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Abstract

The three-state test (3ST) is a method based on ordinal pattern analysis for

detecting chaos and determining the period in time series. For some well-known

chaotic dynamical systems we showed that the test behaves similar to Lyapunov

exponents. However, the 3ST is detecting quasi-periodic motions both as regu-

lar and non-regular. In this paper, we propose to use the sensitivity of its chaos

indicator λ to the time delay for clear discernment between quasi-periodic and

chaotic dynamics. Simulation results obtained using the logistic map and the

sine-circle map attest that the sensitivity of λ to the time delay is sufficient

for the detection of the periodic and quasi-periodic route to chaos. A compari-

son with the permutation entropy confirms the effectiveness of the 3ST for the

analysis of discrete time series data.

Keywords: time series analysis, ordinal patterns, permutation entropy, chaos

detection, 3ST

1. Introduction

The importance of chaos has now been established in many research fields:

astronomy, meteorology, biology, economics, social psychology and so on. In
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practice systems from these fields are extremely complex and the challenge

nowadays is the measurement of their complexity from times series data they

are generating, as it is quite difficult to find modeling equations. In biology for

example, entropies [1–3], fractal dimensions [4–6], correlation dimension [7–9]

and Lyapunov exponents (LE) [10–13] are examples of complexity parameters

which have been used for the analysis of the heart beat rate variability series.

Entropy is an effective measure to characterize the complexity of time series.

In order to distinguish between regular (periodic for example), random, and

chaotic signals and to quantify their complexity, many entropy measures have

been proposed, such as Kolmogorov entropy [14, 15], approximate entropy [16,

17], and entropy of symbolic dynamics [18]. The permutation entropy (PE)

proposed in 2002 by Bandt and Pompe [19] is widely used in many fields due to

its conceptual and computational simplicity.

The PE replaces the probabilities of length-d symbol blocks in the definition

of the Shannon entropy by the probabilities of length-d ordinal patterns [19]. PE

rates of finite order is used to measure the complexity of a finite data sequence.

Periodic or quasi-periodic sequences have vanishing or negligible complexity

while at the opposite end, independent and identically distributed (iid) random

sequences (white noise) have asymptotically divergent permutation entropies

[19, 20]. Between both ends lie sequences whose permutation entropy rates of

finite order can be calibrated by comparison with the corresponding rates of the

white noise. One of the most practical applications of PE has been the study

of structural changes in time series and the underlying system dynamics. In

addition to its robustness against noise, it has been verified that PE behaves

like the largest LE and can be then used for the detection of chaos in dynamical

systems [21].

However, in some examples given on chaos detection, PE tracks the largest

LE with a uniform bias that depends on the underlying system. The depen-

dence on the uniform bias can be sometimes difficult to determine when dealing

with an unknown system. Furthermore, the main shortcoming in the definition

of PE resides in the fact that no information besides the order structure is re-
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tained when extracting the ordinal patterns for each time series. A weighted

PE algorithm [22] and a modified permutation entropy in which equal values

are mapped onto the same symbol [20] then have been proposed to overcome

such shortcoming. Nevertheless, PE has been successfully used in many studies

[23–27].

Recently the three-state test (3ST) was proposed for chaos detection in dis-

crete maps, which also belongs to the group of ordinal pattern analysis methods

[28]. The 3ST presents the advantage to perform both the detection of the reg-

ularity and/ non-regularity and the period estimation in time series. The only

difference between the PE and the 3ST comes from the statistical exploitation

of the permutations. Indeed, instead of constructing ordinal patterns (permu-

tations) of fixed order d like in the PE, in the 3ST data sequences are ordered

using different values of d and the corresponding permutations are studied. By

this approach, no probability is computed as the permutations do not have the

same length. Moreover, the permutation list may be very large, depending on

the length of the time series, hence memory and computationally costly. Then

each permutation is characterized by a describer, namely the largest slope S.

