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An Asymptotic Version of the Goldbach Conjecture

In the books [5]-[6] many applications of DERIVE to problems in calculus
were discussed.

In this article we give an application to number theory. With the use of
DERIVE we can easily calculate the number of Goldbach representations
of an even integer. So the computer can give the pupil some insight into
the distribution of Goldbach representations, supporting the plausibil-
ity of the Goldbach Conjecture and omitting tedious hand calculations.
Recall that the Goldbach Conjecture states that each positive even in-
teger g > 4 has at least one representation as a sum g = p; + p2 of two
prime numbers py,py. If A(g) denotes the number of such representa-
tions of the even integer g, then we will give an argument indicating the
asymptotic behaviour

Alg) > C Vg

demonstrating how highly plausible the Goldbach Conjecture is. We de-
velop which even integers have many and which have only few Goldbach
representations, and present calculations with DERIVE.

Introduction

The Goldbach Conjecture (see [2]-][4]) is one of those mathematical statements that is easy
to formulate and to understand. On the other hand, despite its long history, no proof was
found until today, and (especially after the announced proof of Fermat’s Last Theorem by
A. Wiles, 1993, see e. g. [1]) it remains one of the oldest open questions in mathematics. The
conjecture stems from correspondence between Goldbach and Euler (see [2], pp. 248249, [3],
pp. 125-129, and [4], pp. 103-107). In his letter to Euler, written 7th June 1742 in Moscow,
Goldbach stated the conjecture that any positive integer has a representation as the sum of
three primes. In particular, any even positive integer should have a representation as the
sum of two primes. (In Goldbach’s times the number 1 was considered a prime number. So
in our times the “Goldbach conjecture” is a slightly stronger statement.) This letter was
first published by Fuss [3] in 1843. For some historical remarks on the Goldbach conjecture,
see e. g. [4], p. 106.



In this work we use DERIVE to give pupils some insight into the distribution of Goldbach
representations, and present an argument which makes the Goldbach Conjecture plausible.

Table 1 lists the even integers until 40 together with their Goldbach representations as
sums of two primes.

g | representations number A(g)
2 0
41 242 1
6| 3+3 1
8| 345 1
10 | 347 5+5 2
12 | 547 1
14 | 3411 T+7 2
16 | 3+13  5+11 2
18 | 5+13  7+11 2
20 | 3417 7+13 2
22 | 3+19 5417 11411 3
24 | 5+19 7417 11413 3
26 | 3+23  7+19 13413 3
28 | 5+23 11417 2
30 | 7+23 11+19 13417 3
32 | 3+29 13+19 2
34 | 3431 5+29 11423 17417 | 4
36 | 5+31  7+29 13423 17419 | 4
38 | 7+31  19+19 2
40 | 3437 11429 17423 3

Table 1: A table of the first Goldbach representations

Each pupil should be able to prepare such a table, and therefore to observe that it seems
to be likely that the conjecture is valid. On the other hand, by hand calculations we are not
able to study the decompositions of “large” even numbers.

Goldbach Representations using DERIVE

Therefore we construct simple DERIVE functions to calculate the number A(g) of Goldbach
representations of an even integer g. The function

IS_PRIME(x) :=IF (NEXT_PRIME(x-1)=x,1,0)



obviously yields 1 if x is a prime, and 0 otherwise.

The iterative procedure starting with the vector h_:=[3,0], successively increasing its
first element k£ by two, and in case that both £ and g — k£ are prime its second element by
one, until the first element reaches ¢g/2, is implemented by the iteration

ITERATE( [ELEMENT (h_,1)+2,
IF (IS_PRIME(ELEMENT (h_,1))=1 AND IS_PRIME(g-ELEMENT(h_,1))=1,ELEMENT(h_,2)+1,ELEMENT (h_,2))],
h_,[3,0],FLOOR(g/4-1/2))

Here FLOOR(g/4-1/2) counts the number of iterations starting at & = 3, and ending at
k=g/2if g/2is odd, or at k = g/2 — 1 if g/2 is even.

