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We derive and factorize the fourth-order difference equations satisfied by orthogonal polynomials obtained from
some modifications of the recurrence coefficients of classical discrete orthogonal polynomials such as: the
associated, the general co-recursive, co-recursive associated, co-dilated and the general co-modified classical
orthogonal polynomials. Moreover, we find four linearly independent solutions of these fourth-order difference
equations, and show how the results obtained for modified classical discrete orthogonal polynomials can be extended
to modified semi-classical discrete orthogonal polynomials. Finally, we extend the validity of the results obtained for
the associated classical discrete orthogonal polynomials with integer order of association from integers to reals.
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1. INTRODUCTION

Let % be a regular linear functional [3] on the linear space 2 of polynomials with real
coefficient and (P, ), a sequence of monic polynomials, orthogonal with respect to %, i.e.

(i) P,(x) = x™ 4 lower degree terms,
(i) (U, Py Pp) = knOym;kn # 0, n€N,

where N = {0, I, ...} denotes the set of non-negative integers. Here, (-,-) means the duality
bracket and §,, ,, the Kronecker symbol.
(P,), satisfies a three-term recurrence equation

Pn-‘rl(-x) =(x- Bn)Pn(x) - ‘YnPn—l(-x)7 n= 07 (1)
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with the initial conditions
P_1(x) =0, Pyx)=1, 2

where B, and v, are real numbers with v, # 0, Vn € N5y and N-, denotes the set
N-o={1,2,...}.
When the polynomial sequence (P,,), is classical discrete [28,29], i.e. orthogonal with

respect to a positive weight function p defined on the set I/ = {a,a+ 1,...,b — 1} and
satisfying the first-order difference equation (called Pearson-type difference equation):
A(op) = 7p, 3)
with
Xopli =0, VneEN, )

each P, satisfies the difference equation
L.(v(0)) = o (0)AVy(x) + 7(0)Ay(x) + Ayy(x) = 0,

where

A= =3 = Do +27).

o is a polynomial of degree at most two and 7 a first degree polynomial; the operators A and
V are forward and backward difference operators defined by

AP(x)=P(x+ 1) — P(x), VPx)=Pkx)—Px—1) VYPeE 2

The previous difference equation written in terms of forward and backward operators can
be rewritten in terms of the shift operators as

Du(y()) = (TL)(yx) = (e(x+ 1) + 7(x + 1)T* = Qo (x + 1)

+17x+ 1) - AT +ox+Dhyx) =0, n=0 5
where .7 and [ are the shift and the identity operators defined, respectively, by

TP(x)=P(x+1), IPx)=Px) VPE 2.

The orthogonality condition (ii) reads as

b—1
> P OPUPu(S) = Kby, ko #0, ¥n €N,

s=a

The coefficients f3,, vy, and A, are given in Refs. [28,29] for any family of classical
discrete orthogonal polynomials and in Refs. [12,16,18,34] in the generic case.
The classical discrete families are Hahn, Kravchuk, Meixner and Charlier orthogonal
polynomials [28].

Some modification of the recurrence coefficients (3,,),, and (,), of the Eq. (1) lead to new
families of orthogonal polynomials (see Refs. [23,24,33] and references therein) such as the
associated, the general co-recursive, co-recursive associated, co-dilated and the general
co-modified classical discrete orthogonal polynomials [23]. Each of these new families of
orthogonal polynomials satisfy a common fourth-order linear homogeneous difference
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equation with polynomial coefficients of bounded degree. In general, they cannot satisfy a
common second-order linear homogeneous difference equation with polynomial coefficients
of bounded degree. Therefore, these new polynomials are not semi-classical but belong to the
discrete Laguerre—Hahn class (see “Preliminaries and notations” section). Many works have
been devoted to the derivation of these fourth-order difference equations. Their polynomial
coefficients have been given explicitly in Refs. [1,7,8,10,19,32,36] for the rth associated
classical discrete orthogonal polynomials.

In 1999, using symmetry properties inside the three-term recurrence relation,
hypergeometric representation and symbolic computation, the coefficients of the fourth-
order difference equation for the co-recursive associated Meixner and Charlier orthogonal
polynomials were given [20].

Despite the fact that the coefficients of the fourth-order difference equation satisfied by the
perturbed classical discrete orthogonal polynomials require heavy computations for being
very large, we have succeeded in deriving and factorizing these fourth-order difference
equations and also finding a basis of four linearly independent solutions of all the difference
equations satisfied by perturbed systems of the classical discrete orthogonal polynomials
considered. Moreover, we have given explicitly the coefficients of the fourth-order difference
equation satisfied by the rth associated classical discrete orthogonal polynomials in terms of
the polynomials o and 7 appearing in Eq. (3). Also, we have found interesting relations
between the perturbed polynomials, the starting ones and the functions of the second kind (see
the next section for the definition). Therefore, the results obtained in the framework of this
paper are more general and complete the known results in this area. In fact, we deal not only
with the derivation of the fourth-order difference equation for the associated and the co-
recursive associated classical discrete orthogonal polynomials but with the derivation, the
factorization and the solution basis of the fourth-order difference equations satisfied by the
orthogonal polynomials obtained from some modifications of the recurrence coefficients of
classical discrete orthogonal polynomials as was done for the continuous case [9]. Some
examples of these families are the rth associated, the generalized co-recursive, the generalized
co-dilated, the generalized co-recursive associated and the generalized co-modified classical
discrete orthogonal polynomials.

In the second section, we recall definitions and known results needed for this work. The third
section is devoted to the derivation and the factorization of the fourth-order difference
equation. In the fourth section, we solve difference equations and represent the perturbed
classical orthogonal polynomials in terms of solutions of second-order difference equations.
In the fifth section, we first give hypergeometric representation of solutions of Eq. (5) and
difference operators F”, S and T for the rth associated Charlier and Meixner orthogonal
polynomials; secondly, we extend the results obtained for the associated orthogonal
polynomials with integer order of association from integers to reals. Finally, we show how the
results obtained for modified classical discrete orthogonal polynomials can be extended to
modified semi-classical discrete orthogonal polynomials (see the next section for the
definition).

2. PRELIMINARIES AND NOTATIONS

In this section, we first define the semi-classical and the Laguerre—Hahn class of a given
family of orthogonal polynomials of a discrete variable. Next, we present the families of
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associated, generalized co-recursive, generalized co-recursive associated, generalized
co-dilated and generalized co-modified orthogonal polynomials, and give relations between
the new sequences and the starting ones.

Each linear functional % generates a so-called Stieltjes function S of % defined by

02[ n
S = =3 ) (©)

n+1
n=0 z

where (%,x") are the moments of the functional %. The linear functional % satisfies in
general a simple functional equation living in &, the dual space of 2. Appropriate
definitions of A(%) and P%, where P is a polynomial that allows building a simple difference
equation for the functional, which generalizes in some way the Pearson-type difference
equation for the weight p [7,10,13,34].

If the Stieltjes function S(x) satisfies a first-order linear difference equation of the form

d(x) S(x + 1) = C(x) S(x) + D(x), (7

where ¢, C and D are polynomials, the functional % satisfies in ' a first-order difference
equation with polynomial coefficients. In this case, the functional % and the corresponding
orthogonal polynomial sequence (P,), belong to the discrete semi-classical class (and are
therefore called semi-classical discrete) which includes the classical discrete families
[7,10,13,14,25,26,34].

