Mixed recurrence equations and interlacing properties for zeros of sequences of classical q-orthogonal polynomials

D.D. Tcheutiaa, A.S. Joosteb, W. Koepfa,*

aInstitute of Mathematics, University of Kassel, Heinrich-Plett Str. 40, 34132 Kassel, Germany
bDepartment of Mathematics and Applied Mathematics, University of Pretoria, Pretoria 0002, South Africa

Abstract

Using the q-version of Zeilberger’s algorithm, we provide a procedure to find mixed recurrence equations satisfied by classical q-orthogonal polynomials with shifted parameters. These equations are used to investigate interlacing properties of zeros of sequences of q-orthogonal polynomials. In the cases where zeros do not interlace, we give some numerical examples to illustrate this.

Keywords: classical q-orthogonal polynomials, Mixed recurrence equations, Interlacing of zeros

2010 MSC: 33F10, 33D15

1. Introduction

Let $0 < q < 1$. The classical q-orthogonal polynomials were introduced by Hahn [8] and can be written in terms of basic hypergeometric series, as introduced by Heine [9] in 1847. These polynomials are associated especially to quantum groups (cf. [16, 18, 19]), as introduced in [4, 26]. We list the systems of monic q-orthogonal polynomials considered in this paper (cf. [15]).

1. Big q-Jacobi polynomials

$$\tilde{P}_n(x; \alpha, \beta, \gamma; q) = \frac{(\alpha q; q)_n(q \gamma q; q)_n}{(\alpha \beta q^2; q)_n} \, _3\phi_2 \left(\begin{array}{c} q^{-n}, \alpha \beta q^{n+1}, x \\ \alpha q, \gamma q \end{array} \right| q; q, \right),$$

with $0 < \alpha q < 1$, $0 \leq \beta q < 1$ and $\gamma < 0$, $x \in (\gamma q, \alpha q)$;

2. q-Hahn polynomials

$$\tilde{Q}_n(\tilde{x}; \alpha, \beta, N|q) = \frac{(\alpha q; q)_n(q^{-N} q; q)_n}{(\alpha \beta q^2; q)_n} \, _3\phi_2 \left(\begin{array}{c} q^{-n}, \alpha \beta q^{n+1}, \tilde{x} \\ \alpha q, q^{-N} \end{array} \right| q; q, \right),$$

with $\tilde{x} = q^{-x}$, $n \in \{0, 1, \ldots, N\}$, $0 < \alpha q < 1$ and $0 < \beta q < 1$ or $\alpha > q^{-N}$ and $\beta > q^{-N}$, $\tilde{x} \in (1, q^{-N})$;

*Corresponding author

Email addresses: dvtcheutia@yahoo.fr (D.D. Tcheutia), alta.jooste@up.ac.za (A.S. Jooste), koepf@mathematik.uni-kassel.de (W. Koepf)

URL: www.mathematik.uni-kassel.de/~koepf (W. Koepf)

July 13, 2017
3. Big \(q \)-Laguerre polynomials

\[
\tilde{P}_n(x; \alpha, \beta; q) = (\alpha q; q)_n(\beta q; q)_n \, 3\phi_2 \left(\begin{array}{c} q^{-n}, x, 0 \\ \alpha q, \beta q \end{array} \middle| q; q \right), \quad 0 < \alpha q < 1, \beta < 0, x \in (\beta q, \alpha q);
\]

4. Little \(q \)-Jacobi polynomials

\[
\tilde{p}_n(x; \alpha, \beta; q) = (-1)^n q^{(\frac{n}{2})} \frac{(\alpha q; q)_n}{(\alpha \beta q; q)_n} \, 2\phi_1 \left(\begin{array}{c} q^{-n}, \alpha \beta q^{n+1} \\ \alpha q \end{array} \middle| q; qx \right), \quad 0 < \alpha q < 1, \beta q < 1, x \in (0, 1);
\]

5. \(q \)-Meixner polynomials

\[
\tilde{M}_n(x; \beta, \gamma; q) = (-1)^n q^{-\frac{n^2}{2}} \gamma^n (\beta q; q)_n \, 2\phi_1 \left(\begin{array}{c} q^{-n}, \bar{x} \\ \beta q \end{array} \middle| q; -\frac{q^{n+1}}{\gamma} \right),
\]

with \(\bar{x} = q^{-x} \), \(0 < \beta q < 1 \), \(\gamma > 0 \), \(\bar{x} \in (1, \infty) \);

6. Quantum \(q \)-Krawtchouk polynomials

\[
\tilde{K}_n^{\text{qm}}(\bar{x}; p, N; q) = \frac{(q^{-N}; q)_n}{p^n q^n} \, 2\phi_1 \left(\begin{array}{c} q^{-n}, \bar{x} \\ q^{-N} \end{array} \middle| q; pq^{n+1} \right),
\]

with \(\bar{x} = q^{-x} \) and \(n \in \{0, 1, \ldots, N\}, p > q^{-N}, \bar{x} \in (1, q^{-N}) \);

7. \(q \)-Krawtchouk polynomials

\[
\tilde{K}_n(\bar{x}; p, N; q) = \frac{(q^{-N}; q)_n}{(-pq^n; q)_n} \, 3\phi_2 \left(\begin{array}{c} q^{-n}, \bar{x}, -pq^n \\ q^{-N}, 0 \end{array} \middle| q; q \right),
\]

with \(\bar{x} = q^{-x} \) and \(n \in \{0, 1, \ldots, N\}, p > 0, \bar{x} \in (1, q^{-N}) \);

8. Affine \(q \)-Krawtchouk polynomials

\[
\tilde{K}_n^{\text{Af}}(\bar{x}; p, N; q) = (pq; q)_n(q^{-N}; q)_n \, 3\phi_2 \left(\begin{array}{c} q^{-n}, \bar{x}, 0 \\ pq, q^{-N} \end{array} \middle| q; q \right),
\]

with \(\bar{x} = q^{-x} \) and \(n \in \{0, 1, \ldots, N\}, 0 < pq < 1, \bar{x} \in (1, q^{-N}) \);

9. Little \(q \)-Laguerre / Wall polynomials

\[
\tilde{p}_n(x; \alpha q) = (-1)^n q^{(\frac{n}{2})} (\alpha q; q)_n \, 2\phi_1 \left(\begin{array}{c} q^{-n}, 0 \\ \alpha q \end{array} \middle| q; qx \right), \quad 0 < \alpha q < 1, x \in (0, 1);
\]

10. \(q \)-Laguerre polynomials

\[
\tilde{L}_n^{(\alpha)}(x; q) = \frac{(-1)^n(q^{n+1}; q)_n}{q^{n(n+\alpha)}} \, 1\phi_1 \left(\begin{array}{c} q^{-n} \\ q^{n+1} \end{array} \middle| q; -q^{n+\alpha+1} x \right), \quad \alpha > -1, x \in (0, \infty);
\]
11. Alternative \(q\)-Charlier or \(q\)-Bessel polynomials

\[
\tilde{y}_n(x; \alpha; q) = \frac{(-1)^n q^{\binom{n}{2}}}{(-\alpha q^n; q)_n} 2\phi_1 \begin{pmatrix} q^{-n}, -\alpha q^n \\ 0 \end{pmatrix} \frac{q^n x}{q; q x}, \quad \alpha > 0, \ x \in (0, 1);
\]

12. \(q\)-Charlier polynomials

\[
\tilde{C}_n(x; \alpha; q) = (-1)^n q^{-\alpha} \alpha^n 2\phi_1 \begin{pmatrix} q^{-n}, \bar{x} \\ 0 \end{pmatrix} \frac{q^{n+1} x}{q; q x}, \quad \alpha > 0, \ x \in (1, \infty);
\]

13. Al-Salam-Carlitz I polynomials

\[
\tilde{U}^{(\alpha)}_n(x; q) = (-\alpha)^n q^{\binom{n}{2}} 2\phi_0 \begin{pmatrix} q^{-n}, x^{-1} \\ 0 \end{pmatrix} \frac{x q^n}{q; q x}, \quad \alpha < 0, \ x \in (\alpha, 1);
\]

14. Al-Salam-Carlitz II polynomials

\[
\tilde{V}^{(\alpha)}_n(x; q) = (-\alpha)^n q^{\binom{n}{2}} 2\phi_0 \begin{pmatrix} q^{-n}, x \\ 0 \end{pmatrix} \frac{x q^n}{q; q x}, \quad 0 < \alpha q < 1, \ x \in (1, \infty).
\]

In the above definitions, the basic hypergeometric series \(\phi_0\) is given by

\[
\phi_0 \left(\begin{array}{c} a_1, \ldots, a_r \\ b_1, \ldots, b_s \end{array} \right| q; z \right) = \sum_{k=0}^{\infty} \frac{(a_1, \ldots, a_r; q)_k}{(b_1, \ldots, b_s; q)_k} \frac{(-1)^k q^{\binom{k}{2}}}{(q; q)_k} z^k,
\]

where the \(q\)-Pochhammer symbol \((a_1, a_2, \ldots, a_k; q)_n\) is defined by

\[
(a_1, a_2, \ldots, a_k; q)_n := (a_1; q)_k \cdots (a_k; q)_k, \quad \text{with} \quad (a_1; q)_k = \begin{cases} \prod_{j=0}^{k-1} (1 - a_j q^j) & \text{if} \ k = 1, 2, 3, \ldots \\ 1 & \text{if} \ k = 0.
\end{cases}
\]

If \(\{p_n\}_{n=0}^{\infty}\) is a sequence of orthogonal polynomials, the zeros of \(p_n\) are real and simple and it is well known that the zeros of \(p_n\) and \(p_{n-1}\) interlace, i.e., if \(x_{n,1} < x_{n,2} < \cdots < x_{n,n}\) denote the zeros of \(p_n\), then

\[x_{n,1} < x_{n-1,1} < x_{n,2} < \cdots < x_{n,n-1} < x_{n-1,n-1} < x_{n,n}.
\]

If polynomials \(p_n\) and \(q_n\) are of the same degree, the zeros are said to interlace if either

\[x_{n,1} < y_{n,1} < x_{n,2} < y_{n,2} < \cdots < x_{n,n} < y_{n,n}
\]

or

\[y_{n,1} < x_{n,1} < y_{n,2} < x_{n,2} < \cdots < y_{n,n} < x_{n,n},
\]

where \(\{y_{k,n}\}_{k=1}^{n}\) denote the zeros of \(q_n\).

The separation of the zeros of different sequences of Hahn polynomials of the same or adjacent degree was first studied by Levit [20] in 1967, and similar interlacing results followed for Jacobi polynomials [1, 5], Krawtchouk polynomials [3, 11] and Meixner and Meixner-Pollaczek
polynomials [11]. The different sequences were obtained by integer shifts of the parameters and in order to prove these results, recurrence equations, following from the contiguous relations for hypergeometric polynomials [22, p. 71], were used. In the case of Gauss’ hypergeometric function (cf. [24, Equation 4.21.3]), a useful algorithm in this regard is available as a computer package [25].

Interlacing results for the zeros of different sequences of q-orthogonal sequences with shifted parameters are given for q-Laguerre polynomials in [12, 21], for Al-Salam-Chihara, q-Meixner-Pollaczek and q-ultraspherical polynomials in [12] and for $_2\phi_1$ hypergeometric polynomials, associated with the little q-Jacobi polynomials, in [7]. The recurrence equations necessary to prove these results were obtained respectively from relationships between polynomials orthogonal to a positive measure $d\Psi(x)$ and those orthogonal to $xd\Psi(x)$ (cf. [14]), from the generating functions of the appropriate polynomials and from the contiguous function relations satisfied by the basic hypergeometric function (cf. [9]). In order to determine the specific order of the interlacing zeros, Markov’s monotonicity theorem (or a consequence of it), is used (cf. [24, Theorems 6.12.1,6.12.2] or [10, Theorem 7.1.1]).