The 3ST can easily detect the period-doubling route and outputs the cor-

responding periods as discrete numbers (periods of stable limit-cycles). It has

been successfully applied to the logistic map and the Henon 2D map while the

interpretation of the chaos indicator therein defined, namely the periodicity in-

dex λ, tracks the largest LE without any bias [28]. In addition to the detection

of the regularity and the non-regularity in time series, the 3ST is defined for

discerning between chaotic (λ > 0), quasi-periodic (λ < 0) and periodic (λ = 0)

dynamics which are the three basic dynamics described by the LE. As an ordinal

method for time series analysis, the 3ST is also computationally low cost and

was designed for possible real-time applications.

However, according to our definition of λ < 0 for quasi-periodic dynamics,

the 3ST sometimes is confusing between chaotic and quasi-periodic dynamics.

Indeed, the use of λ fails to rigorously detect quasi-periodic dynamics as regular.

The main objective of this paper is to build an effective approach for the accurate
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detection of both periodic and quasi-periodic route to chaos.

The rest of the paper is organized as follows: the 3ST algorithm and its

improvement for the detection of quasi-periodic motions are presented in Section

2, Section 3 is devoted to the simulation results, some discussions are made in

Section 4 while Section 5 gives some concluding remarks.

2. Description of the 3ST algorithm

2.1. Brief recall of the 3ST method

The 3ST is based on the pattern analysis of data series. The scheme con-

siders periodic and quasi-periodic signal properties for determining whether the

dynamics is regular or not. The 3ST studies the ordering of data in the time

series as a function of time, given that chaos manifests itself both in time and

space. The corresponding shape for each observation time is considered as pat-

tern (qualitative description). For the pattern to be quantitatively described,

the data sequence is sorted by ascending order and the largest slope S of the

resulting sequence of index is retained as a pattern describer. Applying statis-

tical analysis to the largest slopes allows determining chaos indicators such as

the asymptotic growth rate K and the periodicity index λ.

For example, let us consider a time series {x1(k)} containing ten values

such that x1 = (4, 7, 9, 10, 6, 11, 3, 2, 13, 5). Let us also consider four sub-

sets of x1 such that: x1,0 = (4, 7, 9, 10, 6, 11, 3), x1,1 = (4, 7, 9, 10, 6, 11, 3, 2),

x1,2 = (4, 7, 9, 10, 6, 11, 3, 2, 13) and x1,3 = (4, 7, 9, 10, 6, 11, 3, 2, 13, 5). Each

subset is sorted by ascending order and the corresponding sequence of indices

is retained as permutation. After ascending sorting, the permutations corre-

sponding to the above subsets are respectively A1,0 = (7, 1, 5, 2, 3, 4, 6), A1,1 =

(8, 7, 1, 5, 2, 3, 4, 6),A1,2 = (8, 7, 1, 5, 2, 3, 4, 6, 9), andA1,3 = (8, 7, 1, 10, 5, 2, 3, 4, 6, 9).

We consider as slopes the difference between pairs of neighbors in each sequence

of index A1,j, 0 ≤ j ≤ 3. In A1,0 there are 6 slopes and 9 in A1,3. The largest

slope is thus the maximum slope in each of the four sequences. For our example,
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the largest slopes are, respectively, S0 = 4, S1 = 4, S2 = 4 and S3 = 9 for A1,0,

A1,1, A1,2 and A1,3.

Statistically, the study of the behavior of the largest slopes is well described

by the measurement of the standard deviation σS of S expressed by:

σS(N,n) =

√√√√ 1

Q

Q−1∑
j=0

(
Sj − S̄

)2

(1)

where

S̄ =
1

Q

Q−1∑
j=0

Sj . (2)

Sj is the slope corresponding to the subset x1,j whose length is Nj = jp0 + n;