Each semi-classical discrete orthogonal polynomials sequence (P,), satisfies a common
second-order difference equation [7,10,13,14,22,25,26,34]

M, (y(x)) = (Ia(x, )T + L (x, )T+ Io(x, m)) y(x) = 0, (8)

where I;(x,n) are polynomials in x of degree not depending on n. Notice that this second-
order difference equation for the semi-classical discrete orthogonal polynomials appears in
Ref. [10] as Zy,, (y) = O (using Equations 3.16 and 3.20).

An important class, larger than the semi-classical discrete one, appears when the Stieltjes
function satisfies a A-Riccati difference equation [7,10,13]

d(x 4+ 1) AS(x) = G(x) S(x) S(x + 1) + E(x)S(x) + F(x) S(x + 1) + H(x), ©)]

where ¢ # 0, G, E, F and H are polynomials fulfilling a certain conditions (see Ref. [11],
Eq. 15). The corresponding functional % satisfies then a complicated quadratic difference
equation in 2’. 9 and the corresponding orthogonal polynomial families are said to belong to
the discrete Laguerre—Hahn class [7,10,13], denoted as A-Laguerre—Hahn class.

It is well known that any A-Laguerre—Hahn orthogonal polynomial sequence satisfies a
common fourth-order difference equation of the form [7,10]

2o, )T + T3¢, )T + T2, )T + J1(x, )T+ Jo(x, m)D)y(x) = 0,

where J;(x,n) are polynomials of degree not depending on n.

Furthermore, it is known that many perturbations of the recurrence coefficients of any
Laguerre—Hahn family generate orthogonal polynomials belonging to the Laguerre—Hahn
class and, therefore, satisfy a fourth-order differential or difference equation [7,10,13,21,34].
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2.1. Perturbation of Recurrence Coefficients

Now we consider a sequence of polynomials (P,,),,, orthogonal with respect to a regular linear
functional %, satisfying Eq. (1). Orthogonal families we will deal with are the associated
orthogonal polynomials and those obtained from finite modification of the recurrence
coefficients in Eq. (1). Some examples of these families are:

2.1.1. The Associated Orthogonal Polynomials (P'"),,

Given r € N the rth associated of the polynomials (P,),, is a polynomial sequence denoted
by (P,([))n and defined by the recurrence equation (1) in which 8, and v, are replaced by 3,
and v,.,, respectively

P = (x = Bur) POX) = Yurr PO (), n=1 (10)
with the initial conditions

P2 =0, PP =1. an

The family (P;’))n, thanks to Favard’s theorem [6] (see also Ref. [3]), is orthogonal.
It is related to the starting polynomials and its first associated by the relation [4]

P,_ P(l)
! (12)
r* r*l
where the sequence (I',,),, is defined by
L,=][% n=1 Ti=1 (13)

2.1.2. The Co-recursive (P, and the Generalized Co-recursive Orthogonal
Polynomials (P'¥*1)

The co-recursive of the orthogonal polynomial (P,,),, denoted by (PE[‘] )n» Was introduced for
the first time by Chihara [2], as the family of polynomials generated by the recursion formula
(1) in which By is replaced by By + w :

P () = (v = BIPH () — yPM (v), n=1, (14)

with the initial conditions
PH@ =1, PH@)=x-po—n, (15)

where u denotes a real number.

This notion was extended to the generalized co-recursive orthogonal polynomials in
Refs. [4,5,31] by modifying the sequence (f3,), at the level k. This yields an orthogonal
polynomial sequence denoted by (P[k“'“] ), and generated by the recursion formula

PR = (c — B HPRHI(x) — , PR (), n=1, (16)
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with the initial conditions
k k, *
Pyt =1, P =x— By, (17)
k k
where B, = B, forn # k and B, = B + pu.

The orthogonal polynomial sequence (P¥*)), is related to (P,), and is associated by
Ref. [23]

PEM(x) = Py(x) — pP@PY L ), n=k+1,
PlH(x) = Py(x), n=k. (18)

Use of Eq. (12) transforms the previous equations in

P2 P P(l)
Pty = — LI g0 g 4 (1 PR ) b, n= k1,
k k
PEM(x) =P,(x), n=k (19)

Obviously, we have the relations Pl = PI#l and Pl%(x) = P,,.

2.1.3. The Co-recursive Associated (P{,’*’”),, and the Generalized Co-recursive
Associated Orthogonal Polynomials (P!I"**)),

The co-recursive associated as well as the generalized co-recursive associated of the
orthogonal polynomial sequence (P,),, denoted by (P{"*!), and (P{"*)),  respectively, are,
the co-recursive and the generalized co-recursive (with modification on ;) of the associated
(Pﬁl’)),, of (P,),, respectively. Thanks to Eq. (18), they are related with (P,,),, and is associated by

{rO.u} — plr.u}
Pnr # _Pnr“

3

and

PR = PO = pPP PN, n =kt

Pkl (x) = PO(x), 0 =k (20)

The generalized co-recursive associated orthogonal polynomials can also be expressed
using Egs. (12) and (20) by

P,_1(x Prir ()P (x
plrki ) = ( - 1<1 ) P >k i ¢ >> PO )
r— r+

(PR pPY 0P )
Fr*l Fr+k

)P,Hr(x), n=k+1,

Pir,k-u}(x) = pg‘)(x), n=k. 2
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2.1.4. The Co-dilated (P\)),, and the Generalized Co-dilated Orthogonal
Polynomials (P\¥M)

The co-dilated of the orthogonal polynomial sequence (P,),, denoted by (P'n)‘l)n, was
introduced by Dini [4], as the family of polynomials generated by the recursion formula (1)
in which v, is replaced by A vy, i.e.

PN ) == BIPMN ) — y,PY (), n=2 (22)

with the initial conditions

Pl =1, PN@=x— By, P = Bix—B)—An, (23)
where A is a non-zero real number.
This notion was extended to the generalized co-dilated polynomials in Refs. [5,31] by
modifying the sequence (v,), at the level k. This yields an orthogonal polynomial sequence
denoted by (Plnk"‘l)n and generated by the recurrence equation

PN = o = BoPI @) =y, PN, =1, 24)

with the initial conditions
Pilw =1, PN =x— B, (25)

where yj = vy, for n # k and y,:k = AY.
The orthogonal polynomial sequence (P,'f‘”")n is related to (P,), and is associated by
Ref. [23]

PN ) = Py) + (1 = VPP ), n=k+1,
(26)
PGy = P,(v), n=k.

Use of Eq. (12) transforms the previous equation in

Py = (1= 4 NP1 (0P,
' T

(I = VP 1(x0)Py(x)

T PP ), n=k+1,
-1

)Pn(x) +

PR = P,(x), n=k @7
Fork=1or A =1, we have

LAl _ plA k1|
pitAl = pli = plkll — p

2.1.5. The Generalized Co-modified Orthogonal Polynomials (P'¥*)

New families of orthogonal polynomials can also be generated by modifying at the same time
the sequences (3,),, and (+y,), at the levels k and K, respectively. When k = &/, the new family
obtained [23], denoted by (P¥:*Al) 'is generated by the three-term recurrence relation

PEEA Gy = (x — B )PEmN () — 7 PR = (28)
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with the initial conditions
PEF N =1, PEM e = x— gy, (29)

where B;f = B, y;k = vy, forn # k and ,B: = Br + u, y: = Ay This family is represented
in terms of the starting polynomials and their associated by Ref. [23]

PRAl ) = Py(x) + (1 = M WePie1(6) — pPr)PE ) ), n=k+ 1,
Pl = P,(v), n=k. (30)
The latter relation can also be written as

plhadl ) <1 - )\)?k1(x)Pg)1 " MPk(xi_‘chl)l(x)> P,
k—1 k

N ((1 — VP ()PLx) MP%(X)> PV ), n=k+l,
Ly Ty

PEM(x) = P,(x), n=k (31

2.2. Results on Classical Discrete Orthogonal Polynomials

Next, we state the following lemmas which are essential for this work. The first one is due to
Atakishiyev, Ronveaux and Wolf [1] but the representation with the shift operator given by
Eq. (32) is taken from Ref. [10] (see also Ref. [32]).