In this paper, we use mixed recurrence equations, satisfied by different sequences of the appropriate q-orthogonal polynomial systems, to study interlacing properties of the zeros of the fourteen sequences of q-orthogonal systems mentioned above. The necessary equations are obtained using an algorithmic approach whereas one may also use contiguous function relations for the basic hypergeometric series (see e.g. [7, 9, 23]) to get some of these recurrence equations. We use an adaption of the q-version of Zeilberger’s algorithm which is an extension of Gosper’s algorithm. Gosper’s algorithm deals with the question how to find an anti-difference s_k for given a_k, i.e., a sequence s_k for which $a_k = \Delta s_k = s_{k+1} - s_k$, in a particular case that s_k is a hypergeometric term, i.e., $s_k \in \mathbb{Q}(k)$. Given $F(n, k)$, Zeilberger’s algorithm provides a recurrence equation for

$$s_n = \sum_{k=-\infty}^{\infty} F(n, k),$$

where $F(n, k)$ is a hypergeometric term with respect to both n and k. We set

$$a_k = F(n, k) + \sum_{j=1}^{J} \sigma_j(n) F(n + j, k)$$

with undetermined variables $\sigma_j(n)$ and apply Gosper’s algorithm to a_k. If successful, Gosper’s algorithm finds $G(n, k)$ with $G(n, k + 1) - G(n, k) = a_k$ and at the same time $G(n, k)$, $j \in \{1, 2, \ldots, J\}$. By summation, we have

$$s_n + \sum_{j=1}^{J} \sigma_j(n) s_{n+j} = 0.$$

We refer the reader to [17] and references there-in for more details about the algorithms of Gosper and Zeilberger and their q-analogues.

In our case, if we set, for example, $a_k = F(n, k, \alpha) + \sum_{j=1}^{J} \sigma_j(n) F(n + j, k, \alpha + 1)$, we obtain a recurrence equation of the form

$$s_n(\alpha) + \sum_{j=1}^{J} \sigma_j(n) s_{n+j}(\alpha + 1) = 0, \quad s_n(\alpha) = \sum_{k=-\infty}^{\infty} F(n, k, \alpha).$$
The q-analogues of Gosper’s and Zeilberger’s algorithms are implemented in the Maple $qsum$ package [17] which can be downloaded at http://www.mathematik.uni-kassel.de/~koepf/Publikationen. By applying an adaption of the $qsumdiff$eq [17, p. 210] procedure of the $qsum$ package, we wrote codes to derive recurrence equations of type (3) for the q-orthogonal polynomial systems considered in the sequel.

We will start each section by listing the recurrence equations necessary to prove our results. In the first section, however, the preliminary results that are used to prove our interlacing results, are listed. These results are generalizations of [2, Theorem 3], but we prove them here for polynomial systems with interlacing zeros and not necessarily polynomial systems that belong to the same orthogonal sequence. In each case, our results illustrate the monotonicity of the zeros, that can be obtained by the theorem of Markov [24, Theorem 6.12.2].

2. Preliminary results

Lemma 1 (cf. [2, 7, 12]). Let (c, d) be a finite or infinite interval and p_n and q_n polynomials (not necessarily orthogonal) of degree n, with zeros $c < x_{n,1} < x_{n,2} < \cdots < x_{n,n} < d$ and $c < y_{n,1} < y_{n,2} < \cdots < y_{n,n} < d$, respectively, satisfying the interlacing property

$$x_{n,1} < y_{n-1,1} < x_{n,2} < \cdots < x_{n,n-1} < y_{n-1,n-1} < x_{n,n}.$$

Let a and b be continuous functions on (c, d) and assume that f_n is a polynomial of degree n, with zeros $c < z_{n,1} < z_{n,2} < \cdots < z_{n,n} < d$, satisfying the equation

$$f_n(x) = a(x)p_n(x) + b(x)q_{n-1}(x).$$

If

(a) b has constant sign on (c, d), the zeros of f_n and p_n interlace;

(b) a has constant sign on (c, d), f_n has an odd number of zeros between any two zeros of q_{n-1}.

Proof. Assume that f_n has degree n with zeros $z_{n,1} < z_{n,2} < \cdots < z_{n,n}$.

(a) We evaluate (3) at $x_{n,k}$ and $x_{n,k+1}$, $k \in \{1, 2, \ldots, n-1\}$, two consecutive zeros of $p_n(x)$. Then

$$f_n(x_{n,k})f_n(x_{n,k+1}) = b(x_{n,k})b(x_{n,k+1})q_{n-1}(x_{n,k})q_{n-1}(x_{n,k+1}).$$

By (2) the zeros of p_n and q_{n-1} interlace, therefore q_{n-1} will differ in sign at $x_{n,k}$ and $x_{n,k+1}$, $k \in \{1, 2, \ldots, n-1\}$, which implies $q_{n-1}(x_{n,k})q_{n-1}(x_{n,k+1}) < 0$. Since $b(x)$ has constant sign on (c, d), we have $b(x_{n,k})b(x_{n,k+1}) > 0$ and therefore $f_n(x_{n,k})f_n(x_{n,k+1}) < 0$. f_n must therefore have an odd number of zeros in each interval with endpoints $x_{n,k}$ and $x_{n,k+1}$, $k \in \{1, 2, \ldots, n-1\}$, and the interlacing result follows.

(b) We evaluate (3) at $y_{n-1,k}$ and $y_{n-1,k+1}$, $k \in \{1, 2, \ldots, n-2\}$, two consecutive zeros of $q_{n-1}(x)$. Then

$$f_n(y_{n-1,k})f_n(y_{n-1,k+1}) = a(y_{n-1,k})a(y_{n-1,k+1})p_n(y_{n-1,k})p_n(y_{n-1,k+1}).$$

From (2) we know that the zeros of p_n and q_{n-1} interlace, therefore p_n will differ in sign at $y_{n-1,k}$ and $y_{n-1,k+1}$, $k \in \{1, 2, \ldots, n-1\}$, and $p_n(y_{n-1,k})p_n(y_{n-1,k+1}) < 0$. Since $a(x)$ has constant
sign on \((c,d)\), we have \(a(y_{n-1,k})a(y_{n-1,k+1}) > 0\) and therefore \(f_n(y_{n-1,k})f_n(y_{n-1,k+1}) < 0\), which implies that \(f_n\) must have an odd number of zeros in each interval with endpoints \(y_{n-1,k}\) and \(y_{n-1,k+1}\), \(k \in \{1, 2, \ldots, n-2\}\).

If a polynomial \(p_n\) is monic, then \(\lim_{x \to \infty} p_n(x) = +\infty\). In the following result, which follows from Lemma 1, we assume that polynomials \(p_n\) and \(q_n\) are monic.

Corollary 2 (cf. [2, 7, 12, 13]). Let \((c,d)\) be a finite or infinite interval and assume that \(p_n\) and \(q_n\) are monic polynomials (not necessarily orthogonal) of degree \(n\), with zeros \(c < x_{n,1} < x_{n,2} < \cdots < x_{n,n} < d\) and \(c < y_{n,1} < y_{n,2} < \cdots < y_{n,n} < d\), respectively, satisfying the interlacing property (2). Assume that \(a\) and \(b\) are continuous and have constant sign on \((c,d)\) and that \(f_n\) is a polynomial of degree \(n\) with zeros \(c < z_{n,1} < z_{n,2} < \cdots < z_{n,n} < d\), satisfying (3). Then, for each \(k \in \{1, 2, \ldots, n-1\}\),

(a) if \(a(x)\) and \(b(x)\) have the same sign on \((c,d)\), \(z_{n,k} < x_{n,k} < y_{n-1,k} < z_{n,k+1} < x_{n,k}+1\);

(b) if \(a(x)\) and \(b(x)\) differ in sign on \((c,d)\), \(x_{n,k} < z_{n,k} < y_{n-1,k} < x_{n,k+1} < z_{n,k+1}\).

Proof. Assume that \(f_n\) has degree \(n\) and both \(a\) and \(b\) have constant sign on \((c,d)\). Then both results of Lemma 1 are true. From Lemma 1(a), the zeros of \(f_n\) and \(p_n\) interlace and either \(z_{n,k} < x_{n,k}\) or \(x_{n,k} < z_{n,k}\) for each \(k \in \{1, 2, \ldots, n\}\).

Evaluating (3) at \(y_{n-1,n-1}\) and \(x_{n,n}\), we obtain

\[
f_n(x_{n,n})f_n(y_{n-1,n-1}) = a(y_{n-1,n-1})b(x_{n,n})p_n(y_{n-1,n-1})q_{n-1}(x_{n,n}).
\]

Since, by assumption, \(p_n\) and \(q_{n-1}\) are monic polynomials with interlacing zeros, \(p_n(y_{n-1,n-1}) < 0\) and \(q_{n-1}(x_{n,n}) > 0\).

(a) Assume \(a\) and \(b\) have the same sign on \((c,d)\). Then \(a(y_{n-1,n-1})b(x_{n,n}) > 0\) and, since \(p_n(y_{n-1,n-1})q_{n-1}(x_{n,n}) < 0\), we deduce from (4) that \(f_n(x_{n,n})f_n(y_{n-1,n-1}) < 0\). This implies \(f_n\) has an odd number of zeros in the interval \((y_{n-1,n-1}, x_{n,n})\).

Suppose \(z_{n,k} < x_{n,k}\), \(k \in \{1, 2, \ldots, n\}\). From (2) we deduce that \(z_{n,1} < x_{n,1} < y_{n-1,1}\) and thus one zero of \(f_n\) lies to the left of \(y_{n-1,1}\). From Lemma 1(b), we know there is an odd number of zeros of \(f_n\) in each of the \(n-2\) intervals \((y_{n-1,k}, y_{n-1,k+1})\), \(k \in \{1, 2, \ldots, n-2\}\). If each of the \(n-2\) intervals between the first and the last zero of \(q_{n-1}\) has exactly one zero of \(f_n\), we have \(n-1\) zeros accounted for. There is only one zero remaining (since \(f_n\) has \(n\) zeros), and we deduce that only one zero of \(f_n\) lies in \((y_{n-1,n-1}, x_{n,n})\), which leads to the configuration

\[
z_{n,1} < x_{n,1} < y_{n-1,1} < z_{n,2} < \cdots < x_{n,n-1} < y_{n-1,n-1} < z_{n,n} < x_{n,n}.
\]

Suppose \(x_{n,k} < z_{n,k}\), \(k \in \{1, 2, \ldots, n\}\). From (2), we deduce that \(y_{n-1,n-1} < x_{n,n} < z_{n,n}\). This contradicts the fact that \(f_n\) must have an odd number of zeros in the interval \((y_{n-1,n-1}, x_{n,n})\).

(b) Assume \(a\) and \(b\) have different signs on \((c,d)\). Then \(a(y_{n-1,n-1})b(x_{n,n}) < 0\) and we deduce from (4) that \(f_n(x_{n,n})f_n(y_{n-1,n-1}) > 0\), thus \(f_n\) has either 0 or an even number of zeros in the interval \((y_{n-1,n-1}, x_{n,n})\).
Suppose \(x_{n,k} < z_{n,k}, k \in \{1, 2, \ldots, n\} \). From (2) we deduce that \(y_{n-1,n-1} < x_{n,n} < z_{n,n} \) and the only option, counting the zeros, is that

\[
x_{n,1} < z_{n,1} < y_{n-1,1} < x_{n,2} < \cdots < z_{n,n-1} < y_{n-1,n-1} < x_{n,n} < z_{n,n}.
\]

Suppose \(z_{n,k} < x_{n,k}, k \in \{1, 2, \ldots, n\} \). From (2) we deduce that \(z_{n,1} < x_{n,1} < y_{n-1,1} \) and thus one zero of \(f_n \) lies to the left of \(y_{n-1,1} \). From Lemma 1(b), we know there is an odd number of zeros of \(f_n \) in each of the \(n - 2 \) intervals \((y_{n-1,k}, y_{n-1,k+1}), k \in \{1, 2, \ldots, n - 2\} \). If each of the \(n - 2 \) intervals between the first and the last zero of \(q_{n-1} \) has exactly one zero of \(f_n \), we have \(n - 1 \) zeros accounted for. There is only one zero remaining (since \(f_n \) has \(n \) zeros). The one remaining zero therefore must lie to the right of \(y_{n-1,n-1} \), such that \(y_{n-1,n-1} < z_{n,n} < x_{n,n} \), which contradicts the fact that \(f_n \) must have either 0 or an even number of zeros in the interval \((y_{n-1,n-1}, x_{n,n})\).

\[\square\]

From Corollary 2 we remark that, once we have a relation of type (3), it is sufficient to know the sign of \(a \) and \(b \) to prove our interlacing results.