N = (Q− 1)p0 + n is the length of the data series, p0 is the integration step, Q

is a natural number different from zero (number of slopes evaluated) and n is

the smallest observation duration for the largest slope to be well evaluated and

should verify the relation n ≪ N . In our example, N = 10, Q = 4, p0 = 1 and

n = 7. σS(N,n) measures the ability of a dynamical system to generate new

patterns as the time is increasing. So, σS(N,n) is bounded if the underlying

dynamics is regular, according to the behavior of S. We showed that S remains

constant for periodic motions and assumed that S increases up to a limiting

value for quasi-periodic dynamics. For non-regular dynamics we verified that S

increases forever [28]. In Fig. 1 some behaviors of S are presented. We used the

logistic map whose equation is given by:

x(k + 1) = rx(k)
(
1− x(k)

)
(3)

where r is the control parameter. Assuming that σS(N,n) increases linearly in

terms of the data length N , the growth rate is determined as follows:

µ(N,n) =
log

(
1 + σS(N,n)

)
logN

. (4)

The asymptotic growth rate K of the largest slope is thus deduced as the limit

value of µ(N,n):

K(n) = lim
N→∞

µ(N,n). (5)
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Figure 1: Example of behaviors of the largest slope (S) obtained with the logistic map (x(0) =

0.5): (a) periodic dynamics (r=3.5), (b) periodic dynamics with large period (r=3.84943363),

and (c) chaotic dynamics (r=3.86). The 3ST parameters are: n = 400, N = 50000, Q =

1000, p0 = 50

Equation (4) shows that K is a non-negative indicator (K ≥ 0). K allows to

distinguish between regular (K = 0) and non-regular (K > 0) motions. When

the dynamics is periodic, the standard deviation is equal to zero, which means

that S remains constant as the time evolves. For dynamics with large period

(assumed to be quasi-periodic motions), the growth of S up to a limiting value

results in a decrease in σS to zero, thus leading to K = 0 also. In order to

distinguish between periodic and quasi-periodic dynamics which all belong to

the regular dynamics group, the behavior of µ is studied too. Fig. 2 presents

some behaviors of µ obtained using the same dynamics as in Fig. 1.

The periodicity index λ has been introduced as the limiting value of the

global derivative of µ:

λ(n) = lim
N1→∞

P−1∑
k=1

(
µ(Nk+1, n)− µ(Nk, n)

)
. (6)

N1 is the smallest integration duration and NP is the greatest one with N1 ≪

NP . P is the number of integration times considered. We showed that choosing
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Figure 2: Behaviors of µ corresponding to the previous dynamics in Fig. 1: (a) periodic

dynamics (r=3.5), (b) periodic dynamics with large period (r=3.84943363), and (c) chaotic

dynamics (r=3.86). The first σS is computed with m0 = 300 values of S

the time delay such that n ≤ N1

2 yields good results in practice. The idea in

this definition of λ was to determine the slope of µ by supposing its behavior

purely linear, and then to consider only extreme values µ(N1, n) and µ(NP , n).

However, as it can be observed from Fig. 2, µ is not a linear function in the case

of chaotic motions and we suggest to use an exponential fitting for a rigorous

determination of λ.

Let us assume that µ behaves as follows:

µ(Nk, n) = µ0 +K0 · exp
(
− λ(n) · Nk

NP

)
(7)

where µ0 and K0 are constant values and uk = Nk

NP
is the normalized integration

time. µ = 0 for uk = 0, hence µ0 = −K0; as the maximum value of µ is equal

to 1 one can set µ0 = 1. Including µ0 in Eqn. (7) and using the exponential
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fitting leads to:

λ(n) = lim
N1→∞

∑P
k=1

[
uk ·

(
Γ(Nk, n)− Γ

)]
∑P

k=1

[
uk ·

(
uk − ū

)] (8)

where Γ(Nk, n) = − log
(
1− µ(Nk, n)

)
.

The 3ST is based on the interpretation of the sign of λ(n): for periodic sig-

nals, evidently λ(n) = 0 and for chaotic signals, µ(N,n) increases as a function

of the observational time, hence λ(n) > 0. Based on the assumption made on

the definition of quasi-periodic signals, µ(N,n) is decreasing as the observational

time evolves, thus implying λ(n) < 0. Another important result of the 3ST is

the estimation of the period L = limN→∞ S of stable limit-cycles.