Lemma 1 [1] Given a classical discrete orthogonal polynomial sequence (P,), satisfying
Eq. (5), the following relation holds

*

O_//
D, (P”,(x) = (7 — T'> (Qogy + 1y — AT — Qoyy + 1)DPu(x),  (32)
%k
where the operator D, is given by
D, = (o0 + 7)) (00T 2 — Qo + 71y — AT + (o + D) (33)
and
oc=ox), 7=70x), op=cx+1), TpHh=TCx+1), op=cx+2). (34
It should be noticed that [, and D: are related by
*
oD, (py) = p (o + (o) +101) Da(y), Vy, (35)
where p is the weight function satisfying Eqs. (3) and (4).

LEmMMA 2 [28]

1. Two linearly independent solutions of the difference equation

L) = o ()AV y(x) + T(x)Ay(x) + A,y (x) = 0,
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are P, and Q,, where (P,), is a polynomial sequence, orthogonal with respect to the
weight function p defined on the set I = {a,a+ 1,...,b — 1}, satisfying Egs. (3) and (4).
The constants A, is given by

A= == Do 427,

while Q, is the function of the second kind, defined by

b—1
QA@=$ZM, x€& {a,a+1,...b—1). (36)

S —X

When x =t € {a,a+ 1,...,b — 1}, then Q,(t) is defined by

b—1
Qn(t) — L Z p(S)Pn(S) ) (37)

p(t) as=s=b—1,s#t s—t

2. The polynomials P, and the function Q, are two linearly independent solutions of
the recurrence equation (1).

3. FACTORIZATION OF FOURTH-ORDER DIFFERENCE OPERATORS

Given (P,), a classical discrete orthogonal polynomial sequence, we consider in general
all transformations which lead to new families of orthogonal polynomials denoted by (P,),
and are related to the starting sequence by

Py(x) = AyPY), | 4+ By()Pusr, n=k, (38)

where A, and B, are polynomials of degree not depending on n, and k, k' € N. (Among
these transformations are the associated orthogonal polynomials and those obtained from
finite modification of the recurrence coefficients of Eq. (1). Some examples are listed in
Subsection 2.1).

We have the following:

THEOREM 1
1. The orthogonal polynomials (P,),=p satisfy a common fourth-order linear difference

equation
Fu(y(0) = (4o, )T +J306,m) T + T2, ) T2 4106, m) T +Jo(x, mDy(x) =0, (39)

where the coefficients J; are polynomials in x, with degree not depending on n.
2. The operator F, can be factored as product of two-second order linear difference
operators S, and T, :

X, b =S,T,, n=k (40)

where X,, is a polynomial of fixed degree, depending on P,_;, o and 7, and the coefficients
in' S, and T, are polynomials of degree not depending on n.
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Proof In the first step, we solve Eq. (38) in terms of PEII_:,{,]

PE,I_‘)_k,I(X) — Pn(-x) _ABn((xx))Pn-‘rk(x) (41)

and substitute the previous relation in Eq. (32) in which n is replaced by n 4 k. Then we use
Eq. (5) (for P, ) to eliminate the term ﬁ‘anJrk and get

Mn+k(pn) = ng'P,th + bOPn+k7 (42)

where b; are rational functions and M, a second-order linear difference operator given in
%k
terms of operator D, (see Eq. (32)) by

Mosk(3) = An(TANT2A)D, (Al) . (43)

Next, we shift Eq. (42) and use again Eq. (5) to eliminate TP, , and get

T My (Py) = ¢1.7 Puyic + coPuy. (44)
We reiterate the same process using the previous equation and get

T Mysr(Py) = di T Pyyr + doPrsi (45)

where c; and d; are again rational functions.
The fourth-order difference equation is given in determinantal form from Eqs. (42), (44)
and (45)

by by M (Py)

F.(P)=|c1 co TM.u(Py) |=o0. (46)
dl dO yZMn+k(Pn)

The previous equation can be written as
l]:n(Pn) = e2§2Mn+k(Pn) + elg_Mn-‘rk(Pn) + eOMn+k(Pn) = [Sn—ﬂ—n](Pn) = 07 (47)
where the second-order difference operators S,, and T, are given by

Sn = 629*2 +eJ + 6()”, T, = Mn+k~ (48)

We conclude the proof by noticing that after cancellation of the denominator in Eq. (46), the
coefficients e; are polynomials of degree not depending on n. O

We would like to mention that the factorization pointed out in the previous theorem
(except the case of the first associated classical discrete orthogonal polynomials already
treated in Ref. [1] (see, also Ref. [10], equation 4.16 for more details) seems to be a new
results and has lots of applications as will be shown later.

In what follows, we will denote, respectively, by F, FUk#l [Frkul "FIRAl gng Flrdl he
fourth-order difference operators for the rth associated, the generalized co-recursive, the
generalized co-recursive associated, the generalized co-dilated, and the generalized
co-modified orthogonal polynomials.
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3.1. Some Consequences

For the rth associated classical discrete orthogonal polynomials (Pf[))n, we have used the
previous theorem and the representation given in Eq. (12) to compute the operators S, and
T, using Maple 8 [27].

PROPOSITION 1 The two difference operator factors of the fourth-order difference operator
for the rth associated classical discrete orthogonal polynomials are

S\ = g@Pri@+ D7) + o)’ 70y = T+ @) (=302 + 30, — 0)
X (—271) + 801, + { — 600) — 20+ 20T + (—00)(80) — 600) — 30)
X (11 + o) onyd(—¢ — A1 — 801y — 37+ 20 + 8oz) + 4711))Pr—1(x) — 02
X (80(1) — 602 — 30)(T(1y + 0(1))(60%2)0'(1) + 20'(2)7(21) —60r0(yT(1) — 80'(2)0'12
+ 60'(22)7(1) + 2002071y — 2002)TT(1) — 2002)T0) + 2000 001y0 + 3711y + 67{0}1)
— 370\ —1 — 20¢Tay — 40log) + 2001 + 5TyA—1{ — 6A— 100y — (AL,
+ 16403, — 4415, + Cray + 28 00) = Phot 4 8h- 100y — 1600)00)¢
— 800 Tyl) Pr—1(x + 1)T — 0)(8oy — 602y — 30) (—30¢) + 301y — 0)
X 2P, —;(x + 1)75 =3P, j(x+ DA 7y + TP - i (x + Doy — T Pr—i(x + 1T
+4ryouy Pr—1(x + 1) — 21nyo gy Pr—1(x) + 30 Pr— 1 (x + 1oy
— 2P, (x+ o)A r—; — 2P,—1(x + DoyT — 20y A= 1 Pr—1(x + 1)
+ P j(x+ DA+ Affjpr—l(-x + 1) — 20700)Pr—1(x) + o) Ar— 1 Pr—1(X)
+ oyPr—1(x) + oy Pr—1(x)DL I, (49)
TO = 0‘(22) P 1(x + DP,— 1 () (1) + 01)T > — 0@ Pr— 1()(— TPy (x + 1)
= 20pPr—1(x+ 1)+ oPr— 1(xX) + AP y(x + 1) (=200 + Appr — 7)) T
—o)Pr—1(x+ Do+ D(—7)Pr—1(x + 1) — 200)pr—1(x + 1)