3. The big \(q \)-Jacobi polynomials

The sequence of big \(q \)-Jacobi polynomials \(\tilde{P}_n(x; \alpha, \beta, \gamma; q) \) is orthogonal for \(0 < \alpha q < 1, 0 \leq \beta q < 1 \) and \(\gamma < 0 \) with respect to a continuous weight function, on the interval \((\gamma q, \alpha)\). As the parameter \(\alpha \) decreases to \(\alpha q \), the interval in which the zeros lie decreases to \((\gamma q, \alpha q^2)\) and we can deduce that the zeros of \(\tilde{P}_n(x; \alpha, \beta, \gamma; q) \) decrease as \(\alpha \) decreases to \(\alpha q \). Similarly, as \(\gamma \) increases to \(\gamma q \), the zeros will increase, since the interval in which the zeros lie reduces to \((\gamma q^2, \alpha q)\).

The following recurrence equations will be used to prove our results and can be downloaded from http://www.mathematik.uni-kassel.de/~koepf/Publikationen.

Proposition 3.

\[
\begin{align*}
\tilde{P}_n(x; \alpha, \beta, \gamma; q) &= \tilde{P}_n(x; \alpha q, \beta, \gamma; q) + \frac{\alpha q(q^n - 1)(\beta q^n - 1)(\gamma q^n - 1)}{(\alpha q q^{n+1} - 1)(\alpha q^2 q^n - 1)} \tilde{P}_{n-1}(x; \alpha q, \beta, \gamma; q); \\
\tilde{P}_n(x; \alpha, \beta, \gamma; q) &= \tilde{P}_n(x; \alpha, \beta q, \gamma; q) - \frac{\alpha q^{n+1}(\alpha q^n - 1)(\gamma q^n - 1)(q^n - 1)}{(\alpha q q^{n+1} - 1)(\alpha q^2 q^n - 1)} \tilde{P}_{n-1}(x; \alpha, \beta q, \gamma; q); \\
\tilde{P}_n(x; \alpha, \beta q, \gamma; q) &= \tilde{P}_n(x; \alpha q, \beta, \gamma; q) + \frac{\alpha q^n - 1)(\gamma q^n - 1)}{(\alpha q q^{n+1} - 1)} \tilde{P}_{n-1}(x; \alpha q, \beta q, \gamma; q).
\end{align*}
\]

Theorem 4. Let \(0 < \alpha q < 1, 0 \leq \beta q < 1, \gamma < 0 \) and denote the zeros of \(\tilde{P}_n(x; \alpha, \beta, \gamma; q) \) by \(\gamma q < y_{n,1} < y_{n,2} < \cdots < y_{n,n} < \alpha q \), the zeros of \(\tilde{P}_n(x; \alpha q, \beta, \gamma; q) \) by \(y_{n,1} < y_{n,2} < \cdots < y_{n,n} \), the zeros of \(\tilde{P}_n(x; \alpha, \beta q, \gamma; q) \) by \(z_{n,1} < z_{n,2} < \cdots < z_{n,n} \) and the zeros of \(\tilde{P}_n(x; \alpha q, \beta q, \gamma; q) \) by \(t_{n,1} < t_{n,2} < \cdots < t_{n,n} \). Then, for each \(i \in \{1, 2, \ldots, n - 1\} \),

(a) \(y_{n,i} < x_{n,i} < y_{n,i+1} < y_{n,i+1} < x_{n,i+1} \),
Proposition 6.\(\) \(x_{n,i} < z_{n,i} < z_{n-1,j} < x_{n,i+1} < z_{n,i+1},\)
(c) \(y_{n,i} < x_{n,j} < z_{n,i} < y_{n,i+1} < x_{n,i+1} < z_{n,i+1}.\)

Proof. Let \(0 < \alpha q < 1, 0 \leq \beta q < 1, \gamma < 0.\) Since \(0 < q < 1,\) it follows that \(q^n - 1 < 0, \alpha q^n - 1 < 0,\)
\(\beta q^n - 1 < 0, \alpha \beta q^{2n} - 1 < 0, \gamma q^n - 1 < 0.\)

(a) Since \(\tilde{P}_n(x; \alpha q, \beta, \gamma; q)\) and \(\tilde{P}_{n-1}(x; \alpha q, \beta, \gamma; q)\) belong to the same orthogonal sequence, their zeros interlace and the interlacing property (2) is satisfied. (5a) is in the form of (3) with \(a(x) = 1\) and, taking into consideration the restrictions on the parameters, \(b(x)\) is a negative constant and the interlacing follows from Corollary 2 (b).

(b) The polynomials \(\tilde{P}_n(x; \alpha q, \beta, \gamma; q)\) and \(\tilde{P}_{n-1}(x; \alpha q, \beta, \gamma; q)\) belong to the same orthogonal sequence and their zeros satisfy (2). Equation (5c) is in the form of (3) with \(a(x) = 1\) and taking into consideration the restrictions on the parameters, \(b(x)\) is a positive constant. The result follows from Corollary 2 (a).

(c) In (b) we have proved that the zeros of \(\tilde{P}_n(x; \alpha q, \beta, \gamma; q)\) and \(\tilde{P}_{n-1}(x; \alpha q, \beta, \gamma; q)\) interlace for all \(\alpha\) such that \(0 < \alpha q < 1,\) from which we can deduce that the zeros of \(\tilde{P}_n(x; \alpha q, \beta, \gamma; q)\) and \(\tilde{P}_{n-1}(x; \alpha q, \beta, \gamma; q)\) interlace, satisfying (2). Equation (5c) is in the form of (3) with \(a(x) = 1\) and taking into consideration the restrictions on the parameters, \(b(x)\) is a negative constant. Applying Corollary 2 (b), we obtain \(y_{n,i} < x_{n,i} < y_{n-1,j} < y_{n,i+1} < z_{n,i}\) for each \(i \in \{1, 2, \ldots, n-1\}.\)
Furthermore, \(y_{n,i} < x_{n,i} < z_{n,i}\) for each \(i \in \{1, 2, \ldots, n\}\) (from (a) and (b)), and the required combined interlacing follows.

Corollary 5. For each \(i \in \{1, 2, \ldots, n-1\},\)
(a) \(x_{n,i} < y_{n-1,i} < x_{n-1,i} < y_{n,i+1},\)
(b) \(x_{n,i} < y_{n-1,i} < z_{n-1,i} < y_{n,i+1}.\)

Proof. We obtain the results by combining the interlacing of the zeros of \(\tilde{P}_n(x; \alpha, \beta, \gamma; q)\) and \(\tilde{P}_{n-1}(x; \alpha, \beta, \gamma; q)\) with the results proved in Theorem 4 (a) and (b), respectively.

In general, the zeros of \(\tilde{P}_n(x; \alpha, \beta, \gamma; q)\) do not interlace with the zeros of \(\tilde{P}_n(x; \alpha, \beta, \gamma q; q)\) or with the zeros of \(\tilde{P}_{n-1}(x; \alpha, \beta, \gamma q; q)\). For example, when \(n = 4, \alpha = 1, \beta = 3, \gamma = -5, q = 0.14,\) the zeros of \(\tilde{P}_n(x; \alpha, \beta, \gamma; q)\) are \((-0.6993, -0.1066, 0.0198, 0.1353)\), the zeros of \(\tilde{P}_n(x; \alpha, \beta, \gamma q; q)\) are \((-0.0992, 0.0000, 0.0071, 0.1407)\) and the zeros of \(\tilde{P}_{n-1}(x; \alpha, \beta, \gamma q; q)\) are \((-0.0978, 0.0056, 0.1399)\).

4. The \(q\)-Hahn polynomials

Proposition 6.

\[
\tilde{Q}_n(x; \alpha, \beta, N|q) = \tilde{Q}_n(x; \alpha q, \beta, N|q) + \frac{\alpha (q^n - 1) (\beta q^n - 1) (q^n - q^{N+1})}{q^n (\alpha \beta q^{2n+1} - 1) (\alpha \beta q^{2n} - 1)} \tilde{Q}_{n-1}(x; \alpha q, \beta, N|q); \quad (6a)
\]
\[
\tilde{Q}_n(x; \alpha, \beta, N|q) = \tilde{Q}_n(x; \alpha, \beta q, N|q) + \frac{\alpha \beta q^{-N} (q^{N+1} - q^n) (\alpha q^n - 1) (q^n - 1)}{(\alpha \beta q^{2n+1} - 1) (\alpha \beta q^{2n} - 1)} \tilde{Q}_{n-1}(x; \alpha, \beta q, N|q); \quad (6b)
\]
\[\tilde{Q}_n(x; \alpha, \beta q, N|q) = \tilde{Q}_n(x; \alpha q, \beta, N|q) + \frac{\alpha(q^n - 1)(q^n - q^{N+1})}{q^N(\alpha \beta q^{2n+1} - 1)} \tilde{Q}_{n-1}(x; \alpha q, \beta q, N|q). \] (6c)

Theorem 7. Let 0 < \beta q < 1, 0 < \alpha q < 1, n \in \{0, 1, \ldots, N\}. We denote the zeros of \(\tilde{Q}_n(x; \alpha, \beta, N|q) \) by \(y_{n,1} < y_{n,2} < \cdots < y_{n,n} < q^{-N} \), the zeros of \(\tilde{Q}_n(x; \alpha q, \beta, N|q) \) by \(y_{n,1} < y_{n,2} < \cdots < y_{n,n} \), and the zeros of \(\tilde{Q}_n(x; \alpha q, \beta q, N|q) \) by \(t_{n,1} < t_{n,2} < \cdots < t_{n,n} \). Then, for \(i \in \{1, 2, \ldots, n-1\} \),

(a) \(x_{n,i} < y_{n,i} < y_{n,i+1} < y_{n,i+1} \),

(b) \(z_{n,i} < x_{n,i} < y_{n,i} < z_{n,i+1} < x_{n,i+1} \),

(c) \(z_{n,i} < y_{n,i} < t_{n-1,i} < z_{n,i+1} < x_{n,i+1} < y_{n,i+1} \).

Proof. Let 0 < \beta q < 1, 0 < \alpha q < 1, n \in \{0, 1, \ldots, N\}. Since 0 < q < 1, it follows that \(q^n - 1 < 0 \), \(\beta q^n - 1 < 0 \), \(\alpha \beta q^{2n+1} - 1 < 0 \), and consequently \(q^n - q^n < 0 \).

(a) Since \(\tilde{Q}_n(x; \alpha, \beta q, N|q) \) and \(\tilde{Q}_{n-1}(x; \alpha q, \beta q, N|q) \) belong to the same orthogonal sequence, their zeros interlace and (2) is satisfied. (6a) is in the form of (3) with \(a(x) = 1 \) and for the given parameter values, \(b(x) > 0 \) on \((1, q^{-N}) \). The required interlacing follows from Corollary 2 (a).

