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Parallel accessible domains and domains that

are convex in some direction

Abstract: We show that uiivalent functions f of the unit disk ID that have a range which is
convex in some direction have an equivalent analytic representation of the form

|argeio(1 - 22)(1 - 92)F(2)] < &

for somé a € R, and z,y € dID. This question had been examined by Robertson ([11] - {12]),
Hengartner and Schober ([2] - [3]) and others, and the above characterization had been men-
tioned by Pommerenke in [8] without proof, and finally established by Royster and Ziegler [13].
Rather than using geometric properties of level curves our approach uses an approximation
of the domain by Schwarz-Christoffel mappings. Note that z and y may be equal; we give a
geometric equivalent for that special case, i. e. for the condition

largeia(l - a:z)2f’(z)| <g (€ R, z € D).

Finally we examine the geometric equivalents of the analytic conditions where in the above
inequalities the right hand side is replaced by p% for some g € [0,1].

To get our results we use a method that was developed in [7] which may be regarded as a
general reference.

1. Imntroduction

We consider functions that are analytic in the unit disk D:={z € C| |z|] <1}. A function
is called univalent if it is one-to-one. The Riemann mapping theorem guarantees the
existence of a univalent map f : D — F for each simply connected plane domain
F # C. Moreover f with given f(0) is umquely determined except of the composmon
with rotations z i e**z of ID.

If we speak about convergence of a sequence (f,) of analytlc functions, we mean
locally uniform convergence and write f, — f. The family A of analytic functions of D
together with this topology is a Fréchet space, i. e. a locally convex complete metrizable
linear space.

A sequence of univalent functions not converging locally uniformly to oo is norma.l
and there is a convergent subsequence. The limit function is univalent or constant.
The geometric equivalent of convergence f, — f for the images f,(ID) — f(ID) was
characterized by Carathéodory and is called Carathéodory kernel convergence.

Let P denote the subset of A of functions P with positive real part that are normalized
by p(0) =1.

~ A function of the form

l 4 zz
p(z) =

—du(z) ,
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where u denotes a Borel probablhty measure on 0D, clearly has positive real part,
because the kernel functions have this property. The famous Herglotz Representation
Theorem states that the converse is also true.
A compact family which is similar to P is the class P of functions p normalized by -
p(0) = 1 for which there is some & € R such that the real part of e®p is positive. The
author deduced the following approximation result for functions p € P from Herglotz’s
Theorem (see [7], Lemma 2.3). :

Lemma 1 The functions p, (n € N) with a representation of the form

n

pa(e) = [ 1222, : e

k=1 1 — Tk2

‘where ’ '
~ ol = Iyl =1 (k=1,...,n), @

and ,
argTy < arg Yy < argT; < argPp < -+ < arg T, < arg Y, < arg Iy + 2w (3)

form a dense subset of P.

2. Polygons and Schwarz-Christoffel mappings

Let f € A be continuous in ID and have a Riemann surface F' as image domain whose
boundary consists of a finite number of linear arcs, such that the boundary correspon-
dence 3D — OF is one-to-one. Then F is called a polygon. Let F have n vertices of
‘inner angles g7 (k =1,...,n). For a bounded vertex the relation

a >0 ] (4)
holds. If a vertex lies at infinity we measure the angle on the Riemann sphere and have
ay Z 0 y | (5)

where a; = 0 is a zero angle which corresponds to two parallel rays of 9F.
Let now z be the prevertices, i. e. the preimages under f of the vertices f(z). Then
the Schwarz-Christoffel formula is the representation

(z) B (6

k=1 Z—wk

where : ( ) | f f(z) is bounded
. ._ 1—oap)m i ) is bounde
2upm = { (1 + ag)m - if f(zx) is unbounded ()

denote the outer angles. The formula
> opk=1 o (8)
k=1
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corresponds in the bounded (univalent) case both to the rule for the sum of angles in
an n-gon and to the fact that the increment of the tangent direction is exactly 2w when
surroundmg the polygon on GF one time.