+ oyPr-1(x) + A 1P (x + D), (50)

where (P,,), is the sequence of classical orthogonal satisfying Eq. (5), r € N~ and

{=511) — 6001) +800) +20 — 37— A — Apys

Moreover, we have

SYTY = Xu(o, 7, Py, A—)EY, (51)
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where
X, =Xu(o,7,Pr—1, A1) = o)Pr— 1 (x + 1) (=302 + 301y — ) (7yPr—1(x + 1)
+20Pr—1(x+1) — oyPr—1(x) — A1 Pr—1(x + 1)) o1y — 60(2) — 30)
X@2Pr—1(x+ 1)7%1) =3P —1(x+ DA 17 + 7y Pr—1(x + Doy — 1y Pr—1(x+ D7
+41y00)Pr—1(x+1) = 270y00)Pr—1(x) + 30(h Pr—1(x + 1)o2) — 2P, —1(x + 1) o) Ar—1
— 2P, 1(x+ Doyt —20)A—1Pr—1(x+ 1)+ Py (x+ DA, 7+ /\E,IP,_](x—l- 1)
—200y0)Pr—1(x) + o(yAr—1Pr—1(x) + oy Pr—1(x)7)
and
FO = Lix,n)T* + xe,n) T2 + L(x,) T + 1, (x,n).T + Ip(x,n)l, (52)
with
Io(x,n,r) = —om(oc+ 1),
Ii(x,n,r)= 60'(22)0'1 + 20'(2)7(21) — 6000 T1) — 80'(2)0'(21) + 60(22)7(1) + 200070
— 200711y — 200)T0(1) +202001y0 + 3711y + 67{0(1) — 3T{A -1 — 20T
— 4000y + 2001 + 5T\ 14— 6M 101 L — I+ 16007 — 4LT], + P

+20%00) — {PA—1 + 8N - 100y — 160001 — 8021 L,

Lx,n,r) == +(=57+ 1400, = 20, + 40+ 71 — 1401)){* + (—5T05, — 40
+1270yA -1 — 20A,— 101y — 872+ 1lor+ 24170y +41o0)T—3ToyT— 8A 1T
— 16071 — 3100)0+ 28010+ 6A,— 10— 2\ — 4807y, — 187 + 54001y 701)
= 590011y + 22A— 102y + 106020(1)) { +2(—401y — T+ 0+ 30
+ 11)) Boy T+ 6A,— 101y — Yoy 001y — 601 T(1) + 277 4307+ 3op)o
—TooT— or+ 20101 — 17701y — 2A—10 — 8A—1000) + 12000 T(1) — ST(1HAr—1

+905, + A2 +67),

L(x,n,r)=(—27+ 6002 — Ar—1 +20+ 371 — 60— (A — 8oy — 37+ 20+ 8oy
+471))(—27+ 602 — Ar—1 +20+ 371y — 60(1){+2(—40o1) — T+ 0+ 300
+ 71y) BoyT+6A— 101y — Yoy0(1y — 601 T(1) + 272+ 3A T+ 300
—TooyT— 0oT+20T1 — 11701y — 2A—10 — 8A—102) + 12002y T(1y — ST1yAr—1

+907%, + A7 467,



FOURTH-ORDER DIFFERENCE EQUATIONS 789
14()(,}’1,}’) = _(80'(1) - 60’(2) - 30’) (30’(2) +o— 30’(1) + 3’7'(1) - 27')(_80'(1) +20'_ 27’+ 27’(1)

+ 60’(2) - g)

COROLLARY 1  The fourth-order difference operator can also be factorized as
ST, = X(0,7,0r 1, M- DFY, (53)

where the expression X(o, 7, Q,—1, Ar—;) and the operators Si:) and Tflr) are obtained from
the expression X(o, 7, P,—;, A\,—;) and operators §£lr) and "I]—flr), respectively by replacing the
polynomials P,_; with the function Q,_.

The proof is obtained by a direct computation using that P,, and Q,, satisfies Eq. (5).

PROPOSITION 2 The operator T, for the generalized co-recursive and co-dilated classical
discrete orthogonal polynomials (PLk"“])n and (PLk=)‘|)n (with k = 1), denoted, respectively by
Thewd 'I]—lnk’)‘I are obtained in the same way:

T = 6o P2)PE(x + () + 00)> T2 — PEX)(T01) — Ay + 207) (— 0 Pr(x)
+ 200 Pr(x + 1) = MPr(x + 1) + 7 Pr(x + DY’ T + Pi(x + D)(o + 1)

X(_T(])Pk(x+ ]) - 20'(1)Pk(x + 1) + U(])Pk(x) + /\kPk(X + 1))2|], (54)

T =00\ Py (8 + DPL(x A DPi— 1 OPYE)(T) + 0(1)* T = Py (0)P(0)

X (1) = Ay + 207) X (—7(nPe(x + 1) — 200y Pr(x + 1) + 01 Pr(x) + M Pr(x + 1))

X (=200 Pr-1(x + 1) + oy Pr—1(x) = Pr—1(x + D71y + M1 Pr—1(x + 1) T

+ Pi—1(x + DP(x + (o + I)(—1yPr(x + 1) — 200 Pr(x + 1) + 01 Pi(x)

+ MPr(x + D)(—20()Pr—1(x + 1) + oy Pr—1(x) — Pr—1(x + D7)

+ M= Pr—(x + D)1 (55)

The operators S, for the generalized co-recursive and co-dilated classical orthogonal

polynomials are very large expressions; however, they can be obtained using the previous
theorem and Eqs. (21) and (31). The same remark applies for the factors S, and T, of the

fourth-order difference equation satisfied by the generalized co-recursive associated and
generalized co-modified classical orthogonal polynomials.

4. SOLUTIONS OF THE FOURTH-ORDER DIFFERENCE EQUATIONS

In the following, we solve the fourth-order difference equation satisfied by the five
perturbations listed in the second section and represent the new families of orthogonal
polynomials in terms of solutions of second-order difference equations.