(b) Since \(\tilde{Q}_n(x; \alpha q, \beta, N|q) \) and \(\tilde{Q}_{n-1}(x; \alpha q, \beta, N|q) \) belong to the same orthogonal sequence, their zeros satisfy (2) and (6b) is in the form of (3). Furthermore, \(a(x) = 1 \) and taking into consideration the restrictions on the parameters, \(b(x) \) is a negative constant. The result follows from Corollary 2 (b).

(c) From the interlacing of the zeros of \(\tilde{Q}_n(x; \alpha, \beta q, N|q) \) and \(\tilde{Q}_{n-1}(x; \alpha q, \beta q, N|q) \) for all \(\alpha \) such that \(0 < \alpha q < 1 \) (from (b)), the interlacing of the zeros of \(\tilde{P}_n(x; \alpha q, \beta, \gamma; q) \) and \(\tilde{P}_{n-1}(x; \alpha q, \beta q, \gamma; q) \) follows directly. Equation (6c) is in the form of (3) with \(a(x) = 1 \) and taking into consideration the restrictions on the parameters, \(b(x) \) is a positive constant. Applying Corollary 2 (b), we obtain \(z_{n,i} < y_{n,i} < t_{n-1,i} < z_{n,i+1} < y_{n,i} \) for each \(i \in \{1, 2, \ldots, n-1\} \). Furthermore, it follows from (a) and (b) that \(z_{n,i} < x_{n,i} < y_{n,i} \) for each \(i \in \{1, 2, \ldots, n\} \), and the required combined interlacing follows.

\[\square \]

Corollary 8. For each \(i \in \{1, 2, \ldots, n-1\} \),

(a) \(x_{n,i} < x_{n-1,i} < y_{n-1,i} < x_{n,i+1} \),

(b) \(x_{n,i} < z_{n-1,i} < x_{n-1,i} < x_{n,i+1} \).

Proof. We obtain the results by combining the interlacing of the zeros of \(\tilde{Q}_n(x; \alpha, \beta q, N|q) \) and \(\tilde{Q}_{n-1}(x; \alpha q, \beta, N|q) \) with the results proved in Theorem 7 (a) and (b), respectively.

\[\square \]

5. The big \(q \)-Laguerre polynomials

If we let \(\beta = 0 \) in the definition of the big \(q \)-Jacobi polynomials, we obtain the big \(q \)-Laguerre polynomials, i.e., \(\tilde{P}_n(x; \alpha, 0, \gamma; q) = \tilde{P}_n(x; \alpha, \gamma; q) \) [15, Equation 14.5.13]. The interlacing property of the zeros of the big \(q \)-Laguerre polynomials, as \(\alpha \) decreases to \(\alpha q \), can thus be obtained from the result obtained for the big \(q \)-Jacobi polynomials.

Furthermore, we have \(\tilde{P}_n(x; \alpha, \beta; q) = \tilde{P}_n(x; \beta, \alpha; q) \) and the interlacing property as \(\beta \) increases to \(\beta q \) follows directly.
Corollary 9. Let $0 < \alpha q < 1$ and $\beta < 0$. We denote the zeros of $\tilde{P}_n(x; \alpha, \beta; q)$ by $\beta q < x_{n,1} < x_{n,2} < \cdots < x_{n,n} < \alpha q$, the zeros of $\tilde{P}_n(x; \alpha q, \beta; q)$ by $y_{n,1} < y_{n,2} < \cdots < y_{n,n}$, the zeros of $\tilde{P}_n(x; \alpha, \beta q; q)$ by $z_{n,1} < z_{n,2} < \cdots < z_{n,n}$ and the zeros of $\tilde{P}_n(x; \alpha q^2, \beta; q)$ by $t_{n,1} < t_{n,2} < \cdots < t_{n,n}$. Then, for $i \in \{1, 2, \ldots, n-1\}$,

(a) $y_{n,i} < x_{n,i} < y_{n,i+1} < y_{n,i+1}$,
(b) $x_{n,i} < z_{n,i} < x_{n,i+1} < z_{n,i+1}$,
(c) $y_{n,i} < x_{n,i} < z_{n,i} < t_{n,i} < y_{n,i+1} < x_{n,i+1} < z_{n,i+1}$,
(d) $x_{n,i} < y_{n,i+1} < x_{n,i+1}$, and
(e) $x_{n,i} < x_{n,i+1} < z_{n,i+1}$.

In general, the zeros of $\tilde{P}_n(x; \alpha, \beta; q)$ do not interlace with the zeros of $\tilde{P}_n(x; \alpha q^2, \beta; q)$ or $\tilde{P}_n(x; \alpha, \beta q^2; q)$. For $n = 3, q = 0.1$ and $\alpha = 1$, we see that

(a) when $\beta = -1$, the zeros of $\tilde{P}_n(x; \alpha, \beta; q)$ are $\{-0.09991, 0.00010, 0.09996\}$ and the zeros of $\tilde{P}_n(x; \alpha q^2, \beta; q)$ are $\{-0.10003, -0.00965, -0.0002\}$.

(b) when $\beta = -0.5$, the zeros of $\tilde{P}_n(x; \alpha, \beta; q)$ are $\{-0.04986, 0.00541, 0.10000\}$ and the zeros of $\tilde{P}_n(x; \alpha, \beta q^2; q)$ are $\{0, 0.01048, 0.09996\}$.

6. The little q-Jacobi polynomials

Proposition 10.

\[
\tilde{p}_n(x; \alpha, \beta q) = \tilde{p}_n(x; \alpha q, \beta |q|) + \frac{\alpha q^n (q^n - 1) (\beta q^n - 1)}{(\alpha \beta q^{2n+1} - 1)(\alpha \beta q^{2n} - 1)} \tilde{p}_{n-1}(x; \alpha q, \beta |q|); \tag{7a}
\]

\[
\tilde{p}_n(x; \alpha, \beta |q|) = \tilde{p}_n(x; \alpha \beta q |q|) - \frac{\alpha \beta q^{2n} (q^n - 1) (\alpha q^n - 1)}{(\alpha \beta q^{2n+1} - 1)(\alpha \beta q^{2n} - 1)} \tilde{p}_{n-1}(x; \alpha \beta q |q|); \tag{7b}
\]

\[
\tilde{p}_n(x; \alpha, \beta |q|) = \frac{(\alpha q - 1) (\alpha \beta q^{2n+1} - 1)}{\alpha q^{n+1} - 1} \tilde{p}_n(x; \alpha q^2, \beta |q|) \tag{7c}
\]

\[
+ \frac{\alpha q (q^n - 1) (\beta q^n - 1) (\alpha q^{n+1} - 1)}{(\alpha q^{n+1} - 1)(\alpha \beta q^{2n+2} - 1)(\alpha \beta q^{2n+1} - 1)} \tilde{p}_{n-1}(x; \alpha q^2, \beta |q|);
\]

\[
\tilde{p}_n(x; \alpha, \beta q |q|) = \frac{(\alpha \beta q^{n+1} (q^n - 1) + 1 - \beta q^{n+1}) (\alpha \beta q^{2n+1} - 1)}{(\beta q^{n+1} - 1)(\alpha \beta q^{2n+1} - 1)} \tilde{p}_n(x; \alpha, \beta q |q|) \tag{7d}
\]

\[
+ \frac{\alpha \beta q^{2n} (\beta q^2 x - 1) (q^n - 1) (\alpha q^n - 1) \tilde{p}_{n-1}(x; \alpha q^2, \beta |q|)}{(\beta q^{n+1} - 1)(\alpha \beta q^{2n+1} - 1)} \phi \tilde{p}_{n-1}(x; \alpha q, \beta |q|) \tag{7e}
\]

Theorem 11. Let $0 < \alpha q < 1$ and $\beta q < 1$ and denote the zeros of $\tilde{p}_n(x; \alpha, \beta q |q|)$ by $0 < x_{n,1} < x_{n,2} < \cdots < x_{n,n} < 1$, the zeros of $\tilde{p}_n(x; \alpha q, \beta |q|)$ by $y_{n,1} < y_{n,2} < \cdots < y_{n,n}$, the zeros of $\tilde{p}_n(x; \alpha q^2, \beta |q|)$ by $z_{n,1} < z_{n,2} < \cdots < z_{n,n}$, the zeros of $\tilde{p}_n(x; \alpha, \beta q^2 |q|)$ by $t_{n,1} < t_{n,2} < \cdots < t_{n,n}$. Then, for $i \in \{1, 2, \ldots, n-1\}$,
Let $0 < \alpha q < 1$ and $\beta q < 1$. We note that, since $0 < q < 1$, $q^n - 1 < 0$, $\alpha q^n - 1 < 0$, $\beta q^n - 1 < 0$, for all positive integers n.

(a) Since $\tilde{p}_n(x; \alpha q, \beta q)$ and $\tilde{p}_{n-1}(x; \alpha q, \beta q)$ belong to the same orthogonal sequence, their zeros satisfy the interlacing property (2). Equation (7a) is in the form of (3) with $a(x) = 1$ and, taking into consideration the restrictions on the parameters, $b(x)$ is a positive constant. The result follows from Corollary 2 (a).

(b) The polynomials $\tilde{p}_n(x; \alpha, \beta q | q)$ and $\tilde{p}_{n-1}(x; \alpha, \beta q | q)$ belong to the same orthogonal sequence and their zeros satisfy (2). Equation (7b) is in the form of (3) with $a(x) = 1$ and taking into consideration the restrictions on the parameters, $b(x)$ is a positive constant if $\beta < 0$ and $b(x)$ is negative when $\beta > 0$. The result follows from applying Corollary 2 to the different situations.

(c) The polynomials $\tilde{p}_n(x; \alpha q^2, \beta q)$ and $\tilde{p}_{n-1}(x; \alpha q^2, \beta q)$ belong to the same orthogonal sequence and their zeros satisfy (2). (7c) is in the form of (3) and taking into consideration the restrictions on the parameters, $a(x)$ is a positive constant.

$$b(x) = \frac{\alpha q (q^n - 1) (\beta q^n - 1)}{(\alpha q^{n+1} - 1)(\alpha \beta q^{2n+2} - 1)(\alpha \beta q^{n+1} - 1)} \left((\alpha \beta q^{2n+2} - 1)x + q^n (\alpha q - 1) \right)$$

$$= -k^2 \left((\alpha \beta q^{2n+2} - 1)x + q^n (\alpha q - 1) \right), \ k \in \mathbb{R},$$

represents a linear function with gradient $-k^2(\alpha \beta q^{2n+2} - 1) > 0$, intersecting the x-axis at $x = \frac{-q^n(\alpha q - 1)}{(\alpha q - \beta q)^{2n+1}} < 0$ for $\beta q < 1$. $b(x)$ is thus positive on $(0, 1)$ and from Corollary 2 (a) we deduce that $x_{n,i} < Y_{n,i} < Y_{n-1,i} < x_{n,i+1} < Y_{n,i+1}$ for each $i \in \{1, 2, \ldots, n - 1\}$. Furthermore, by replacing α with αq in (7a), we obtain $y_{n,i} < Y_{n,i} < Y_{n-1,i} < y_{n,i+1} < Y_{n,i+1}$ for each $i \in \{1, 2, \ldots, n - 1\}$ and by combining these two interlacing results with the fact that $x_{n,i} < y_{n,i}$ for each $i \in \{1, 2, \ldots, n\}$, the required interlacing follows.

(d) Let $\beta < 0$. By replacing β with βq in (7b), we obtain $z_{n,i} < Z_{n,i} < Z_{n-1,i} < y_{n,i+1}$ for each $i \in \{1, 2, \ldots, n - 1\}$ and equation (7d) is in the form of (3). Under the condition that $\beta < 0$, the coefficient of $\tilde{p}_n(x; \alpha, \beta q | q)$ is a positive constant. The coefficient of $\tilde{p}_n(x; \alpha, \beta q^2 | q)$ is

$$b(x) = \frac{\alpha \beta q^n (q^n - 1)}{(\beta q^n - 1)(\alpha \beta q^{n+1} - 1)} \left((\beta q^n - 1)^2 x - 1 \right), \ k \in \mathbb{R},$$

that represents a linear function with positive gradient, intersecting the negative x-axis and $b(x)$ is thus positive on $(0, 1)$. The result follows from Corollary 2 (a).