2.2. Algorithmic steps

For simplification purposes, the algorithmic steps for the determination of λ

are given in this subsection.

Algorithm 1

1. Consider a time series x1 of length N derived from the discrete map.

2. Divide x1 intoQ subsets x1,j of length nj such that x1,j−1 ⊂ x1,j ⊂ x1,j+1,

with j = 0, 1, 2, . . . , Q− 1 and n0 = n.

3. Sort each x1,j by ascending order and compute the largest slope Sj of the

resulting permutation. Arrange identical values in x1,j by the ascending

order of their time index.

4. Divide S into P subsets Vk of length mk such that Vk−1 ⊂ Vk ⊂ Vk+1,

with k = 0, 1, 2, . . . , P − 1 and m0 > 2.

5. For each Vk, compute the standard deviation σS,k and deduce the corre-

sponding growth rate µk.

6. From the set of µk, deduce λ using Eqn. (8), with uk = mk

P .

7. Consider L = SQ−1 as the estimated period of the time series.
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2.3. Sensitivity of the periodicity index

The three behaviors of µ presented in Fig. 2 are well described by three

states of λ: λ = 0, λ < 0 and λ > 0. However, there are cases for which λ is

alternating between positive and negative values, depending on the observation

time. In such cases, the nature of the dynamics cannot be determined as it

is considered as regular for λ < 0 (quasi-periodic) and non-regular for λ > 0.

This observation requires to revise the description of quasi-periodic dynamics

by 3ST.

Quasi-periodic dynamics are well known as regular. As a consequence of

this basic knowledge, the periodicity index should not depend on the initial

condition or on the initial phase, as the largest slope will depend only on the

parameter setting of the 3ST (n,N, P,Q). In this paper, the dependence on the

initial conditions assumes that there are at least two different time series (two

stimuli) with different initial conditions, while initial phase dependence refers to

the time delay in a single time series. Indeed, the period of a regular dynamics

should not be sensitive to the initial condition. For periodic motions for example,

the period neither depends on the initial conditions, nor on the initial phase.

As quasi-periodic signals can be seen as signals with at least two competitive

incommensurable frequencies, although there is no defined period, a fixed largest

slope should be found for the same parameter setting, independently on the

initial condition or the initial phase. It then comes that the 3ST should output

the same period (largest slope) as well as the same periodicity index.

Considering this assumption, we propose to study the sensitivity of the pe-

riodicity index on the initial phase and/ the initial condition. Let us consider a

time series {xj(k)}Nk=1 and a sliding rectangular window W i
M of length M < N

centered at time index M0+ i, with M0 = M
2 and i the time delay (phase shift).

For each position i (referring to the initial phase) of the sliding window, the 3ST

will output a periodicity index λi. As well, for two different initial conditions,

we will get two time series {x0(k)} and {x1(k)}. Applying the 3ST to each

of them outputs two periodicity indexes λ0 and λ1 respectively. We can then

consider λj
i as the periodicity index obtained from xi,j = xj ·W i

M and λj
i+1 as
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the one obtained from xi+1,j = xj ·W i+1
M where j ∈ {0, 1} refers to the initial

conditions. For example, let us consider x0 = (4, 7, 9, 10, 6, 11, 3, 2, 13, 5) and

x1 = (4, 7, 9, 10, 4, 11, 4, 2, 13, 5) two stimuli and W i
5 a 5-length window centered

at 3+i, i = 0, 1, 2, 3, 4, 5. Applying the sliding window to x0 with i = 0 and i = 1

outputs x0,0 = (4, 7, 9, 10, 6) and x1,0 = (7, 9, 10, 6, 11), respectively. Applying

the sliding window to x1 with the same values of i outputs x0,1 = (4, 7, 9, 10, 6)

and x1,1 = (4, 7, 9, 10, 4), respectively. We can then define the sensitivity of the

periodicity index to the initial conditions λC(n) as

λC(n) =
1

log(N)
log

(
1 + γ ·

∣∣∣λ1(n)− λ0(n)
∣∣∣) . (9)