THEOREM 2 Let (P,), be a classical discrete orthogonal polynomial sequence, r € N~
and (Pﬁ,’)),Z the rth associated of (P,),. Four linearly independent solutions of the difference
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equation

FPy) =0 (56)
satisfied by (P;’)),,, where [F;’) is given by Eq. (52), are
AP @) = PP, 1(X)Py (%),
BY(x) = p(x)P,— (x)Qur(x),
(57)
COx) = p(x)Qy—1(x) Ppyr(),
D (x) = p(x)Qy— 1 (X) Qs (),

Q,, denoting the function of second kind associated to (P,), which is defined by Egs. (36)
and (37).
Moreover, P\" is related to these solutions by

BY(x) = CY() _ p)(Pr—1(0)Qntr(X) — Q= 1(X)Ps(x))

P;’)(x) = - - Vn e N, 58)
Vr € N5y,
where I is given by Eq. (13) and vy, defined as
b—1
Yo=Y p(s). (59)
Proof In the first step, we solve the difference equation
TY) = 0.
To do this, we use Egs. (12), (35), (38), (43) and (48) to get
T70) = My ()
— P (0P, (o DPy (x4 2D, () (60)

=P, j(X)Pr—1(x + DP,—;(x + 2)p(x)(0 (x) + 7(x)) (o) + 7(1)Dysr(2)/ 01),

where the functions y and z are related by y = zpP,—;. Since the two linearly independent
solutions of D,+,(z) = 0 are P,, and Q,, (see Lemma 2), the two linearly independent
solutions of 'I]'ilr)(y) = 0 (which are also solutions of Eq. (56) thanks to Eq. (51)) are

AL X)) = p)P,— 1 ()P (x),  BL(X) = p)Pr—1(X)Qpr(x). (61)

Use of Egs. (50) and (53) taking care that the weight function p and the function Q,, satisfy
Egs. (3) and (5), respectively, leads to

T70) = 0 101 (x + DO 1(x + 2)p () (0 (x) + Ty + 7)) Dsr(2) /oty (62)

where the functions 'y and z are related by y = zpQ,— ;. Equation (62) permits us to conclude
that the two independent solutions of —ﬂ'i:)(y) = 0 (which are also solutions of Eq. (56) thanks
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to Eq. (53)) are given by
COx) = p(X)Q,—1(X)Quir(x), D) = px)Qr—1(x)Qpsr(x).

The four solutions of Eq. (56) obtained are linearly independent since P, and Q,, are two
linearly independent solutions of Eq. (5) and have different asymptotic behavior (see
Remark 1).

The proof of Eq. (58) already given in Ref. [9] uses the fact that since (P,), and (Q,),
satisfy Eq. (1), each solution given in Eq. (57) satisfies the recurrence equation

Xny1 = & = Buyr)Xn — YurrXn—1, n=1. (63)
]

Remark 1 Following the method used in Ref. [28] (see p. 98), we get the asymptotic
formula for Q,(z) in the discrete case

1;[0 Yi 1
0= 57 (1v0(1)),

provided that when z — oo, the shortest distance from z fo (a,b) is bounded away from zero.
The previous asymptotic formula can be used to deduce the asymptotic formula for the
solutions of the fourth-order difference equation give in Eq. (57).

If we replace the function of second kind Q,, in Eqs. (57) and (58) by Q,, such that P, and
0, are two linearly independent solutions of Eq. (1) (with the initial condition Q_;(x) =
—(1/p(x)) and Qy(x) fixed) and Eq. (5), then the four linearly independent solutions of
Eq. (56) are obtained just by replacing Q,, in Eq. (57) by O,,. Also, the relation between Pf[)7
P, and Q, is obtained by replacing Q,, in Eq. (58) by Q,; however, the denominator y,I', of
Eq. (58) is to be replaced by the term p(x)(P,—(x)0,(x) — O,—(x)P,(x)) which is constant
with respect to x. This remark applies also for Theorems 3—6.

THEOREM 3 Let (P,), be a classical discrete orthogonal polynomial sequence, k € N and
(PL""*])n the generalized co-recursive of (P,),. Four linearly independent solutions of the
difference equation

Frl(y)y =0, n=k+1, (64)
satisfied by (PElk’“]),,, are (withn=k+1)

AR () = p(x)P; (x) Py (),

B (x) = p(x)P}(x)Q0n(x),
(65)

CHH(x) = [y, Tk + mp(X)Pr(x) Ox(x)] Py(x),

DM (x) = [Tk + up(x) Pe(x) Qk(0)] O (%),

where Q,, is the function of second kind associated to (P,), defined by Egs. (36) and (37).
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Moreowver, P,[f’”“] is related to these solutions by

plist — DYoLk + WPOQIPAD) — WP oy )

Yol'k

Proof By analogy with the proof of Theorem 2, we show using Egs. (19), (43) and (48) that
T, 0) = plo+ 1(00) + 7)PE) P{(x+ DPYx + 2)Du(2)/ (),

where TL""“} is given by Eq. (50) and y(x) = z(x)p(x)P,f(x). Therefore, AELk”‘] and B,[fV“] given
by

AFM@) = pWPLOPA),  BM() = p(0)P{(0)Qu(),
are two linearly independent solutions of

TEH(y) = 0.

Next, straightforward computation using Egs. (19), (58) and (65) leads to

k, k,
CE, 7Y R pngn N1

[kl —
Pn M= 'Y()Fk

. on=k+1. (67)

Since the generalized co-dilated polynomials P,[qk”‘] and the function B,[f"‘] given by Eq. (65),
are both solutions of the linear homogenous difference equation

[FE,k"*](y) =0, n=k+1,

it follows from Eq. (67) that the function CL"‘“', given by Eq. (65), is also a solution of the
previous equation.

To prove that the function D[nk‘“] is solution of Eq. (68), we proceed as follows:

In the first step, we write the expression [F,[lk"“](CElk’“]) in terms of P,(x) and P,(x + 1) using
the first-order difference equation satisfied by the weight (see Eq. (3)) and the second-order
difference equation satisfied by P, (see Eq. (5))

Ferl(clirl(x)) = GEM ()P, (x) + HEM ()P, (x + 1), n=k+1,

where G,[qk’“] and HL"’”“] are functions depending on p, o, 7, Py, Oy and A,
In the second step, we use the fact that C,[lk’”] is a solution of Eq. (64) and also the fact that
P,(x) and P,(x + 1) are linearly independent to deduce that

GLk,M] _ HE{@M] =0, forn=k+1.

In fact, assuming that GL""’“] (x) # 0, we get:

H[k’”](x)
G P, () + HE M ()P, (x + 1) = 0=P,(x) = — P, (x + ]).
n n GLk’“](x)
We deduce that G,[qk’“](x) = —H,[qk"’“](x) (since P, is a monic polynomial of degree n).

We conclude that

0= G x)P,(x) + H¥ M (0)P,(x + 1) = =GEH()AP,), n=k+1.
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The previous equation gives a contradiction because GLk"“] # 0 and AP,) # 0 (since
(A(P,)), is orthogonal with respect to a(x + Dp(x + 1) [29]).

Finally, we use the fact that C,[f"’“] and DE"“] are multiples of P,, and Q,, respectively, with
the same multiplier factor namely v,y + wpPr Oy (see Eq. (65)), and the fact that P,, and Q,,
satisfy the same second-order difference equation (5) to get

FEH(DEM(x) = GEM(0)Q,(x) + HEM0)Q,(x+ D=0, n=k+1.

Therefore, D[nk*“] is also a solution of Eq. (64).

To complete the proof, we notice that AL"””, BL"*“], CE,"’“] and DL"'“] are four linearly
independent solutions of Hk’“] (y) = O since P,, and Q,, are two linearly independent solutions
of Eq. (5) enjoying different asymptotic properties. 0

In the following, we give the equivalent of the previous theorem for the co-dilated classical
discrete orthogonal polynomials. The proof is similar to the one of the previous theorem by
using relations (26), (27), (43), (48) and (58).