On the other hand, if f fulfills (6) and (8) with z; € D for k = 1,...,n, then the

Riemann image surface f(ID) is a polygon. '
A function f € A is called convez if it maps*D univalently onto a convex domain.

Therefore it is necessary and sufficient that

(4
With regard to the Schwarz-Christoffel formula, a function is convex if and only if it can
be approximated by convex polygons. Convex polygons have outer angles pux > 0.

3. Parallel accessible domains and domains convex in some
direction

Functions with domains that are convex in some direction have extensively studied in the
literature, see e. g. [11] — [12], and [2] — [3]. It turned out that the analytic representation
of the family of functions whose ranges are convex in some fixed direction, is rather
difficult ([2] and [1]). On the other hand, if the direction is not fixed, the result is pretty
much simpler [13], and is that which one would expect ([8], p. 297). We will give here
another proof of the result of Royster and Ziegler [13] by a rather general approach that
will enable us to solve some more problems of a similar kind.

A domain F is said to be convez in the direction ( (( € D) if for all z € F and
w=z+u(-€ F (u € R) the segment

s(z,w):={tz+ (1 —-t)w|t € [0,1]} C F.

A domain F is said to be convez in some direction if there is some ¢ € 0D such that F

is convex in the direction (.
We will now give another geometric characterization for those domams that is more

on the lines of [7). We call a domain F parallel accessible if there is some direction
¢ € 8D such that the complement of F is the union

C\F=Urnul 4, 2 (9)

teT - uelU
where 4; are rays that are pairwise parallel having direction { or —(, £, are lines of
direction (, and T', U are appropriately chosen parameter sets. Here a ray -; has direction
¢if .
: " = {Zo+'UCI'U>0} : (10)
F is called strongly parallel accessible if there is a representatlon of the form (9) such
that all the rays 4; are parallel in the strong sense (10), i. e. if they are not only parallel

but have the same direction, too.
"We will show that the notions of convexity in some direction and parallel acce381b111ty

agree. Therefore we utilize

95



Lemma 2 Let F be convez in the direction (. Then the intersection of each line £ of
direction ( with F

(a) is either empty,
(b) is an open ray, or
() is an open ’segment.
The simpie proof of this lemma is left to the rea.der It follows

Lemma 3 A plane domain is convez in some direction if and only if it is parallel ac-
cessible (in the weak sense).

Proof: “=" Let F be convex in direction ¢. We write C = | £, where £, are all the
uelU

lines of direction (. So we get a representation

c\F=U (C\F)n4). . (11)

uelU

Now, if for some u € U we have £, N F = §), then obviously £, C C\ F, and so £, is one
of the representating lines of F' corresponding to (9). In the other case, by Lemma 2, £,
is divided into either two rays, one of them part of F, and the second of the complement
C\ F, and so of type 7; in (9), or in three parts, one segment lying in F, and two of them
of type v; in (9). Note that the last case produces rays that are not strongly parallel. So
finally the whole complement of F' (11) is written in the form (9).

“<” If (9) is given, then one easily sees that F' = UT s¢ with (finite or infinite) open

t€
segments s; of direction {. Therefore clearly F' is convex in direction (. o

Similarly, one gets the following interior domain characterization in the strongly parallel
case.

Lemma 4 A plane domain F is strongly parallel accessible if and only if there is a
direction ( € 0D such that for each z € F and v > 0 the point z+v( € F.

"Note that this notion for a fixed ¢ was introduced in [2] where also an idea of an analytic
equivalent was given.
We shall now give analytic equivalents of both the strong and the weak notlons of
parallel a.ccessxblhty First we con31der the strongly parallel case.