γ ≫ 1 is a scaling factor allowing to improve the readability of the result. In

dynamical systems, chaotic (non-regular) dynamics are those which are sensitive

to initial conditions. However, computing λC requires at least two time series

(stimuli) derived from the same system with different initial conditions. As in

some cases, only a single time series is available, we need to define the sensitivity

of the periodicity index to the initial phase or time delay (λP (n)) as follows:

λP (n) =
1

log(M)
log

1 + γ ·

√√√√imax∑
i=0

(
λi(n)− λ0(n)

)2

 (10)

with i ∈ N. λP is determined from a single time series by considering different

time delays. Dynamics which are not sensitive to initial conditions, even those

which are sensitive to initial phase, are considered as regular. The following

detection approach is then proposed:

• Regular dynamics: λC(n) = 0;

• Non-regular dynamics: λC(n) > 0.

In the group of regular dynamics, periodic and quasi-periodic can be easily

detected as follows:

• Periodic dynamics: λ = 0 and λP (n) = 0,∀imax > 0;

• Quasi-periodic dynamics: λ(n) ̸= 0 and λP (n) = 0,∀imax > 0;
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Periodic dynamics are unsensitive to both initial phase and initial conditions

and their periodicity index is equal to zero; quasi-periodic dynamics also are

unsensitive to both initial phase and initial conditions but their periodicity

index is different from zero while non-regular dynamics are sensitive to both

time delay and initial conditions. According to the above observations, periodic

and quasi-periodic dynamics can be detected from the interpretation of λ and

λP exclusively. λC may be used for decerning between non-regular dynamics

and regular dynamics which are sensitive to initial phase. The 3ST can thus

help detecting efficiently quasi-periodic dynamics as regular as well as the quasi-

periodic route to chaos from a single stimulus.

However, the computation of λP can be time consuming as it requires more

that two values of λ. By reinterpreting the definition, the term
√∑

[λi(n)− λ0(n)]2

can be seen as a single value of λ evaluated from permutations of the same length

M . The following algorithm is then proposed for a fast computation of λP :

Algorithm 2

1. Consider a time series x1 of length N derived from the discrete map.

2. Choose the length M of the sliding window W i
M for scanning the whole

time series and the number Q of largest slope to compute.

3. For each position i of W i
M , sort the corresponding subsequence x1,i by

ascending order and compute the largest slope Si of the resulting permu-

tation. Arrange identical values in x1,i by the ascending order of their

time index.

4. Evaluate λ as described in steps 4 to 6 of Algorithm 1

5. Deduce λP (M) from Eqn. (9) where
√∑

[λi(n)− λ0(n)]2 is replaced by

|λ| computed in step 4.

Note also that by this approach, λP does no longer depend on n, but only

on the length M of W i
M .
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3. Results

In this section, 3ST is applied to the logistic map and the sine circle map for

detecting the periodic and the quasi-periodic route to chaos. These two maps

are chosen for simulation purposes as they have been widely studied in the

literature. The results of 3ST are then compared with PE, Lyapunov exponent

and bifurcation diagram predictions. For a better interpretation of λC and λP ,

we set γ = 106 for all the simulation results.

3.1. Detection of the periodic route to chaos

The logistic map (Eqn. (3)) is used for the detection of the periodic route

to chaos. Two sequences of length N = 20000 samples after transient time

(5000 samples) are considered as time series x0, and x1 for each value of the

control parameter 3 ≤ r ≤ 4 by step of ∆r = 0.001. The initial conditions

are respectively x0(0) = 0.5 and x1(0) = 0.5 + 10−8. These parameters remain

unchanged for all the three methods (Lyapunov exponent, PE and 3ST).