THEOREM 4  Let (P,), be a classical discrete orthogonal polynomial sequence, k € N and
(PLk”\l)n the generalized co-dilated of (P,), Four linearly independent solutions of the
difference equation

Flrl(yy =0, n=k+1, (68)
satisfied by (PLkT’\l),, are (withn=k+1)

AN () = p(X)P— 1 (0)PL(X)P,(x),

BIN(x) = p(x)Py1 (1) Pe(x)Qu(x),

CEAN ) = [ypli + (A = Dyp(x) Pie () Q0P (), ©
DN @) = [yl + (A = Dyp(x) Pe () Q1)1 Q0 ().
The co-dilated P* is related to these solutions by
il — Yol + O = DYp)Pe 1 0)Q@IPA () = (X = Dyip@)Pi s )PL) Q)
p e ,
n=k+1. (70)

We furthermore, give the solutions for the generalized co-recursive associated and the
generalized co-modified classical orthogonal polynomials. The proofs are similar to the
previous ones.

THEOREM 5 Let (P,), be a classical discrete orthogonal polynomial sequence, k € N,
r € N~y and (P{f’k‘“" ) the generalized co-recursive associated with (P,),. Four linearly
independent solutions of the difference equation

Friwlpy =0, n=k+1, (71)
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satisfied by (PI"5M), are (withn = k+ 1)

AT (00) = (Yo Tk Pr— 1 () = ()P (0) [Pr— 1(0) Qi1 (X) = O 1(6) P r 00D p() Py (%),
B (x) = (5oL r Py 1(x) = p()Piyr () [Pry () Qe (%) = Q1 (%) Pi ()] plx) Q1)
CIPm () = (VoL kr Q@1 () = p(0) Qi () [Pr— 1 () Qi () = Q1 (X) Py r () p(X)Pyy g (),
DI (x) = (oL r Qr— 1 () = p(0) Qe (0) [Pr— () Qi (%) = Oy 1(3) Py r (X)) Qs ().

Moreover, P,{[‘k’”} is related to these solutions by

Pkl _ (Pr_lm PP () [Py ()Qut (6) = O /()P (V)]
" 'Y()Frfl 'Y%Fr—lrk-k—r

) p(x)Q}H—r(x)

_ (er(x) _ p)Qpey (%) [Pr—1(0) Qe (X) — Or—1(X) Py ()]

()P r(X),
’Y()Fr—l 'Y%Fr—lrlﬁLr > P "

r=1, n=k+1. (72)

THEOREM 6 Let (P,), be a classical orthogonal polynomial sequence, k € N, and
(PEL"*“’)‘])” the generalized co-modified of (P,),. Four linearly independent solutions of the
difference equation

Flrri(yy=0, n=k+1, (73)

satisfied by (PX*M) are (withn = k+ 1)

ARBN () = [(A = DyPr—1(0)PL(X) + wP; ()] p(x) Py (%),
BEEA () = [(X = 1)y Pr— 1 (0)Pr(x) + P ()]p(x) Q0 (),

(74)
CEEA () = [y, Tk + (X = DYp()Pr—1 () Ok (x) + mp(x)Pr(x) Qr(x)1P (),

D¥#M(x) = [yl + (A = 1)y p(0)Py— 1 ()i (x) + pp(x)Py(x)Qx ()]0, (x).

The co-dilated PL"’”*)‘] is related to these solutions by

plkal <1 L ])’ykp(x)Pk—I(x)Qli‘(X) + up(x)Pk(x)Qk(x)) .0
Yol k

(N = Dyp)Py— 1 (0)Pr(x) + wp(x)P}(x)
Yol

On(x), n=k+1.  (75)

5. APPLICATIONS

5.1. On the rth Associated Charlier and Meixner Polynomials

For Charlier and Meixner polynomials, we give explicitly the operators S, T, F* and the
coefficient X(o, 7, P,—1,A,—1). We also give the hypergeometric representation of the two
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linearly independent solutions of Eq. (5) from which the hypergeometric representation of
the four solutions of the four-order difference equation [Fflr) (y) = 0 can be deduced.

5.1.1. The Charlier Case

The data for the Charlier polynomials cfj’) (x) (denoted in this paper by C,(x, a)) involved in

Egs. (1)—-(5) are [17]:

a)(
' )

O'(X):X, ’T()C):CZ_X, )\n:n; P(x):;

xeN, B,=n+a, v,=na, a>0.

The recurrence equation as well as the difference equation (see Eqs. (1) and (5)) satisfied
by the Charlier polynomials are given, respectively, by

aCyti(x,a)=m+a—x)Cy(x,a) —nC,—(x,a), n=1, C_i(x,a)=0, Co(x,a)=1, (76)
aC,(x+1,a)+(n—x—a)C,(x,a)+xC,(x—1,a)=0 (77)
The monic Charlier polynomial P,(x) is related to the Charlier polynomial by
Py(0)=(=a)"Cy(x,a),
and satisfies the following normalized recurrence equation (see Eq. (1))

Ppi(0) =& —n—a)P,(x) —anP,—(x), n=1, P_1(x)=0, Po(x)=1. (78)

The hypergeometeric representation of two linearly independent solutions of the
recurrence equations (76) and (77) are given by
1
- ) ; (79)
a

B 1 ( 1,1 )
C,(x,a) =—»F al. (80)

—-n, —x
Cn(x> a) :2FO _

G+ Dn+ D>\ n+2,x+2

Remark 2

The polynomial C,(x,a) given by Eq. (79) is the Charlier polynomial and satisfies
therefore Eqs. (76) and (77).

The function C,(x,a) given by Eq. (80) satisfies also Eqgs. (76) and (77). This can be
verified by using the command sumrecursion [15] which gives the recurrence
equation for sums of hypergeometric type.

C.(x,a) and C,(x,a) are linearly independent solutions of Eq. (76) because the
Casorati determinant of these solutions of the second-order difference equation (76) given
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by (p(x) here is the Charlier weight)
Wa(x,a) = Cp-1(x,@)Cy(x,a) = Cp(x,@)C,h—1(x, @)
=TI (x + 127 g¥!

_ F(n)a l—n
2p(x)

is different from zero.

C,(x,a) and C,(x, a) are linearly independent solutions of Eq. (77) because they remain
unchanged when we permutate the role of x and n, and the difference equation (77) is
obtained from Eq. (76) by permutation of x and n.

The difference operators are given by
FO = a(n+20) (x + DT * + (—2ax — 4 — 203 + 2n° — 6a+ 6 — 3nl? — n?¢
+7n¢ — 2073 + Qax — 5a, + 2L+ 483 — n? — 4fax — 10¢a + n® + 4a — 62
+6nL% +4n% — 4né — 2axn) T + Qax + 2 — 283 + 4a — 3nl? — n* +nd)T

+an— 2420+ DI,

SV = —a?(x+2)P, 1 (x+ D(—n = 20(x+3)T >+ (—(x +2)(x+H(n — 2 +20)
X+ {+ D+ DPo1(0) + (c+2)(x +DQRax +2¢ — 20 +4a — 3nl? — n*¢+nd)

X Proy(x+ )T +a*(x+2)(n+20)(x + 3P, (x + D,

T =P,_1(x+ DPr— 1 (0)(x +2)%aT > + (—(x + D(n+ £+ Dx + 2)P,—1(x)* — ¢
X(n+{+Dx+2)P—1(x+ 1P 1(x)T + (—alx+ D(x+2)P,—1(x + 1)Pr—1(x)
— fa(x+2)P,— (x + D)L
Here, { is given by
{=r—x—a-—2,
and P,_ represents the monic Charlier polynomial of degree r — 1. The factor X,, is given by
X0, 7, P, Am) = —(x + 2)(x + 3)(x + D2 + 4)( — DP—y(x + P2 (x) + (x + 4)
X (x 4+ 3)(x + 2)(x + D(ax + 2¢ + 2a — 2P (x + 1P, -1 (%)

+ (c+2)(x + 3)(x + 4+ 2a + ax — {HP_ [ (x + 1).
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5.1.2. The Monic Meixner Case

The data for the Meixner polynomials mﬁ,”‘”)(x) (denoted in this paper by M, (x, b, c)) are
[17]:

b X
ocx)=x, T(x)=(—Dx+bc, A, =(—0)n, p(x)z(lx'c, x €N,
—1
Bn:n+(n+b)07 n:n(n+b 2)6’ b>0, 0<c<l,

1—-c 1-0

where (b), represents the Pochhammer symbol defined by

b),=bb+1)...b+x—1), xEN, (b)=1.