(e) Assume $\beta < 0$. From (b) we know that the zeros of $\tilde{p}_n(x; \alpha, \beta q | q)$ and $\tilde{p}_{n-1}(x; \alpha, \beta q | q)$ interlace. By replacing α by αq, it follows that $y_{n,i} < t_{n-1,i} < y_{n,i+1}$ for each $i \in \{1, 2, \ldots, n - 1\}$. Equation (7e) is in the form of (3) with $a(x) = 1$ and, taking into consideration the restrictions on the parameters, $b(x)$ is a positive constant. The result follows from Corollary 2 (a).
Corollary 12. For each \(i \in \{1, 2, \ldots, n - 1\} \),

(a) \(x_{n,i} < x_{n-1,i} < y_{n-1,i} < x_{n,i+1} \),

(b) \(x_{n,i} < z_{n-1,i} < x_{n-1,i} < x_{n,i+1} \) if \(\beta > 0 \) and \(x_{n,i} < x_{n-1,i} < z_{n-1,i} < x_{n,i+1} \) if \(\beta < 0 \),

(c) \(x_{n,i} < z_{n,i} < y_{n,i} < x_{n,i+1} < z_{n,i+1} < y_{n,i+1} \) if \(\beta < 0 \).

Proof. (a) We combine the interlacing of the zeros of \(\tilde{p}_n(x; \alpha, \beta q) \) and \(\tilde{p}_{n-1}(x; \alpha, \beta q) \) with the results proved in Theorem 11 (a) to obtain the required interlacing.

(b) We combine the interlacing of the zeros of \(\tilde{p}_n(x; \alpha, \beta q) \) and \(\tilde{p}_{n-1}(x; \alpha, \beta q) \) with the result of Theorem 11 (b).

(c) Let \(\beta < 0 \). This result follows from the interlacing proved in Theorems 11 (b) and (e).

Remark 13. We note that our results differ from the interlacing results for the little \(q \)-Jacobi polynomials, given in [7, Section 3]. In [7, Theorem 2], the values of \(x \), given as the zeros of the polynomial \(p_n(x; \alpha, \beta q) \), are in actual fact the zeros \(y \) of the polynomial \(p_n(q^\gamma; \alpha, \beta q) \). The same is true for the interlacing results in [7, Theorems 4, 5, 6 and 7].

7. The \(q \)-Meixner polynomials

We note that in the definition of the \(q \)-Meixner polynomials, we let \(\tilde{x} = q^{-x} \), i.e., \(x = \frac{\ln z}{\ln q} \) and as \(x \) increases on \((0, \infty)\), \(\tilde{x} \) will increase on \((1, \infty)\). The variable \(x \) in our equations thus represents \(\tilde{x} \) in the definition of the polynomials and for \(0 < \beta q < 1 \) and \(\gamma > 0 \), the polynomial \(\tilde{M}_n(x; \beta, \gamma; q) \) is orthogonal on \((1, \infty)\).

Proposition 14.

\[
\tilde{M}_n(x; \beta, \gamma q; q) = \tilde{M}_n(x; \beta, \gamma; q) + \gamma q^{-2n+1}(q^n - 1) (\beta q^n - 1) \tilde{M}_{n-1}(x; \beta, \gamma; q);
\]

\[
\tilde{M}_n(x; \beta, \gamma q^2; q) = -\frac{(\beta \gamma q (q^n - 1) - q \gamma - 1) q^n \tilde{M}_n(x; \beta, \gamma; q)}{\gamma q + q^n} + \frac{\gamma q^{-n+1} (\beta q^n - 1) (q^n - 1) (\gamma \beta q + q^n x + \gamma q + 1) \tilde{M}_{n-1}(x; \beta, \gamma; q)}{\gamma q + q^n};
\]

\[
\tilde{M}_n(x; \beta, \gamma; q) = \frac{(\gamma \beta q + q^n x) \tilde{M}_n(x; \beta q, \gamma; q) - \gamma \beta (q^n + \gamma) (q^n - 1) q^{3n-2}(\gamma \beta q + x) \tilde{M}_{n-1}(x; \beta q, \gamma; q)}{q^n(\gamma \beta q + x)};
\]

\[
\tilde{M}_n(x; \beta, \gamma q; q) = \tilde{M}_n(x; \beta q, \gamma; q) - \gamma q^{-2n+1} (q^n - 1) \tilde{M}_{n-1}(x; \beta q, \gamma; q).
\]

Theorem 15. Let \(0 < \beta q < 1 \) and \(\gamma > 0 \) and denote the zeros of \(\tilde{M}_n(x; \beta, \gamma; q) \) by \(1 < x_{n,1} < x_{n,2} < \cdots < x_{n,n} < \infty \), the zeros of \(\tilde{M}_n(x; \beta q, \gamma; q) \) by \(y_{n,1} < y_{n,2} < \cdots < y_{n,n} \), the zeros of \(\tilde{M}_n(x; \beta q^2, \gamma; q) \) by \(z_{n,1} < z_{n,2} < \cdots < z_{n,n} \) and the zeros of \(\tilde{M}_n(x; \beta, \gamma q^2; q) \) by \(Z_{n,1} < Z_{n,2} < \cdots < Z_{n,n} \). Then, for \(i \in \{1, 2, \ldots, n - 1\} \),

(a) \(z_{n,i} < x_{n,i} < x_{n-1,i} < z_{n,i+1} < x_{n,i+1} \).
(b) \(Z_{n,j} < x_{n,j} < x_{n-1,j} < Z_{n,i+1} < x_{n,i+1} \),
(c) \(z_{n,j} < x_{n,j} < y_{n,j} < y_{n-1,j} < z_{n,i+1} < x_{n,i+1} \).

Proof. Let \(0 < \beta q < 1 \) and \(\gamma > 0 \). Since \(0 < q < 1 \), it follows that \(q^n - 1 < 0 \) and \(\beta q^n - 1 < 0 \).

(a) Since \(\tilde{M}_n(x; \beta, \gamma; q) \) and \(\tilde{M}_{n-1}(x; \beta, \gamma; q) \) belong to the same orthogonal sequence, their zeros interlace and therefore (8a) is in the form of (3). We have \(a(x) = 1 \) and for the given parameter values \(b(x) > 0 \) on \((1, \infty)\) and the required interlacing follows from Corollary 2 (a).

(b) Equation (8b) is in the form of (3), since the zeros of \(\tilde{M}_n(x; \beta, \gamma; q) \) and \(\tilde{M}_{n-1}(x; \beta, \gamma; q) \) satisfy (2). Taking into consideration the restrictions on the parameters, \(a(x) \) is a positive constant,

\[
b(x) = \frac{\gamma (\beta q^n - 1)(q^n - 1)}{q^n-1(\gamma q + q^n)}(q^n x + \gamma \beta q + \gamma q + 1)
\]

is a linear function with positive gradient and is positive on \((1, \infty)\). The interlacing follows from Corollary 2 (a).

(c) Since \(\tilde{M}_n(x; \beta q, \gamma; q) \) and \(\tilde{M}_{n-1}(x; \beta q, \gamma; q) \) belong to the same orthogonal sequence, their zeros satisfy the interlacing property (2) and both equations (8c) and (8d) are in the form of (3). Taking into consideration the restrictions on the parameters, the coefficients of both polynomials on the righthand side of (8c) are positive on \((1, \infty)\), and following Corollary 2 (a), \(x_{n,j} < y_{n,j} < y_{n-1,j} < x_{n,i+1} < y_{n,i+1} \) for each \(i \in \{1, 2, \ldots, n - 1\} \). Furthermore, the coefficients of both polynomials on the righthand side of (8d) are positive constants and applying Corollary 2 (a) for a second time, we obtain \(z_{n,i} < y_{n,i} < y_{n-1,i} < z_{n,i+1} < y_{n,i+1} \) for each \(i \in \{1, 2, \ldots, n - 1\} \). It is known, from (a), that \(z_{n,i} < x_{n,i} \) for each \(i \in \{1, 2, \ldots, n\} \), and the required combined interlacing follows.

\[\square \]

Corollary 16. For \(i \in \{1, 2, \ldots, n - 1\} \),

(a) \(z_{n,i} < z_{n-1,i} < x_{n-1,i} < y_{n-1,i} < z_{n,i+1} \),
(b) \(Z_{n,i} < Z_{n-1,i} < x_{n-1,i} < Z_{n,i+1} \),
(c) \(z_{n,i} < x_{n,i} < y_{n,i} < z_{n,i+1} < x_{n,i+1} \).

Proof. (a) The result follows from Theorem 15 (c) and the interlacing of the zeros of \(\tilde{M}_n(x; \beta q, \gamma; q) \) and \(\tilde{M}_{n-1}(x; \beta q, \gamma; q) \).

(b) The result follows from Theorem 15 (b) and the interlacing of the zeros of \(\tilde{M}_n(x; \beta q^2, \gamma; q) \) and \(\tilde{M}_{n-1}(x; \beta q^2, \gamma; q) \).

(c) We combine the interlacing of the zeros of \(\tilde{M}_n(x; \beta, \gamma; q) \) and \(\tilde{M}_{n-1}(x; \beta, \gamma; q) \) with the result of Theorem 15 (c) to obtain the required interlacing.

\[\square \]

In general, the zeros of \(\tilde{M}_n(x; \beta, \gamma; q) \) and \(\tilde{M}_{n-1}(x; \beta, \gamma q; q) \) do not interlace. These polynomials satisfy

\[
\tilde{M}_{n-1}(x; \beta, \gamma q; q) = \frac{-q^{2n-1}\tilde{M}_n(x; \beta, \gamma; q)}{\gamma q + q^n} + \frac{b(x)\tilde{M}_{n-1}(x; \beta, \gamma; q)}{q(\gamma q + q^n)}
\]

with \(b(x) = q^{2n}x + \gamma q (\beta q^n + q^n - 1) \), which represents a linear function that changes sign on \((1, \infty)\) for \(0 < \beta q < 1 \) and \(\gamma > 0 \). For example, when \(n = 2, \beta = 1, \gamma = 5, q = 0.1 \), the zeros of \(\tilde{M}_n(x; \beta, \gamma; q) \) are \([42.15, 5413.85] \) and the zero of \(\tilde{M}_{n-1}(x; \beta, \gamma q; q) \) is \([5.50] \).
8. The quantum q-Krawtchouk polynomials

Proposition 17.

\[K_{q_{n}}(x; p, N; q) = K_{q_{n}}(x; pq, N; q) + \frac{(q_{n+1} - q^n)(q^n - 1)}{pq^{2n+1}} K_{q_{n-1}}(x; pq, N; q). \] (9)

Theorem 18. Let $p > q^{-N}, n \in \{0, 1, \ldots, N\}$ and denote the zeros of $K_{q_{n}}(x; p, N; q)$ by $1 < x_{n,1} < x_{n,2} < \cdots < x_{n,n} < q^{-N}$ and the zeros of $K_{q_{n}}(x; pq, N; q)$ by $y_{n,1} < y_{n,2} < \cdots < y_{n,n}$. Then, for each $i \in \{1, 2, \ldots, n-1\}$, $x_{n,i} < y_{n,1} < y_{n,2} < \cdots < y_{n,i} < y_{n,i+1} < x_{n,i+1}$.