3.1.1. Spectrum of the sensitivity to initial phase λP

The sensitivity to the initial phase is measured using the time series x0. The

LE (λLyap), the periodicity index (λ) and the sensitivity of λ to the initial phase

(λP ) are presented in Fig. 3. According to this figure, results of λLyap, λ and

λP are consistent. It can then conclude that the dependence of the periodicity

index on the initial phase may be efficiently used for the detection of the periodic

route to chaos. In Fig. 3 there no quasi-periodic dynamics as there is no case

for which λ ̸= 0 and λP = 0.

3.1.2. Spectrum of the sensitivity to initial conditions λC

The sensitivity to the initial conditions allows to determine whether a dy-

namics is chaotic or not. Fig. 4 presents the spectrum of λC computed with

the same parameter setting as in Fig.3, using x0 and x1. The comparison be-

tween λLyap and λC confirms that λC is an effective measure of the sensitivity

to initial conditions and that it can be efficiently used for chaos detection for a
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Figure 3: Spectra of (a) λLyap, (b) λ(n) and (c) λP (M) (sensitivity to initial phase). The

3ST parameters are: n = 50, N = 20000, Q = 100, P = 70,m0 = 30,M = 10000.
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Figure 4: Spectra of (a) λLyap, (b) λ and (c) λC (sensitivity to initial conditions). The 3ST

parameters are: n = 50, N = 20000, Q = 100, P = 70,m0 = 30
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discrete map. As compared to λ and λP , all the three indicators are consistent

with the LE and can be independently used for chaos detection. As λC requires

two stimuli, it is easier to use λ or λP . Nevertheless, we cannot guarantee that

dynamics which are sensitive to initial phase are definitely chaotic as only the

dependence on the initial conditions can confirm the chaotic nature of the time

series.

3.2. Detection of the quasi-periodic route to chaos

For the detection of the quasi-periodic route to chaos, we consider the sine

circle map defined as follows:

θ(k + 1) =
[
Ω+ θ(k) +

r

2π
sin

(
2πθ(k)

)]
mod 1 (11)

The sine-circle map can exhibit periodic, quasi-periodic or chaotic behaviors

depending on the frequency ratio and the nonlinearity parameters i.e. Ω and r,

respectively. For 0 ≤ r ≤ 1, the system dynamics is either periodic (frequency-

locked) or quasi-periodic depending on the value of the frequency ratio parame-

ter being rational or irrational. As the nonlinearity parameter r approaches zero,

the system exhibits quasi-periodic behavior for all values of the frequency ratio

parameter Ω. As the nonlinearity parameter r approaches one, frequency-locked

steps extend and occupy all Ω axes where r is equal to one. In this case, there is a

special fraction of Ω value called the most irrational Ωc. This value corresponds

to the ”golden mean” (Ωc =
√
5−1
2 ) winding number W = limk→∞

θ(k)−θ(0)
k if

the frequency ratio parameter Ω is locked to its critical value Ωc [27]. Shortly

after this critical value on (r,Ω) plane, (1, Ωc) is the edge of the quasi-periodic

route to chaos since chaotic behavior can occur. All these characteristic shapes

in the (r,Ω) plane are called ”Arnold Tongues” in the literature. For the r > 1

region where the nonlinearity parameter r is dominant for the system dynamics,

there could be periodic regions with different periods, chaotic regions, and so

edges of the periodic route to chaos [27].

As in the case of the the periodic route to chaos, two sequences of length

N = 20000 samples are considered as time series θ0, and θ1 for each value of
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the control parameter 0 ≤ r ≤ 2.5 taken by step of ∆r = 0.01. The initial

conditions are respectively θ0(0) = 0.5 and θ1(0) = 0.5+10−9. Fig. 5 shows the

bifurcation diagram of the sine circle map for Ωc =
√
5−1
2 and the behaviors of

λ and λP .