Theorem 1 A function f € A with f'(0) =1 is univalent, and f(ID) is strongly parallel
accessible, if and only if there is a representation of the form

(1-z2)*f' =p - (12)
for some z € 3]D and some function p € P.
Proof: First we observe that both

(i) the functions with a representation of form (12), and
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(ii) the domains F' that are strongly parallel accessible,

are closed sets with respect to the corresponding topologies, i. e. with respect to lo-
cally uniform and Carathéodory kernel convergence, respectively, (see e. g. [7], proofs of
Theorems 5.1 and 5.2). '

Suppose now, f(D) is strongly parallel accessible. Then by the geometric definition

e f(ID)=C\<U7eUUfu)~,' . @

teT uelU

where 7, are strongly parallel rays of direction (, say, £, are lines of direction ¢, and
T, U are suitably chosen parameter sets that are separable (e g. C R?). Choose a dense
subset {t, € T| n € IN} of T and define f, by

Fo=fi@)=C\ Jv. (14)

k=1

e

Wy

— U
w3/

wq

. Figure 1: The complement of a finite number of strongly pérallel rays

It may happen that it is necessary to include some of the lines £, into this procedure. In
the case of a parallel strip, e. g., the complement may be considered to consist only of
lines without rays to appear. In such a case 3F contains straight line segments, and we
can produce some rays of direction ¢ out of that line segments.

In either case, we may declare F, as the complement of n strongly parallel rays such
that F,, — F with respect to Carathéodory kernel convergence, and so f, — f. Because
of (i) it is so enough to show representation (12) for functions satisfying (14).

Observe that f, given by (14) is a Schwarz-Christoffel mapping with n finite vertices
at the points wy =: f,(7), say. The interior angle at each of those hairpin vertices is
2m. The other n vertices alternate with wy and lie at co =: f,,(Z%), say. Note that so the
numbers z;,y; (k = 1,...,n) fulfill conditions (2) and (3). As all rays are parallel in the
strong sense, the interior angle at all of those vertices but one is zero whereas at one of
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them the angle is 2w, see Figure 1 (where the vertex at oo of angle 27 lies between w,
and w;) . ' ( N
So the Schwarz-Christoffel formula yields using (7)

f_,:;(z) PSS V. P SO VLI .

=%k =1%"Tk zZ—3Z,

_z": 1t Y_, 1
- =I\Z— Y% 2—Tf Z—Z,

The choice (1) gives a function p, € P by Lemma 1 as (2) and (3) are fulfilled, and so
an integration gives (12) with z = z,.

Now suppose, f € A has a representation of the form (12), so that

(4 !/
1
F_v 5,1 (15)
fl p z2—T
Then by Kaplan’s argument [5], f is close-to-convex, hence univalent. By (ii) it is enough
to show the geometric property for a dense subfamily. Therefore we may replace p in
(15) by p,, of Lemma 1, and get

A no1/2 no—1/2 1 S
e 7 -252-@? Zgz“m z=%’ )

where the numbers zi,y; alternate with each other on @ID. Observe that f, with a
representation (16) is a Schwarz-Christoffel mapping again (as (8) is satisfied).

H 4 /// )

Figure 2: A polygonal domain with representation (16)

By construction we know a priori that f, is close-to-cagvex, hence univalent, so that
F, = fu(ID) represents a univalent polygonal domain. Without loss of generality we may
assume that z is pairwise different from z; and yx (k= 1,...,n). Then one sees from
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(16) that F, has exactly n finite vertices of angle 27, and alternately n vertices at oo
of angle zero. Moreover there is one more vertex at co of angle 7. Figure 2 gives an

example of the situation.
What we have to show is that this kind of polygon satisfies the geometric description

considered. But this is ‘trivially seen as by definition all angles at oo are zero, and so
the corresponding rays are strictly parallel. The existence of one vertex at oo of angle
7 leads to a half-plane H (see Figure 2) that fully is part of the complement of F, and
may be written as union of lines. ]

The family of functions with a representation of form (12) had been introduced by
Kaplan {4], and had lead him to the definition of close-to-convex functions [5]. Note that
Theorem 1 shows in particular that this family is linearly invariant ([9] - [10]), a fact
that also may be proved directly (see e. g. [6]). Note that this is not true, e. g., for the
family of functions f € A for which f’ € P, that is also of considerable interest, so that
here a geometric description of the image doma,ins f(D) cannot be given.