Proof. Let $p > q^{-N}$ and $n \in \{0, 1, \ldots, N\}$. The polynomials $K_{q_{n}}(x; pq, N; q)$ and $K_{q_{n-1}}(x; pq, N; q)$ belong to the same orthogonal sequence and the interlacing property (2) is satisfied. (9) is in the form of (3) with $a(x) = 1$ and, taking into consideration the restrictions on the parameters, $q^{N+1} < q^n$ and $q^n - 1 < 0$, $b(x)$ is also positive. We apply Corollary 2 (a) to obtain the required result.

Corollary 19. For $i \in \{1, 2, \ldots, n-1\}$, $x_{n,i} < x_{n-1,i} < y_{n-1,i} < x_{n,i+1}$.

Proof. This follows from Theorem 18 and the interlacing of the zeros of $K_{q_{n}}(x; pq, N; q)$ and $K_{q_{n-1}}(x; pq, N; q)$.

9. The q-Krawtchouk polynomials

Proposition 20.

\[K_{q}(x; p, N; q) = K_{q}(x; pq, N; q) + \frac{pq^n (q_{n+1} - q^n) (q^n - 1)}{q^n (1 + pq^n) (q + pq^n)} K_{q-1}(x; pq, N; q); \] (10a)

\[K_{q}(x; p, N; q) = \left(\frac{pq^n + 1}{pq^n + 1} \right) \frac{K_{q}(x; pq^2, N; q)}{pq^n + 1} \] \[+ \frac{p (q^n - 1)(q^{n+1} - q^n)}{q^n (pq^n + 1)(pq^{2n+1} + 1)} K_{q-1}(x; pq^2, N; q). \] (10b)

Theorem 21. Let $p > 0, n \in \{0, 1, \ldots, N\}$ and denote the zeros of $K_{q}(x; p, N; q)$ by $1 < x_{n,1} < x_{n,2} < \cdots < x_{n,n} < q^{-N}$, the zeros of $K_{q}(x; pq, N; q)$ by $y_{n,1} < y_{n,2} < \cdots < y_{n,n}$ and the zeros of $K_{q}(x; pq^2, N; q)$ by $y_{n,1} < y_{n,2} < \cdots < y_{n,n}$. Then, for each $i \in \{1, 2, \ldots, n-1\}$,

(a) $x_{n,i} < y_{n,i} < y_{n-1,i} < x_{n,i+1}$,

(b) $x_{n,i} < y_{n,i} < y_{n+1,i} < x_{n,i+1}$.

Proof. Let $p > 0, n \in \{0, 1, \ldots, N\}$. We note that $q^n - 1 < 0$ and since $q^m < q^n$ for $m > n, q^{N+1} - q^n < 0$.

(a) Since $K_{q}(x; pq, N; q)$ and $K_{q-1}(x; pq, N; q)$ belong to the same orthogonal sequence, the interlacing property (2) is satisfied and (10a) is in the form of (3). Both $a(x)$ and $b(x)$ are positive constants and the result follows from Corollary 2 (a).
(b) \(\tilde{K}_n(x; pq^2, N; q) \) and \(\tilde{K}_{n-1}(x; pq^2, N; q) \) belong to the same orthogonal sequence and (2) is satisfied. Equation (10b) is in the form of (3) and taking into account the restrictions on the parameters, it is clear that \(a(x) \) is a positive constant and \(b(x) > 0 \) represents a linear function that does not change sign on \((1, q^{-N}) \). The interlacing follows from Corollary 2 (a).

\[\square \]

Corollary 22. For \(i \in \{1, 2, \ldots, n - 1\} \),

(a) \(x_{n,i} < x_{n-1,i} < y_{n-1,i} < x_{n,i+1} \),

(b) \(x_{n,i} < y_{n,i} < Y_{n,i} < x_{n,i+1} < y_{n,i+1} < Y_{n,i+1} \).

Proof. (a) The result follows directly from Theorem 21(a) and the interlacing of the zeros of \(\tilde{K}_n(x; p, N; q) \) and \(\tilde{K}_{n-1}(x; p, N; q) \).

(b) When we replace \(p \) by \(pq \) in (10a), we obtain, using the same argument as in the proof of Theorem 21(a), that \(y_{n,i} < Y_{n,i} < Y_{n-1,i} < y_{n,i+1} < Y_{n,i+1} \), for each \(i \in \{1, 2, \ldots, n - 1\} \). We combine this with the interlacing results in Theorem 21 (a) and (b), which leads to the required result.

\[\square \]

10. The affine \(q \)-Krawtchouk polynomials

Proposition 23.

\[
\tilde{K}_n^{\text{Aff}}(x; p, N; q) = \tilde{K}_n^{\text{Aff}}(x; pq, N; q) + p (q^n - 1) \left(q^{N+1} - q^n \right) q^{-N} \tilde{K}_{n-1}^{\text{Aff}}(x; pq, N; q); \tag{11a}
\]

\[
\tilde{K}_n^{\text{Aff}}(x; p, N + 1; q) = \tilde{K}_n^{\text{Aff}}(x; p, N; q) - q^{-N-1} (q^n - 1) (pq^n - 1) \tilde{K}_{n-1}^{\text{Aff}}(x; p, N; q); \tag{11b}
\]

\[
\tilde{K}_n^{\text{Aff}}(x; p, N; q) = \frac{pq^{N+2}(q^n - 1) + q^n(pq - 1)}{q^n(pq^{n+1} - 1)} \tilde{K}_n^{\text{Aff}}(x; pq^2, N; q) + \frac{p(pq^2 - x)(q^n - 1)(q^{N+1} - q^n)}{q^{n-1}(pq^{n+1} - 1)} \tilde{K}_{n-1}^{\text{Aff}}(x; pq^2, N; q). \tag{11c}
\]

Theorem 24. Let \(0 < pq < 1 \), \(n \in \{0, 1, \ldots, N\} \) and denote the zeros of \(\tilde{K}_n^{\text{Aff}}(x; p, N; q) \) by \(1 < x_{n,1} < x_{n,2} < \cdots < x_{n,N} < q^{-N} \), the zeros of \(\tilde{K}_n^{\text{Aff}}(x; pq, N; q) \) by \(y_{n,1} < y_{n,2} < \cdots < y_{n,n} \), the zeros of \(\tilde{K}_n^{\text{Aff}}(x; pq^2, N; q) \) by \(Y_{n,1} < Y_{n,2} < \cdots < Y_{n,n} \), and the zeros of \(\tilde{K}_n^{\text{Aff}}(x; p, N + 1; q) \) by \(1 < z_{n,1} < z_{n,2} < \cdots < z_{n,n} < q^{-(N+1)} \). Then

(a) \(1 < x_{n,1} < y_{n,1} < y_{n-1,1} < x_{n,2} < \cdots < x_{n,n} < y_{n,n} < q^{-N} \),

(b) \(1 < x_{n,1} < z_{n,1} < x_{n-1,1} < x_{n,2} < \cdots < x_{n,n} < z_{n,n} < q^{-(N+1)} \),

(c) \(x_{n,i} < y_{n,i} < Y_{n-1,i} < x_{n,i+1} < y_{n,i+1} \), for each \(i \in \{1, 2, \ldots, n - 1\} \).

Proof. Let \(0 < pq < 1 \), \(n \in \{0, 1, \ldots, N\} \). We note that \(q^n - 1 < 0 \), \(pq^{n+1} - 1 < 0 \) and since \(q^n < q^m \) for \(m > n \), \(q^{N+1} - q^n < 0 \).
(a) Since \(\tilde{K}_n^{\text{Aff}}(x; pq, N; q) \) and \(\tilde{K}_{n-1}^{\text{Aff}}(x; pq, N; q) \) belong to the same orthogonal sequence, the interlacing property (2) is satisfied and (11a) is in the form of (3). Both \(a(x) \) and \(b(x) \) are positive constants and the result follows from Corollary 2 (a).

(b) The zeros of \(\tilde{K}_n^{\text{Aff}} \) lie in \((1, q^{-N}) \subset (1, q^{-(N+1)})\), \(a \) and \(b \) do not change sign on \((1, q^{-(N+1)})\) and since the zeros of \(\tilde{K}_n^{\text{Aff}}(x; p, N; q) \) and \(\tilde{K}_{n-1}^{\text{Aff}}(x; p, N; q) \) are interlacing, we can apply Corollary 2. Equation (11b) is in the form of (3) with \(a(x) = 1 \) and for the given values of the parameters \(b(x) < 0 \). The result follows from Corollary 2 (b).

(c) By replacing \(pq \) by \(pq \) in (11a), we deduce that the zeros of \(\tilde{K}_n^{\text{Aff}}(x; pq, N; q) \) and \(\tilde{K}_{n-1}^{\text{Aff}}(x; pq^2, N; q) \) satisfy (2). Equation (11c) is in the form of (3) and, for the given values of the parameters, \(a(x) \) is a positive constant and \(b(x) = \frac{pq^{-1}(q^{n+1}-q^n)}{q^{-1}(pq^{n+1}-1)}(pq^2 - x) \) represents a linear function which is positive on \((1, q^{-N})\) and the interlacing follows from Corollary 2 (a).

\[\square \]

Corollary 25. For \(i \in \{1, 2, \ldots, n-1\} \),

(a) \(1 < z_{n,1} < x_{n-1,1} < z_{n-1,1} < z_{n,2} < \cdots < x_{n-1,n-1} < z_{n-1,n-1} < z_{n,n} < q^{-(N+1)} \),

(b) \(x_{n,i} < x_{n-1,i} < y_{n-1,i} < x_{n,i+1} \), for each \(i \in \{1, 2, \ldots, n-1\} \).

Proof. (a) The interlacing result follows from Theorem 24 (b) and the interlacing of the zeros of \(\tilde{K}_n^{\text{Aff}}(x; p, N + 1; q) \) and \(\tilde{K}_{n-1}^{\text{Aff}}(x; p, N + 1; q) \). (b) The result follows from Theorem 24 (a) and the interlacing of the zeros of \(\tilde{K}_n^{\text{Aff}}(x; p, N; q) \) and \(\tilde{K}_{n-1}^{\text{Aff}}(x; p, N; q) \).

\[\square \]

11. The little \(q \)-Laguerre / Wall polynomials

Proposition 26.

\[
\begin{align*}
\tilde{p}_n(x; \alpha |q) &= \tilde{p}_n(x; \alpha q^2 |q) - \alpha q^n (q^n - 1) \tilde{p}_{n-1}(x; \alpha q^3 |q); \\
\tilde{p}_n(x; \alpha |q) &= \frac{(\alpha q - 1) \tilde{p}_n(x; \alpha q^2 |q) - \alpha q (q^n - 1) (q^n (\alpha q - 1) - x) \tilde{p}_{n-1}(x; \alpha q^3 |q)}{\alpha q^{n+1} - 1}. \quad (12a)
\end{align*}
\]

Theorem 27. Let \(0 < \alpha q < 1 \) and denote the zeros of \(\tilde{p}_n(x; \alpha |q) \) by \(0 < x_{n,1} < x_{n,2} < \cdots < x_{n,n} < 1 \), the zeros of \(\tilde{p}_n(x; \alpha q^2 |q) \) by \(y_{n,1} < y_{n,2} < \cdots < y_{n,n} \) and the zeros of \(\tilde{p}_n(x; \alpha q^3 |q) \) by \(Y_{n,1} < Y_{n,2} < \cdots < Y_{n,n} \). Then, for each \(i \in \{1, 2, \ldots, n-1\} \),

(a) \(x_{n,i} < y_{n,i} < y_{n-1,i} < x_{n,i+1} \),

(b) \(x_{n,i} < Y_{n,i} < Y_{n-1,i} < Y_{n,i+1} \).

Proof. Let \(0 < \alpha q < 1 \). We note that \(q^n - 1 < 0, \alpha q^n - 1 < 0 \) and \(q^n (\alpha q - 1) - 0 < 0 \).