It is observed from this figure that λ fails to properly characterize quasi-

periodic dynamics. Sometimes it is detecting them as regular with large pe-

riods (λ < 0) and sometimes as chaotic (λ > 0). However, combining λ and

λP allows to clearly distinguish between quasi-periodic and chaotic dynamics:

quasi-periodic dynamics are characterized by λ ̸= 0 and λP = 0; for periodic

dynamics, λ = 0 and λP = 0 while chaotic dynamics are characterized by λ > 0

and λP > 0. For this experiment, λP and λC provide the same results which

are consistent with those already known in the literature, thus confirming the

efficiency of the 3ST for the detection of the quasi-periodic route to chaos. It

can then be concluded from the preceding results that using a single time series

for computing λP is enough for the detection of the periodic and quasi-periodic

dynamics.

4. Discussion

The introduction of the notion of divergence allows to notably improve the

3ST results. Chaotic, periodic as well as quasi-periodic dynamics are well de-

tected. In practice, the sensitivity to the initial condition can be performed

for many laboratory experiments where it is possible to repeat the experiment

with different initial conditions. When there is no possibility to repeat the ex-

periment, the sensitivity to the initial conditions can be approximated by the

sensitivity to the initial phase as shown above.

4.1. Comparison with the permutation entropy

The PE H(d) is defined as:

H(d) = −
∑

(p(A) log (p(A)) (12)

15



0 0.5 1 1.5 2 2.5
0

0.5

1

θ

(a)

0 0.5 1 1.5 2 2.5

0
1
2
3

λ

(b)

0 0.5 1 1.5 2 2.5
−0.5

0
0.5

1
1.5

λ P

(c)

0 0.5 1 1.5 2 2.5
−0.5

0
0.5

1
1.5

λ C

r

(d)

Figure 5: Detection of the quasi-periodic route to chaos: (a) bifurcation diagram, (b) diagram

of λ (c) diagram of λP and (d) diagram of λC . The 3ST parameters are: n = 50, N =

20000, Q = 100, P = 70,m0 = 30.
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where p(A) is the probability of the permutation A of order d which itself is

considered as possible order type of d different numbers. Preferably, 3 ≤ d ≤ 7

with 0 ≤ H(d) ≤ log (d!) [19].

Both the 3ST and PE are based on the analysis of the permutation A de-

scribing the ordinal pattern in the time series. As compared to the PE, the

3ST explicitly characterizes regular and non-regular dynamics, respectively, by

λP = 0 and λP > 0, and estimates the period of periodic dynamics separately;

while PE measures the complexity of the dynamics. In Fig. 6 we present a

comparison between λP and H(5) for the sine-circle map. It can be seen that

even periodic dynamics present different levels of complexities in the spectrum

of H(5) (different values of H(5)), which is undoubtedly related to the period

of the corresponding dynamics. In the spectrum of the 3ST, all the periodic dy-

namics are characterized by λP = 0 and only their periods make them different

(see Fig. 6). It is obvious that for isolated values of the control parameter r, no

decision can be taken from the value of H(5); only the fluctuation of this value

due to some changes in the time series can be exploited. The 3ST is using large

permutations with both variable and fixed lengths for computing respectively

λ and λP , while the PE is using permutations with constant and small length

(mostly less than 12 samples) as the generation of the list of large permuta-

tions is both time and memory space consuming. The use of large permutations

allows to increase the sensitivity of the 3ST to small changes in the time series.

4.2. Influence of parameters n and M

The parameter n is the smallest data length for the largest slope to be well

evaluated. n determines the upper limit of the period that can be estimated

without bias. Any periodic dynamics whose period is less than n is detected

by λ = 0 while those for which the period is greater than n are detected by

λ < 0. This observation also confirms that λ < 0 describes both quasi-periodic

and periodic dynamics, but not exclusively quasi-periodic dynamics as predicted

in our previous work. The choice of n can help detecting transitions between

different types of dynamics (periodic-periodic, periodic-chaos. . . ).
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Figure 6: Comparison of the performances of the PE and the 3ST for the detection of the

quasi-periodic route to chaos: (a) spectrum of H(5); (b) spectrum of λP . The 3ST parameters

are: N = 20000,M = 10000, Q = 100, P = 70,m0 = 30.
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The parameter M is acting in λP similarly as n in λ. It indicates the largest

period which can be detected without error. When the period of the underlying

dynamics is greater than M , the algorithm outputs a largest slope close to M for

all the positions of W i
M . It then results in λP = 0, attesting that the dynamics

is regular. The larger M , the more accurate the computation of λP and the

larger the computational time.

