) dp = (−1)nq2n,

and for k ∈ Z\{0}

ck(B̃
(c)
2n ) =

∫ 1

0
B

(c)
2n (p, q)e

−2iπkp dp =
2n

2iπkp

∫ 1

0
B

(c)
2n−1(p, q)e

−2iπkp dp

=
n

iπk
ck(B̃

(c)
2n−1), (39)

where we have used B
(c)
2n (0, q) = B

(c)
2n (1, q) in proposition 2. Similarly, we can find that

c0(B̃
(c)
2n+1) = 0 and ck(B̃

(c)
2n+1) =

2n+ 1

2iπk

(

(−1)n+1q2n + ck(B̃
(c)
2n )

)

. (40)
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Now, for every n ∈ N and k ∈ Z\{0} we show that

ck(B̃
(c)
2n ) = (−1)n+1(2n)!

n
∑

j=1

q2n−2j

(2n − 2j)!(2πk)2j
, (41)

and

ck(B̃
(c)
2n+1) =

(−1)n+1(2n + 1)

i

(

q2n

2πk
+ (2n)!

n
∑

j=1

q2n−2j

(2n− 2j)!(2πk)2j+1

)

. (42)

Since ck(B̃
(c)
1 ) = − 1

2iπk by (38), from equation (39) we obtain

ck(B̃
(c)
2 ) =

1

iπk
(−

1

2iπk
) =

2

(2πk)2
.

Assume that (41) is true for n . Then using (40) gives

ck(B̃
(c)
2n+1) =

2n+ 1

2iπk

(

(−1)n+1q2n + (−1)n+1(2n)!

n
∑

j=1

q2n−2j

(2n − 2j)!(2πk)2j

)

=
(−1)n+1(2n+ 1)

i

(

q2n

2πk
+ (2n)!

n
∑

j=1

q2n−2j

(2n − 2j)!(2πk)2j+1

)

.

So, (42) is satisfied for n . Now let (42) be true for n . Then for n+1 , relation (39) gives

ck(B̃
(c)
2n+2) =

n+ 1

iπk

(−1)n+1(2n+ 1)

i

(

q2n

2πk
+ (2n)!

n
∑

j=1

q2n−2j

(2n − 2j)!(2πk)2j+1

)

= (−1)n+2(2n+ 2)!

(

q2n

(2n)!(2πk)2
+

n
∑

j=1

q2n−2j

(2n − 2j)!(2πk)2j+2

)

= (−1)n+2(2n+ 2)!

(

q2n

(2n)!(2πk)2
+

n+1
∑

j=2

q2n−2j+2

(2n − 2j + 2)!(2πk)2j

)

= (−1)n+2(2n+ 2)!

n+1
∑

j=1

q2(n+1)−2j

(2(n + 1)− 2j)!(2πk)2j
,

which approves (41) for n+ 1 . From (41) and (42), it is clear that

c−k(B̃
(c)
2n ) = ck(B̃

(c)
2n ) and c−k(B̃

(c)
2n+1) = −ck(B̃

(c)
2n+1).

As
B

(c)
2n (0, q) = B

(c)
2n (1, q) and B

(c)
2n+1(0, q) 6= B

(c)
2n (1, q),

we can directly obtain the identities (36) and (37) by Dirichlet’s theorem.
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Theorem 4.2. Let q ∈ R . Then for every p ∈ (0, 1) we have

B
(s)
2 (p, q) = 2qp− q = −

2q

π

∞
∑

k=1

sin(2πkp)

k
,

and for every n ≥ 2 we respectively have

B
(s)
2n−1(p, q) = (−1)n−1q2n−1 +

∞
∑

k=1

a′k,n cos(2πkp), p ∈ [0, 1], (43)

where

a′k,n = 2(−1)n(2n− 1)!
n−1
∑

j=1

q2n−1−2j

(2n − 1− 2j)!(2πk)2j
,

and

B
(s)
2n (p, q) =

∞
∑

k=1

b′k,n sin(2πkp), p ∈ (0, 1), (44)

where

b′k,n = 2n(−1)n
(

q2n−1

πk
+ 2(2n − 1)!

n−1
∑

j=1

q2n−1−2j

(2n− 1− 2j)!(2πk)2j+1

)

.

Proof. The proof of this theorem is similar to the previous one. However, note that for
k ∈ Z\{0} we have

ck(B̃
(s)
2n−1) = (−1)n(2n− 1)!

n−1
∑

j=1

q2n−1−2j

(2n− 1− 2j)!(2πk)2j
,

and

ck(B̃
(s)
2n ) =

2n(−1)n

i

(

q2n−1

2πk
+ (2n − 1)!

n−1
∑

j=1

q2n−1−2j

(2n− 1− 2j)!(2πk)2j+1

)

,

and from corollary 5

c0(B̃
(s)
2n−1) = (−1)n−1q2n−1, c0(B̃

(s)
2n ) = 0.

By using theorems 4.1 and 4.2, one can now obtain the following series in terms of the
introduced bivariate polynomials:
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Corollary 8. From relations (36) and (37), we have

∞
∑

k=1





n
∑

j=1

q2n−2j

(2n− 2j)!(2πk)2j



 =
(−1)n+1

2(2n)!

(

B
(c)
2n (0, q) − (−1)nq2n

)

,

∞
∑

k=1

(−1)k





n
∑

j=1

q2n−2j

(2n− 2j)!(2πk)2j



 =
(−1)n+1

2(2n)!

(

B
(c)
2n (

1

2
, q)− (−1)nq2n

)

,

∞
∑

k=1

(−1)k





n
∑

j=1

q2n−2j

(2n− 2j)!(4πk)2j



 =
(−1)n+1

2(2n)!

(

B
(c)
2n (

1

4
, q)− (−1)nq2n

)

,

and

∞
∑

k=1

(−1)k+1

(

q2n

(2k − 1)π
+ 2(2n)!

n
∑

j=1

q2n−2j

(2n − 2j)!
(

(4k − 2)π
)2j+1

)

=
(−1)n+1

2n + 1
B

(c)
2n+1(

1

4
, q).

Corollary 9. From relations (43) and (44), we have

∞
∑

k=1





n−1
∑

j=1

q2n−1−2j

(2n− 1− 2j)!(2πk)2j



 =
(−1)n

2(2n − 1)!

(

B
(s)
2n−1(0, q) − (−1)n−1q2n−1

)

,

∞
∑

k=1

(−1)k





n−1
∑

j=1

q2n−1−2j

(2n − 1− 2j)!(2πk)2j



 =
(−1)n

2(2n − 1)!

(

B
(s)
2n−1(

1

2
, q)− (−1)n−1q2n−1

)

,

∞
∑

k=1

(−1)k





n−1
∑

j=1

q2n−1−2j

(2n − 1− 2j)!(4πk)2j



 =
(−1)n

2(2n − 1)!

(

B
(s)
2n−1(

1

4
, q)− (−1)n−1q2n−1

)

,

and

∞
∑

k=1

(−1)k+1





q2n−1

(2k − 1)π
+ 2(2n − 1)!

n−1
∑

j=1

q2n−1−2j

(2n − 1− 2j)!
(

(4k − 2)π
)2j+1



 =
(−1)n

2n
B

(s)
2n (

1

4
, q).

We finally point out not only the main approach, used in this paper, can be applied
for other special numbers and polynomials [in preprint], but can also be used for explicit
computation of some new power-trigonometric series [10].
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