(a) Since \(\tilde{p}_n(x; \alpha q |q) \) and \(\tilde{p}_{n-1}(x; \alpha q |q) \) belong to the same orthogonal sequence, the interlacing property (2) is satisfied and (12a) is in the form of (3). Both \(a(x) \) and \(b(x) \) are positive constants and the result follows from Corollary 2 (a).
(b) The polynomials \(\tilde{p}_n(x; \alpha q^2|q) \) and \(\tilde{p}_{n-1}(x; \alpha q^2|q) \) belong to the same orthogonal sequence, which implies their zeros satisfy property (2). Equation (12b) is in the form of (3). For the given values of the parameters, \(a(x) \) is a positive constant and \(b(x) = \frac{a(q(q^{-1})}{a(q^2x^{-1}) - 1} (x - q^n(\alpha q - 1)) > 0 \) on \((0, 1)\). The result follows from Corollary 2 (a).

\[\square \]

Corollary 28. For \(i \in \{1, 2, \ldots, n - 1\} \),

(a) \(x_{n,i} < x_{n-1,i} < y_{n-1,i} < x_{n,i+1} \),

(b) \(x_{n,i} < y_{n,i} < Y_{n,i} < x_{n,i+1} < y_{n,i+1} < Y_{n,i+1} \),

(c) \(x_{n,i} < x_{n-1,i} < Y_{n-1,i} < x_{n,i+1} \).

Proof. (a) This result follows directly from Theorem 27(a) and the interlacing of the zeros of \(\tilde{p}_n(x; \alpha|q) \) and \(\tilde{p}_{n-1}(x; \alpha|q) \).

(b) When we replace \(p \) by \(pq \) in (12a), we obtain, using the same argument as in the proof of Theorem 27(a), that \(y_{n,i} < Y_{n,i} < y_{n,i+1} < Y_{n,i+1} \), for each \(i \in \{1, 2, \ldots, n - 1\} \). We combine this with the results in Theorem 27 (a) and (b) to obtain the required result.

(c) The result follows directly from Theorem 27 (b) and the interlacing of the zeros of \(\tilde{p}_n(x; \alpha|q) \) and \(\tilde{p}_{n-1}(x; \alpha|q) \).

\[\square \]

12. The \(q \)-Laguerre polynomials

In [21], relations between different sequences of \(q \)-Laguerre polynomials are provided and interlacing results between the zeros of different sequences of these polynomials are given in [12, 21].

Proposition 29.

\[
\begin{align*}
\tilde{L}^{(a)}_n(x; q) &= \tilde{L}^{(a+1)}_n(x; q) - q^{-2n-a}(q^n - 1)\tilde{L}^{(a+1)}_{n-1}(x; q) \quad \text{cf. [21], Eq (4.12));} \\
\tilde{L}^{(a)}_n(x; q) &= \frac{(q^{n+1} - 1)q^n\tilde{L}^{(a+2)}_n(x; q)}{q^{n+1}x - q^{a+1} + 1} (q^n - 1)\tilde{L}^{(a+2)}_{n-1}(x;q) \quad \text{(13b)}
\end{align*}
\]

Theorem 30. Let \(\alpha > -1 \). We denote the zeros of \(\tilde{L}^{(a)}_n(x; q) \) by \(0 < x_{n,1} < x_{n,2} < \cdots < x_{n,n} < \infty \), the zeros of \(\tilde{L}^{(a+1)}_n(x; q) \) by \(y_{n,1} < y_{n,2} < \cdots < y_{n,n} \) and the zeros of \(\tilde{L}^{(a+2)}_n(x; q) \) by \(Y_{n,1} < Y_{n,2} < \cdots < Y_{n,n} \). Then, for \(i \in \{1, 2, \ldots, n - 1\} \),

(a) \(x_{n,i} < y_{n,i} < y_{n-1,i} < x_{n,i+1} < y_{n,i+1} \) (cf. [21, Theorem 3]),

(b) \(x_{n,i} < y_{n,i} < Y_{n-1,i} < x_{n,i+1} < Y_{n,i+1} \).

Proof. Let \(\alpha > -1 \). We note that \(q^n - 1 < 0 \) and \(q^{n+a} - 1 < 0 \).

(a) Since \(\tilde{L}^{(a+1)}_n(x; q) \) and \(\tilde{L}^{(a+1)}_{n-1}(x; q) \) belong to the same orthogonal sequence, the interlacing property (3) is satisfied and (13a) is in the form of (3). Both \(a(x) \) and \(b(x) \) are positive constants and the result follows from Corollary 2 (a).
(b) The polynomials \(\tilde{L}^{(\alpha+2)}_n(x; q) \) and \(\tilde{L}^{(\alpha+2)}_{n-1}(x; q) \) belong to the same orthogonal sequence, which implies (2) is satisfied and equation (13b) is in the form of (3). For the given values of the parameters, \(a(x) \) is a positive constant and

\[
b(x) = \frac{q^n - 1}{q^{n+\alpha+1}(q^{n+\alpha+1} - 1)} (q^{n+\alpha+1} x - q^{\alpha+1}) > 0
\]

on \((0, \infty)\) and the interlacing follows from Corollary 2 (a).

\[
\text{Corollary 31.} \quad \text{For } i \in \{1, 2, \ldots, n - 1\},
\]

(a) \(x_{n,i} < x_{n-1,i} < y_{n-1,i} < Y_{n-1,i} < x_{n,i+1} \),
(b) \(x_{n,i} < y_{n,i} < Y_{n,i} < x_{n,i+1} < y_{n,i+1} < Y_{n,i+1} \).

\[
\text{Proof.} \quad \text{(a) See [12, Theorem 5.1].}
\]

(b) When we replace \(p \) by \(pq \) in (12a), we obtain, using the same argument as in the proof of Theorem 30(a), that \(y_{n,i} < Y_{n,i} < y_{n-1,i} < Y_{n-1,i} < y_{n,i+1} < Y_{n,i+1} \), for each \(i \in \{1, 2, \ldots, n - 1\} \). We combine this with the results in Theorem 30(a) and (b) to obtain the required result.

\[
\text{Remark 32. In [12], the result in Corollary (31) (a) is extended to also include a continuous shift of the parameter } \alpha. \text{ Furthermore, examples are provided to show that, in general, interlacing breaks down between the zeros of: } \tilde{L}^{(\alpha)}_n(x; q) \text{ and } \tilde{L}^{(\alpha+3)}_n(x; q), \tilde{L}^{(\alpha)}_n(x; q) \text{ and } \tilde{L}^{(\alpha+3)}_{n-1}(x; q) \text{ and } \tilde{L}^{(\alpha+1)}_n(x; q) \text{ and } \tilde{L}^{(\alpha)}_{n-1}(x; q).
\]

13. The alternative \(q \)-Charlier or \(q \)-Bessel polynomials

\[
\text{Proposition 33.}
\]

\[
\tilde{y}_n(x; \alpha; q) = \tilde{y}_n(x; \alpha q; q) = \frac{\alpha q^{2n} (q^n - 1)}{(q + \alpha q^{2n}) (1 + \alpha q^{2n})} \tilde{y}_{n-1}(x; \alpha q; q); \quad (14a)
\]

\[
\tilde{y}_n(x; \alpha; q) = \frac{(\alpha q^{2n} + 1) \tilde{y}_n(x; \alpha q^2; q)}{\alpha q^n + 1} - \frac{\alpha q^n (q^n - 1) \left((\alpha q^{2n+1} + 1)x + q^n \right) \tilde{y}_{n-1}(x; \alpha q^2; q)}{(\alpha q^{2n+1} + 1) (\alpha q^n + 1)}. \quad (14b)
\]

\[
\text{Theorem 34. Let } \alpha > 0. \text{ We denote the zeros of } \tilde{y}_n(x; \alpha; q) \text{ by } 0 < x_{n,1} < x_{n,2} < \cdots < x_{n,n} < 1, \text{ the zeros of } \tilde{y}_n(x; \alpha q; q) \text{ by } z_{n,1} < z_{n,2} < \cdots < z_{n,n} \text{ and the zeros of } \tilde{y}_n(x; \alpha q^2; q) \text{ by } Z_{n,1} < Z_{n,2} < \cdots < Z_{n,n}. \text{ Then, for } i \in \{1, 2, \ldots, n - 1\},
\]

(a) \(x_{n,i} < z_{n,i} < z_{n-1,i} < x_{n,i+1} < z_{n,i+1} \),
(b) \(x_{n,i} < Z_{n,i} < Z_{n-1,i} < x_{n,i+1} < Z_{n,i+1} \).

\[
\text{Proof. Let } \alpha > 0.
\]

18
(a) Since \(\tilde{y}_n(x; \alpha q; q) \) and \(\tilde{y}_{n-1}(x; \alpha q; q) \) belong to the same orthogonal sequence, the interlacing property (2) is satisfied and (14a) is in the form of (3). Taking into consideration the values of the parameters, both \(a(x) \) and \(b(x) \) are positive constants and the result follows from Corollary 2 (a).

(b) The polynomials \(\tilde{y}_n(x; \alpha q^2; q) \) and \(\tilde{y}_{n-1}(x; \alpha q^2; q) \) belong to the same orthogonal sequence, which implies (2) is satisfied and equation (14b) is in the form of (3). For the given values of the parameters, \(a(x) \) is a positive constant and \(b(x) \) represents a linear function that does not change sign on \((0, 1)\) and the interlacing follows from Corollary 2 (a).

\[
\text{Corollary 35. For } i \in \{1, 2, \ldots, n-1\},
\]

(a) \(x_{n,i} < x_{n-1,i} < z_{n-1,i} < Z_{n-1,i} < x_{n,i+1} \),

(b) \(x_{n,i} < z_{n,i} < Z_{n,i} < Z_{n-1,i} < x_{n,i+1} < z_{n,i+1} \).

Proof. (a) The result follows from Theorem 34 (a) and (b) and the interlacing of the zeros of \(\tilde{y}_n(x; \alpha; q) \) and \(\tilde{y}_{n-1}(x; \alpha; q) \).

(b) When we replace \(\alpha \) by \(\alpha q \) in (12a), we deduce that \(z_{n,i} < Z_{n,i} < Z_{n-1,i} < z_{n,i+1} < Z_{n,i+1} \) and we combine this with the interlacing results in Theorem 34 (a) and (b) to obtain the required result.

\[
\text{14. The } q \text{-Charlier polynomials}
\]

Proposition 36.

\[
\begin{align*}
\tilde{C}_n(x; \alpha q; q) &= \tilde{C}_n(x; \alpha; q) - \alpha q^{-2n+1} (q^n - 1) \tilde{C}_{n-1}(x; \alpha; q); \\
\tilde{C}_n(x; \alpha q^2; q) &= \frac{(\alpha q + 1) q^n \tilde{C}_n(x; \alpha; q)}{\alpha q + q^n} - \frac{\alpha q (q^n - 1) (q^n x + \alpha q + 1) \tilde{C}_{n-1}(x; \alpha; q)}{q^n (\alpha q + q^n)}.
\end{align*}
\]

Theorem 37. Let \(\alpha > 0 \) and denote the zeros of \(\tilde{C}_n(x; \alpha; q) \) by \(1 < y_{n,1} < y_{n,2} < \cdots < y_{n,n} < \infty \), the zeros of \(\tilde{C}_n(x; \alpha q; q) \) by \(y_{n,1} < y_{n,2} < \cdots < y_{n,n} \) and the zeros of \(\tilde{C}_n(x; \alpha q^2; q) \) by \(Y_{n,1} < Y_{n,2} < \cdots < Y_{n,n} \). Then, for \(i \in \{1, 2, \ldots, n-1\} \),

(a) \(y_{n,i} < x_{n,i} < x_{n-1,i} < y_{n,i+1} \),

(b) \(y_{n,i} < x_{n,i} < x_{n-1,i} < Y_{n,i+1} \).