The recurrence equation as well as the difference equation (see Egs. (1) and (5)) satisfied
by the Meixner polynomials are given, respectively, by

c(n+b)M,11(x,b,¢) = (n(c + 1) + be + (¢ — DM,(x, b, ¢) — nMy,—1(x,b,0), n =1,

M-i(x,b,c) =0, Mox,b,c) =1, 1)

cx+bM,(x+1,b,¢c)— ((1+c)x+bc+n(c— 1))M,(x,b,c)+xM,(x—1,b,c)=0. (82)
The monic Meixner polynomial P,(x) is related to the Meixner polynomial M, (x,b,c) by
C n
P, = b)) Mux.b.o),
c—

and satisfies the following normalized recurrence equation (see Eq. (1))

Pn*l(x)v

P ()= (x— n+(n+b)c)Pn(x) _n(nt+b—1)c

1— (1—c¢)

n=1, Po1(x)=0, Po(x)=1. (83)

Hypergeometric representations of two linearly independent solutions of Eqs. (81) and
(82) are (with b # 1)

-_n,—Xx
Mn(x7b7c)=2Fl 1—- ’
b

11 b+ 1
TG+ n+b+ D) yLatnto+

(84)
b(x + D)(n + DL(x + b)T(n + b) 32 X+2.n42

M, (x,b,c) =

Remark 3 The proof of the fact that M,(x,b,c) and M,(x,b,c) are linearly independent
solutions of Eqs. (81) and (82) (for b # I) is obtained following the way indicated in
Remark 2. In this case, the Casorati determinant of the solutions M,,(x, b, c) and M,,(x, b, c)
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given by
Zn(x b C) n ]()C b C)Mn(x b C) Mn(xabac)Mn—](vavc)

=¥ b — DI T Ix + 1) (b — DIy ™"
20(n + b)[(x + b)  2(0),px)

where p is the Meixner weight, vanishes only for b = /. Notice that the Casorati
determinants W, (x,a) for Charlier and Z,(x, b, ¢) for Meixner cases were computed using
the relations they satisfy

n
Wn+1(x7 a) = ;Wn(xa Cl), Z,,+](x,b,c) ( ¥ b)Z ()C b C)a

and the Maple command sumrecursion [15] in order to find the first-order difference
equations satisfied by W;(x,a) and Z;(x, b, ¢).

The function C,(x, a) given by Eq. (80) can also be derived from M, (x, b, ¢) (see Eq. (84))
using the following relation linking the Charlier and Meixner polynomials [17]

_1 Mn
C,(x,a) im <xb +b)

Remark 4 The second solutions C,(x, a) and M,,(x, b, c) of Egs. (76) and (77) (for Charlier)
and Eqgs. (81) and (82) (for Meixner) given, respectively, by Egs. (80) and (84) seem to be
new results. These hypergeometric representations are covergent and were obtained in the
following way: First, we neglect the first x + / terms in the expression of Q,(x) given by

Eq. (36) and get B P
00 = 3 POPS)
p(x) L shx

Then we use the Maple command sumtohyper [15] to get the hypergeometric
representation of Q,(x) for the Charlier and Meixner polynomials. Finally, we remark that
0,(x) satisfies Eq. (1) and multiply it by an appropriate factor in order to ensure the

symmetry Q,(x) = Qx(n).
The difference operators are given by

FO =cQ{+N—c— Dax+4)b+x+3)T* = (4 —2bcx+2cN* +2N?* — 24fc — 273
—10xc + 922 + 4¢3 +92cN + 9N — IN? — 124c* +97%¢ — 3°N — 2x%¢?
— 2bc?x — 10xc? — 2x%¢ — 6bc? — 6bc — 6N — 6¢*N — 12¢N — 12073
— (=2 44bcx — 8xcN — 5beN — 4cN? — 4N + N3 +4fc + 47 + l4xe — 1242
— 10¢be — 48x%c — 16{xe — 4{bex — 2¢3 4+ 6¢% — 12¢eN — 12¢N + 4¢(N? + 104
— 128%¢ + 6L°N + 4x%c? 4 4bc?x + 14xc? + 4x%c + 9bc? + 6¢ 4 9bc + 5N — 2Nbex
— 2Nx2c+5¢2N +2¢N + 1007 ? — (4¢? + 6xc? + 2x%¢? + 2be?x + 4bc?
+3%eN +30%¢ + 4c + 6xe + 2x%c 4+ 2bex + 4be + 3N 4+ 3¢ — 30PN

— IN? = 2{)T 4+ c¢(2L+N — 3¢ — 3)x+ Db +x)l,
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SV = (x+2)(x+3)(1 =2+ c—N)b+x+2)(b+x+1)c3P,_1(x+1)T >
— (x+2)x+4eb+x+ D+ DN + (=N +3 =2 +3)P,—1 (x) + (x+2)(x +4)
Xc(b+x+ 1)(4c? +6xe? +2x%2c? +2bc’x +4be? +3¢cN + 3% c 4+ 4c + 6xe + 2x°¢
+2bex44be +3IN+302 = 30PN — IN? = 20)P, 1 (x+1)T + (x+2)(x+3)
X(1=24+c—N)b+x+2)b+x+1)*cP,_1(x+ DI,

TO = c(x+22B+x+ DP—(x+ DP— 1 ()T >+ (—(x+2)(N + O(x + DP,— (x)?
—{IN+D(x+2)P,—1(x+ DP—1(x)T +(—c(b+x)(x+ D(x+2)P,— 1 (x + 1)P,—1(x)
— (x+2)le(b+x)P,_ (x+ DAL

Here N and { are given by

N=mn+1)1—-¢), {(=r—x—2—c(r+x+0b>b)

and P,_ is the monic Meixner polynomial of degree r — 1. The expression X, in this case is
given by

Xn = Xu(o,7,Pr—1, A1)
=(— {+ D+ D2 +2)x +3)x + Py (x + P2 (0) + (xr + D(x +2)(x + 3)
X (x + 4)(x%c + 2{c + bex + 3xc 4+ 2¢ 4+ 2be + 2L+ 2L)P2_  (x + DP— 1 (x) + {(x +2)
X (x + 3)(x + 4)(x%c + e + bex + 3xc + 2¢ 4+ 2bc + ¢ — P (x + 1).

Notice that the difference operators [ given for the rth associated
Charlier and Meixner polynomials coincide with those given in Ref. [19] with the
notations { =R, r = .

5.2. Extension of Results to Real Order of Association
Let v be a real number with v = 0 and (P"), the family of polynomials defined by
PUL® = (x = BP0 = Y P2 (), n=1 (85)
with the initial conditions
Py =1, P =x- B,

where (3,4, and v, , are the coefficients 3, and vy, of Eq. (1) with n replaced by n + v.