Another consequence of Theorem 1 is that all functions with a representation (12)
are unbounded. This follows easily from the geometric description given in Lemma 4,
and has as a further consequence that none of the level domains (r € (0,1))

Fo:={f(2) | lz] <7}

of any function f with a representation (12) has the same geometrical property, i. e. is
strongly parallel accessible. This results as clearly all level domains are bounded, and it
should be compared with the observation of Hengartner and Schober [3] that the level
domains of functions that are convex in some direction do not have to have the same

p;operty.
The family of functions convex in some direction is another linearly invariant family

that we consider now.

Theorem 2 A function f € A with f'(0) = 1 is univalent, and f(ID) is (weakly) parallel
accessible, if and only if there is a representation of the form

(1-22)(1 - y2)f = p (")
for sonﬁe z,y € D and some function p € P.
Proof: As in the i)roof of Theorem 1 we observe that both
(i) the functions with a representation of form (17), and
(ii) the domains F' that are weakly parallel accessible,

are closed sets with respect to the corresponding topologies. Here we must reahze in (i)
that z = y is allowed, and in (ii) that strongly parallel accessibility is allowed, too.
Suppose now, f(ID) is weakly parallel accessible. If in fact f(ID) is strongly parallel
accessible, Theorem 1 applies, and we get a representation of form (17) with z = y.
So we may assume now that f(ID) is not strongly parallel accessible, but parallelity
in both directions ¢ and —( indeed occurs. Then by the geometric definition we have
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a representation (13) with weakly parallel rays v; of directions { and —(, and lines ¢,
of direction {. For a dense subset {t, € T| n € N} of T define F,, and f, by (14). As
before, include if necessary some of the lines £, into this procedure, such that F, — F
with respect to Carathéodory kernel convergence, and so f, — f. Because of (i) it is
then enough to show (17) for functions satisfying (14).

In the present case, f, is a Schwarz-Christoffel mapping with n finite vertices at the
points wy =: f,(T%), say. The interior angle at each of those hairpin vertices is 2x. The
other n vertices alternate with wy and lie at co =: f,(T%), say. As all rays are parallel
in the weak sense, the interior angle at all of those vertices but two is zero whereas at
two of them the angle is m, see Figure 3.

i
A .
w;»,/

Wa

w

Figure 3: The complement of a finite number of weakly parallel rays

So the Schwarz-Christoffel formula yields using (7)

" 1/2 1 : 1
_ﬂ = —_— — —2
fi ?) 222—3//: 2 Z z—zk z—x_j z2—Ty ...

k#J,

Z": 1 _ 1 _ 1 L 1 '
S\z-T 22— z2—T; z—T%nm)

The choice (1) gives a function p, € P by Lemma 1 as (2) and (3) are fulﬁlled and so
an integration gives (17) with z = z; and y = z,,.

Now suppose, f € A has a representation of the form (12), so that . A
/" / 1 1 . )
e : (18)

ff'p 2-%T 2-7%
Then f is close-to-convex, hence univalent, again. By (ii) it is enough to show the
geometric property for a dense subfamily, so we replace p in (15) by p, of Lemma 1, and
get

P 1 2 —~1/2 2 _1/2 ~
—';—p—"———:— =—2Z [2 o112 L2
y Pn 2—T -7 k=1 % k =1 2=k 2—F = z— :
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where the numbers zx, yx alternate with each other on dID. Again f, is a Schwarz-
Christoffel mapping, and we know a priori that f, is univalent, so that F, = f,(ID)
represents a univalent polygonal domain. Without loss of generality we may assume
that z and y are pairwise different from z; and yx (k = 1,...,n), and different from each
other (the case = y was considered in Theorem 1). Then.one sees from (19) that F,
has exactly n finite vertices of angle 27, and alternately n vertices at oo of angle zero.
Moreover there are two more vertices at co of zero angle.

77
/

H;

/

Figure 4: A polygonal domain with representation (19)

Figure 4 indicates how the situation looks. Again trivié,lly the complement consists of
weakly parallel rays, and the existence of two more vertices at oo of zero angle 7 leads to
two half-planes Hj , that fully lie in the complement of F', and may be written as union

of lines. , -0
We note that the content of Theorem 2 was stated by Pommerenke ([8], p. 297) without
proof (having the results in [11] and compactness in mind). Royster and Zlegler [13]
finally published a proof of the result.