Proof. Let \(\alpha > 0 \). Since \(\tilde{C}_n(x; \alpha; q) \) and \(\tilde{C}_{n-1}(x; \alpha; q) \) belong to the same orthogonal sequence, the interlacing property (2) is satisfied and (15a) and (15b) are in the form of (3).

(a) Taking into consideration the values of the parameters, both coefficients of \(\tilde{C}_n(x; \alpha; q) \) and \(\tilde{C}_{n-1}(x; \alpha; q) \) in (15a) are positive constants and the result follows from Corollary 2 (a).

(b) In (15b), the coefficient of \(\tilde{C}_n(x; \alpha; q) \) is a positive constant and the coefficient of \(\tilde{C}_{n-1}(x; \alpha; q) \), \(b(x) = \frac{\alpha (1-q^2)}{q^n (\alpha q + q^n)} \), represents a linear function with positive values on \((0, \infty)\). The result follows from Corollary 2 (a).
Corollary 38. For $i \in \{1, 2, \ldots, n-1\}$,

(a) $y_{n,i} < y_{n-1,i} < x_{n-1,i} < y_{n,i+1}$,
(b) $Y_{n,i} < Y_{n-1,i} < x_{n-1,i} < Y_{n,i+1}$.

Proof. (a) The result follows from Theorem 37 (a) and the interlacing of the zeros of $\tilde{C}_n(x; \alpha q; q)$ and $\tilde{C}_{n-1}(x; \alpha q; q)$.
(b) The result follows from Theorem 37 (b) and the interlacing of the zeros of $\tilde{C}_n(x; \alpha q^2; q)$ and $\tilde{C}_{n-1}(x; \alpha q^2; q)$.

Remark 39. In general, the zeros of $\tilde{C}_n(x; \alpha; q)$ and $\tilde{C}_{n-1}(x; \alpha; q)$ do not interlace. These polynomials satisfy

$$\tilde{C}_n(x; \alpha; q) = a(x)\tilde{C}_n(x; \alpha q; q) + \frac{(\alpha q + q^n)(q^n - 1)\alpha}{q^{n-2}x} \tilde{C}_{n-1}(x; \alpha q; q)$$

with $a(x) = \frac{q^{2n}x^2 + q(q^n - 1)}{q^{n-2}x}$, a function that changes sign on $(1, \infty)$ for $\alpha > 0$. For example, when $n = 3$, $\alpha = 8$, $q = 0.5$, the zeros of $\tilde{C}_n(x; \alpha; q)$ are $[11.75, 65.75, 377.50]$ and the zeros of $\tilde{C}_n(x; \alpha; q)$ are $[6.95, 44.05]$. However, for $\alpha \in \left(0, \frac{q^{2n}}{q(q - 1)}\right)$, $a(x) > 0$ on $(1, \infty)$ and we have the interlacing pattern: $y_{n,i} < x_{n,i} < y_{n-1,i} < y_{n,i+1} < x_{n,i+1}$ for each $i \in \{1, 2, \ldots, n-1\}$.

15. The Al-Salam-Carlitz I polynomials

Proposition 40.

$$U_n^{(\alpha)}(x; q) = U_n^{(\alpha q)}(x; q) + \alpha(q^n - 1)U_{n-1}^{(\alpha q)}(x; q).$$

Theorem 41. Let $\alpha < 0$ and denote the zeros of $U_n^{(\alpha)}(x; q)$ by $\alpha < x_{n,1} < x_{n,2} < \cdots < x_{n,n} < 1$ and the zeros of $U_n^{(\alpha q)}(x; q)$ by $\alpha q < y_{n,1} < y_{n,2} < \cdots < y_{n,n} < 1$. Then, for $i \in \{1, 2, \ldots, n-1\}$, $x_{n,i} < y_{n,i} < y_{n-1,i} < x_{n+1,i} < y_{n,i+1}$.

Proof. Let $\alpha < 0$. Since $U_n^{(\alpha q)}(x; q)$ and $U_{n-1}^{(\alpha q)}(x; q)$ belong to the same orthogonal sequence, the interlacing property (2) is satisfied and (16) is in the form of (3). Taking into consideration the values of the parameters, $a(x) > 0$ and $b(x) < 0$ are constants on $(\alpha, 1)$ and the result follows from Corollary 2 (b).

Corollary 42. For $i \in \{1, 2, \ldots, n-1\}$, $x_{n,i} < x_{n-1,i} < y_{n-1,i} < x_{n,i+1}$.

Proof. The result follows from Theorem 41 and the interlacing of the zeros of $U_n^{(\alpha)}(x; q)$ and $U_n^{(\alpha)}(x; q)$.

In general, the zeros of $U_n^{(\alpha)}(x; q)$ do not interlace with the zeros of $U_n^{(\alpha q^2)}(x; q)$ or with the zeros of $U_{n-1}^{(\alpha q^2)}(x; q)$. For example, when $n = 2$, $\alpha = -16$ and $q = 0.9$, the zeros of $U_n^{(\alpha)}(x; q)$ are $[-15.77, -12.78]$, the zeros of $U_n^{(\alpha q^2)}(x; q)$ are $[-12.64, -10.08]$ and the zero of $U_{n-1}^{(\alpha q^2)}(x; q)$ is $[-11.96]$.
16. The Al-Salam-Carlitz II polynomials

Proposition 43.

\[
\begin{align*}
\tilde{V}_n^{(\alpha q)}(x; q) &= V_n^{(\alpha)}(x; q) - \alpha q(q^n - 1)q^{-n}\tilde{V}_n^{(\alpha)}(x; q); \\
\tilde{V}_n^{(\alpha q^2)}(x; q) &= (\alpha q^{n+1} + 1 - \alpha q)\tilde{V}_n^{(\alpha)}(x; q) - \alpha q^{n+1}(q^n - 1)(q^n x + 1 - \alpha q)\tilde{V}_{n-1}^{(\alpha)}(x; q).
\end{align*}
\] (17a)

Theorem 44. Let \(0 < \alpha q < 1\). Denote the zeros of \(\tilde{V}_n^{(\alpha)}(x; q)\) by \(1 < x_{n,1} < x_{n,2} < \cdots < x_{n,n} < \infty\), the zeros of \(\tilde{V}_n^{(\alpha q)}(x; q)\) by \(y_{n,1} < y_{n,2} < \cdots < y_{n,n}\) and the zeros of \(\tilde{V}_n^{(\alpha q^2)}(x; q)\) by \(y_{n,1} < y_{n,2} < \cdots < y_{n,n}\). Then, for \(i \in \{1, 2, \ldots, n-1\}\),

(a) \(y_{n,i} < x_{n-1,i} < y_{n,i+1} < x_{n,i+1}\),

(b) \(y_{n,i} < x_{n,i} < x_{n-1,i} < y_{n,i+1} < x_{n,i+1}\).

Proof. Let \(0 < \alpha q < 1\). Since \(V_n^{(\alpha)}(x; q)\) and \(V_{n-1}^{(\alpha)}(x; q)\) belong to the same orthogonal sequence, the interlacing property (2) is satisfied and both (17a) and (17b) are in the form of (3).

(a) Taking into consideration the values of the parameters, both the coefficients of \(\tilde{V}_n^{(\alpha)}(x; q)\) and \(\tilde{V}_{n-1}^{(\alpha)}(x; q)\) in (17a) are positive constants and the result follows from Corollary 2 (a).

(b) Taking into consideration the restrictions on the parameters, \(a(x)\) in (17b) is a positive constant and \(b(x) = \frac{a(x-q)}{q^n}(q^n x - \alpha q + 1)\) represents a linear function with positive values on \((1, \infty)\). The result follows from Corollary 2 (a).

Corollary 45. For \(i \in \{1, 2, \ldots, n-1\}\),

(a) \(y_{n,i} < y_{n-1,i} < x_{n-1,i} < y_{n,i+1}\),

(b) \(y_{n,i} < y_{n,i} < x_{n-1,i} < y_{n,i+1} < x_{n,i+1}\),

(c) \(y_{n,i} < y_{n-1,i} < x_{n-1,i} < y_{n,i+1}\).

Proof. (a) The result follows from Theorem 44 (a) and the interlacing of the zeros of \(\tilde{V}_n^{(\alpha q)}(x; q)\) and \(\tilde{V}_{n-1}^{(\alpha q)}(x; q)\).

(b) By replacing \(\alpha\) with \(\alpha q\) in (17a), we obtain \(y_{n,i} < y_{n,i} < y_{n-1,i} < y_{n,i+1} < y_{n,i+1}\). We combine this with the interlacing results in Theorem 44 (a) and (b) to obtain the required result.

(c) The result follows directly from Theorem 44 (b) and the interlacing of the zeros of \(\tilde{V}_n^{(\alpha q^2)}(x; q)\) and \(\tilde{V}_{n-1}^{(\alpha q^2)}(x; q)\).

Remark 46. In general, the zeros of \(\tilde{V}_n^{(\alpha)}(x; q)\) and \(\tilde{V}_{n-1}^{(\alpha)}(x; q)\) do not interlace. These polynomials satisfy

\[
\tilde{V}_{n-1}^{(\alpha)}(x; q) = -q^{n-1}\tilde{V}_n^{(\alpha)}(x; q) + b(x)\tilde{V}_{n-1}^{(\alpha)}(x; q)
\]

with \(b(x) = q^{-1}(q^n x - \alpha q)\), a function that changes sign on \((1, \infty)\) for \(0 < \alpha q < 1\). However, when we restrict \(\alpha\) in such a way that \(0 < \alpha q < q^n < 1\), the zeros interlace as follows: \(x_{n,i} < y_{n-1,i} < x_{n-1,i} < y_{n,i+1}\) for each \(i \in \{1, 2, \ldots, n-1\}\).
17. Appendix

In this section, some comments on how to use our Maple codes that can be downloaded from http://www.mathematik.uni-kassel.de/~koepf/Publikationen are given. The first program called qMixRec1(F,q,k,S(n),a,s) finds a recurrence equation of the form

\[S(n,a) = \sum_{j=0}^{J} \sigma_j S(n-j,aq^j), J = 1,2,\ldots, \]

where \(S(n,a) = \sum_{k=-\infty}^{\infty} F, F \) is a function of \(k, n \) and \(a \), and \(s \) is a positive integer. The second one denoted by qMixRec2(F,q,k,S(n),a,\(s_0,b,s_1,s_2,r \)) finds a recurrence equation of the form

\[S(n,a,bq^{s_1}) = \sum_{j=0}^{J} \sigma_j S(n-j,aq^{s_0},bq^{s_2+rj}), J = 1,2,\ldots, r \in \{0,1\}, \]

where \(S(n,a,b) = \sum_{k=-\infty}^{\infty} F, F \) is a function of \(k, n \) and \(a \) and \(b \), and \(s_0, s_1, s_2 \) are positive integers.

For example, for the big \(q \)-Jacobi polynomials, by (1)

\[F := \frac{(\alpha q, \gamma q; q)_n(q^{-n}, \alpha \beta q^{s+1}, x; q)_kq^k}{(\alpha \beta q^{s+1}; q)_n(\alpha q, \gamma q, q; q)_k}, \]

and equations (5a), (5b) and (5c) are obtained using, qMixRec1(F,q,k,P(n),alpha,1), qMixRec1(F,q,k,P(n),beta,1) and qMixRec2(F,q,k,P(n),alpha,1,beta,1,0,1), respectively.

18. Acknowledgments

This work has been supported by a TWAS/DFG fellowship for A.S. Jooste and the Institute of Mathematics of the University of Kassel (Germany) for D.D. Tcheutia. All these institutions receive our sincere thanks.

References

[9] E. Heine, Untersuchungen ber die Reihe \(1 + \frac{(1-q^a)(1-q^b)}{(1-q^c)} x + \frac{(1-q^a)(1-q^b)(1-q^d)}{(1-q^e)(1-q^f)} x^2 + \cdots \), Journal für die reine und angewandte Mathematik 34 (1847), 285–328.