We assume that the starting family (P,), defined in (1) is classical discrete. The
coefficients 3, and v, are therefore rational function in the variable n [16,18,28] and the
coefficients B, , and v, , well-defined. When ¥,1, # 0, Vn = 1, the family (P{"),, thanks
to Favard’s theorem [3,6] is orthogonal and represents the associated of the family (P,), with
real order of association.
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THEOREM 7 Let (P,,), be a family of classical discrete orthogonal polynomial, v = 0 a real
number and (P;V))n the v-associated of (P,),. We have:
1. (Pf]’)),, satisfies

F ) =0, (86)

where [Ffl") is the operator given in Eq. (52) with r replaced by v.
2. The difference operator [Fﬁl") factorizes as

SUTY = X(0, 7, Up-1, Ay DF?, - ST = X(0, 7, Ve s, e DY, (87)

where the operators Sff), Tf?, §fly), T;V) and the factor X are those given in

Egs. (49)—(53) with r replaced by v, P, and Q, are replaced by U, and V, respectively.
U, and V, are the two linearly independent solutions of the difference equation

(see Ref. [28,29])
a(X)AVy(x) + 7(x)Ay(x) + A, y(x) = 0, (88)
with U, =P,,V, = Q, forv=r € N and
A, = —g((y— D' + 27). (89)

Four linearly independent solutions of difference equation (86) are given by

AV ) = p)U,- 1) Uy (),

B (x) = p(x)U,— 1(X) V1),
(90)

CP(x) = p()Vye 1(X)Upy (),
DY (x) = p(x)V,— 1 (X) Vg 1),

where p(x) is the weight function given by Eq. (3).
Proof

1. Let n be a fixed integer number and define the function ® by
D:Ry—R v—FP(PY (),

where R__ is the set of positive real numbers. Using relation (85) for fixed x, ®(v) can be
written as rational function in v. In fact, for the classical discrete orthogonal
polynomials, the three-term recurrence relation coefficients (8, and vy, are rational
functions in the variable n. Using Eq. (56) we get

d(r)=FPYx) =0, VreN.

We then conclude that @(v) is a rational function with an infinite number of zeros.
Therefore, d(v) = 0, Vv € Ry and (P"), satisfies Eq. (86).

2. Equation (87) is proved by a straightforward computation using U, and U, which
satisfies Eq. (88).
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3. The functions given in Eq. (90) are represented as products of functions satisfying
homogeneous difference equation of order 1 (for p) and 2 (for U and V). These functions,
therefore satisfy a difference equation of order 4 (= 1 X2 X 2) which is identical to
Eq. (86). Notice that by linear algebra one can deduce the difference equation of the
product (90), given the difference equations of the factors, since they have polynomial
coefficients. This can be done, e.g. by Maple command “rec*rec” [35] of the gfun
package.

We conclude the proof by noticing that the results of the previous theorem can be used
to extend Theorem 5 to the generalized co-recursive associated of classical discrete
orthogonal polynomials with real order of association as was done for classical continuous
in Ref. [9]. O

5.3. Solution of Some Second-order Difference Equations

The factorization pointed out in Eq. (51) can be used to prove the following:

PROPOSITION 3 Two linearly independent solutions of the difference equation
SYm =0,
are
EP0) =T (CPw), Fw =T D)),
where the operators S,(f) and —ﬂ_flr) are given by Egs. (49) and (50), respectively, and the
functions C;’)(x) and Df{)(x) given by Eq. (57).
PrOPOSITION 4 Two linearly independent solutions of the difference equation
Sy =0,
are
EP(@) =T (C)(), FPx) =T D)),
where the operators Sfl”) and —I]'ﬁl") are given by Eq. (87), and the functions Cfl”)(x) and DSL”)(x)

given by Eq. (90).

Proof  Since the functions Cﬁ,’) and D" are solutions of equation [Fﬁlr)(y) = 0 (see Theorem 2),
we use the factorization given by Eq. (51) and get

ST ) = X(o, 7, Pr—1, A D)FP(y) = 0

fory € { Cff), D" }. We therefore, conclude that the functions E\” and F\" satisfy S,(lr )(y) = 0.
The proof of Proposition 4 is similar to the one of Proposition 3 by using Theorem 7. [

Remark 5 The previous propositions give solutions to families of second-order difference
equations. In particular, Proposition 3 solves a family of second-order difference equations
with polynomial coefficients. The two previous propositions, given for the associated
classical discrete orthogonal polynomials can be used to solve the difference equation
S,(y) = 0 where S, is the left factor of the factored form of the fourth-order difference
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operator F,(F, = S, T,) for other modifications of classical discrete orthogonal polynomials
(see “Perturbation of recurrence coefficients” section).

5.4. Extension of Results to Semi-classical Cases

The proof of Theorem 1, which is the starting point of this paper, uses merely the second-
order difference equation (5) and the relation (32). Now we suppose that the family (P,),, is
semi-classical discrete [7,14,22,25,26,34]. This implies that (P,),, is orthogonal satisfying a
second-order difference equation of the form

M, (y(0) = L(x, m)y(x +2) + 11(x, n)y(x + 1) + Io(x, n)y(x) = 0, oD

where the coefficients I;(x,n)are polynomials in x of degree not depending on .
For semi-classical orthogonal polynomials an equation of type (32) is known and can be
stated as [7,10]

M (P2 () = a1 (0Pu(x + 1) + ag()Pa(x), 92)
where a; are polynomials and M, a second-order linear difference operator with polynomial

coefficients. Use of the two previous equations leads to the following extension.

THEOREM 8 Given (P,), a sequence of semi-classical orthogonal polynomials satisfying
Eq. (91) and (P,), a family of orthogonal polynomials obtained by modifying (P,,), and
satisfying

Po@) = APl + BiPui, n =K, 93)
where A,, and B,, are polynomials of degree not depending on n, and k, k' € N, we have the

following:

1. The orthogonal polynomials (P,),=y satisfy a common fourth-order linear difference
equation

Fa(y(x)) = Kq(x, n)y(x 4 4) 4 K3(x, m)y(x + 3) + Ko (x, n)y(x + 2) + K, (x, m)y(x + 1)
+ Ko(x, n)y(x)

= 0’
where the coefficients K; are polynomials in x, with degree not depending on n.

2. The operator [, can be factored as product of two second-order linear difference
operators

l]:n = gnTn7
where the coefficients of S,, and T, are polynomials of degree not depending on n.

The proof is similar to the one of Theorem 1 but with Eqgs. (91) and (92) playing the role of
Egs. (5) and (32), respectively.

The previous theorem covers many modifications of the recurrence coefficients of the
semi-classical discrete orthogonal polynomials, and in particular, the modifications such as
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the associated, the general co-recursive, the general co-dilated, the general co-recursive
associated and the general co-modified semi-classical discrete orthogonal polynomials.

When the orthogonal polynomial sequence (P,,), is semi-classical discrete, it is difficult in
general to represent the coefficients of the difference operators, M,,, M,,, F,, S,and T, in
terms of polynomials ¢ and ¢, the coefficients of the functional equation (see Refs.
[7,13,22,34]) satisfied by the regular functional with respect to which (P,), is orthogonal.

However, for particular cases (for example if the degrees of polynomials ¢ and ¢ are
small), it is possible after huge computations to give the coefficients of the difference
operators l\_/I]n, Mn, [l_:,,, S,and T, explicitly, and therefore look for functions annihilating
these difference operators.
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