Fig. 7 presents the behavior of λ as a function of n and λP as a function of M

for periodic (r = 1.05), quasi-periodic (r = 0) and chaotic (r = 1.7) dynamics

derived from the sine-circle map. n is varying from 10 to 400 by step ∆n = 1,

while M is varying from 103 to 104 by step ∆M = 30. r = 1.05 corresponds to

a dynamics whose period is L = 22 and λ < 0 for n < 22. It can be concluded

from Fig. 7 that the choice of n does not influence the 3ST result, provided that

dynamics with λ < 0 are interpreted as regular dynamics with period larger

than n. In the case of λP , some errors can occur at the transitions between

different types of dynamics (quasi-periodic to periodic, periodic to chaos, . . . )

4.3. Influence of parameter Q

The choice of the parameter Q is less constraining than that of n as it

determines the integration step. The maximum value of Q is Q = N − n

which corresponds to an integration step p0 = 1. Q should be chosen such that

the computation of λ is statistically feasible. The larger Q, the smaller the

integration step and the larger the computational time. For small data length,

Q can be set to its maximum value. However, m0 which is the smallest number

of largest slopes used for computing σS should be chosen such that m0 ≪ Q.

The behavior of λ in terms of Q is shown in Fig. 8 and confirms that there

is no need to consider too large values of Q as compared to the data length.

Nevertheless, too small values of Q should be avoided.

5. Conclusion

In this paper we studied the sensitivity of the periodicity index λ to the

time delay and the initial conditions, namely λP and λC respectively. Using
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Figure 7: Dependence of λ on n and λP on M , 10 ≤ n ≤ 400 by step of ∆n = 1 and

103 ≤ M ≤ 104 by step of ∆M = 30, for periodic (r = 1.05), quasi-periodic (r = 0) and

chaotic (r = 1.7) dynamics derived from the sine-circle map. The other 3ST parameters are:

N = 20000, Q = 100, P = 70,m0 = 30.
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the one dimensional logistic map and sine-circle map for simulation, we verified

that λP = 0 implies λC = 0 and that computing λP is enough for successfully

detecting the periodic and quasi-periodic route to chaos. According to this

observation, it concludes that λ = 0 and λP = 0 for periodic dynamics while

λ ̸= 0 and λP = 0 for quasi-periodic dynamics. Non-regular (e.g. chaotic)

dynamics are characterized by both λ > 0 and λP > 0. From the impact of

variable n on λ, dynamics with λ < 0 are detected as regular with period larger

than n. Simulation shows that results of the 3ST and the PE are consistent,

except that it is quite difficult to reach zero entropy in the case of regular

dynamics as it is the case for λ in the 3ST. The 3ST also allows to determine

the period of periodic dynamics. Both the 3ST and the PE are consistent with

the LE and are based on the analysis of ordinal pattern. The only difference

comes from the statistical exploitation of the permutations: no permutation

list is required for the 3ST, which allows to consider large permutations and to

obtain high precision. The results thus obtained for one dimensional systems

may be easily extended to systems with more than one degree of freedom. In

prospect, we are planning to apply these results to experimental data such as

EEG or ECG series for which the PE has been already successfully used.
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ysis of observed chaotic data in physical systems, Med. Biol. Eng. Comput.

47 (2009) 709.

[6] D. C. Lin, A. Sharif, The analysis of observed chaotic data in physical

systems, Chaos 20 (2010) 023121.

[7] R. Carvajal, N. Wessel, M. Vallverdú, P. Caminal, A. Voss, The analysis
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