4. Parallel accessible domains of order 3

We call a domain F (strongly) parallel accessible of order ﬂ if it is (strongly) parallel '
accessible, and if for each ray 7; of the correspondmg representatlon of the complement
(9) the sector S; of angle (1 — B)7 whose bisector is 4; fully lies in the complement of F.

Similarly as in the case of close-to-convex functions of order 8 (see e. g. [7]) we get
the following analytic cha,ra.ctenza.tlons .

Theorem 3 Let § € (0,1). Then a function f € A with f'(0) = 1 is univalent, and
f(D) is

(a) strongly parallel accessible of order f3,
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Figure 6: The c;)mplement of weakly parallel sectors

We give the calculations for the case (a). Here we observe that f,, given by (20) is a
Schwarz-Christoffel mapping with n finite vertices of interior angle (1+ )= at the points
wi =: fu(¥%), say. The other n vertices alternate with wy and lie at Wi =: fu(Z), say.
Note that so the numbers z,yx (k = 1,...,n) fulfill conditions (2) and (3). The interior
angles at Wy (k= 1,...,n —1) all are (1 — B)r, whereas one of the vertices, W, say,
lies at oo, and has an angle (1 + B)m, see Figure 5.

So the Schwarz-Christoffel formula yields

fll 1 1
f’ » ﬂz(z—yk z—ﬁ)—zz—m_n'

k=1

The choice (1) gives a function p, € P by Lemma 1 as (2) and (3) are fulfilled, and an
integration gives (i) with z = z,.

A similar calculation shows that (b) implies (ii).

Suppose now, one of the analytic conditions (i) or (ii) holds for f. Then we approxi-
mate f with the aid of Lemma 1 by functions f, for which

fo _ aPn 2 ﬂ/2 —B/2 1
Al 22 ZZ-Z‘/I: % )

or

A T S . B2 B2 2 12y

— pa—
ft "pn 2—F z-7 2=k (o 2-TUk  2—T -

respectively, with values zr, yk (k=1,...,n) that alternate with each other. In the case
(i) we have the geometric situation of Figure 7 for which condition (a) easily is deduced.
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(b) parallel accessible of érder B,
if and only if there is a representation of the form

(i) (1 —z2)%f = p® for somt;: z€ 6}D. and some p € B,

(i) (1 =z2)(1 —yz)f = pP for some z,y € 0D and some p € P,
respectivelg. |

" Proof:  All families (a), (b), (i), and (ii) are closed. Suppose first, one of (a) or (b)
holds. Then (13) follows with rays -, that are strongly or weakly parallel, and are such
that for each 7, the corresponding symmetric sector S; of angle (1 — B)x lies in the
complement of f(ID). In this situation we define

Fo=fu(D) =€\ U S, @)

k=1

for some dense subset {t, € T|n € N} of T. In both cases (a) and (b) it turns out that
f(ID) can be approximated by appropriate polygons (20)

. Figure 5: The complement of strongly pafallel sectors,.

Figure 5 shows the situation (a) whereas Figure 6 shows situation (b) (where we assume
(a) not to be satisfied). In both cases the analytic conditions (i) and (ii), respectively,
may be verified as in Theorems 1 and 2 using Lemma 1 (see also [7], Theorem 5.1).
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Figure 7: A polygonal domain with representation (21)

- Therefore one must only observe that the construction given in [7], Theorem 5.2, pro-
duces strongly parallel rays.

v

/
74

/

%

Figure 8: A polygonal domain with’representa,tion (22)

a

A similar examination shows that (b) follows from (ii), see Figure 8.

We remark that for § — 0 the families-considered shrink to the parallel-strip domain
mappings and the half-plane mappings, respectively. This may be seen either analytically -

or geometrically. :
For 8 = 0 we observe again that no level domain has the same geometric property.
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