The second element of the iteration therefore counts the number of Goldbach represen-
tations of ¢g. Thus the DERIVE function

GOLDBACH_NUMBER(g) : =
IF(g=2,0,
IF (g=4,1,

ELEMENT (ITERATE ( [ELEMENT (h_, 1) +2,
IF (IS_PRIME(ELEMENT (h_,1))=1 AND IS_PRIME(g-ELEMENT(h_,1))=1,
ELEMENT (h_,2)+1,ELEMENT (h_,2))1,
h_,[3,0],FLOOR(g/4-1/2))
»2)))

calculates the number of Goldbach representations of the positive even integer g.
DERIVE generates a table of the numbers of Goldbach representations for g = 2,4, ..., 40
by the command

VECTOR (GOLDBACH_NUMBER(g) ,g,2,40,2)

with the result
0,1,1,1,2,1,2,2,2,2,3,3,3,2,3,2,4,4,2,3].

We can use DERIVE directly to produce Table 1 using the similar DERIVE function

GOLDBACH_REPRESENTATIONS(g) :=
IF(g=2,(],
IF(g=4,[[2,21],
ELEMENT (ITERATE ( [ELEMENT (h_,1)+2,
IF (IS_PRIME(ELEMENT (h_,1))=1 AND IS_PRIME(g-ELEMENT(h_,1))=1,
APPEND (ELEMENT (h_,2) , [ [ELEMENT (h_,1) ,g-ELEMENT (h_,1)]11),
ELEMENT (h_,2)
)1,h_,[3,[11,FLOOR(g/4-1/2)),2)))

that generates the pair [g, A(g)] for an even integer g. Therefore the call

VECTOR([g,GOLDBACH_REPRESENTATIONS(g) ,DIMENSION (GOLDBACH_REPRESENTATIONS(g))],g,2,40,2)



produces Table 1.

No particular structure is obvious from Table 1 besides the hope that the expected value
for A(g) seems to increase with increasing g. We encourage pupils to use these DERIVE
functions for larger values of ¢ to convince themselves about the plausibility of the Goldbach
Conjecture.

Asymptotic Analysis

We will now give a theoretical argument for this purpose.

Let an even number g be given. We wish to estimate the number A(g) of Goldbach
representations of ¢ = p; + po as sum of two primes p; and p;. We note that all positive
integers smaller than or equal to g are either prime or have a representation n = pm with a
prime number p < ,/g and an integer m (easy exercise).

Let P denote the set of all prime numbers, p; denote the kth prime number, and let

P,={peP |p<g}

denote the set of prime numbers corresponding to ¢ having m, elements, say.

We look for positive integers z, that generate a Goldbach representation for g as sum
g=1x,+ (9 —z,) with ¢ — z, € P,, and we consider only those representations for which
neither z, nor g — z, lie in P, i. e. both summands are greater than /g, and we call such a
representation a strict Goldbach representation.

For all prime numbers p;, € P, we can now make the following observations. The numbers
of the arithmetic sequence np; (n € IN,n > 2) are no candidates to be an z, for a strict
Goldbach representation as they are not prime. Moreover one more arithmetic sequence of
the form n py, + g, (n € IN,n > 2) is excluded from consideration as in this case the numbers
g — x4 are divisible by py: We have (m € IN)

g—Tg=Mpg
or
Tg=g—mpg=npg+ Gk
with g, = ¢g modulo py, i. e., g is the remainder for the division of g by pr. We note, in

particular, that if ¢ is divisible by p;, then these two sequences agree.
So at most the elements of two of the p; arithmetic sequences

{r=nprtmeN |z<g,neN}  (m=0,...,p—1) (1)

are excluded as summands z, of a strict Goldbach representation by reason of divisibility by
p- The remaining py, — 2 arithmetic sequences (1) contain only numbers 2 for which neither
x nor g — x is divisible by py.



Possible representation numbers for a strict Goldbach representations of g are the num-
bers x € M, := [\/g,9/2]. This gives Ay = [% — \/§] possible strict Goldbach summands,
where [z] denotes the largest integer that is smaller than or equal to . In a first step we
eliminate all numbers divisible by 2, and we have remaining A; = Ay/2 possible Goldbach
summands. We now iteratively pass through all prime numbers in P, and as those generate
all composite numbers in M, this procedure eliminates all composite numbers, and only
prime Goldbach summands remain. This procedure gives Table 2.

k | pr | elimination steps Ay,
o Ao
1 2 | only odd numbers (or else 2 is divisor) 5>
) C e 1 Ag
2 3 | only each third number (or else 3 is divisor) 373
C e 31 A
3 5 | only 3/5 of the numbers (or else 5 is divisor) 535
-2 31A
mg | Pm, | o0y (Pm,—2)/pm, of the numbers (or else py,, is divisor) Pmy—2 . 3570
P,

Table 2: Estimation of the number of strict Goldbach representations

Unfortunately the table is only “almost correct” (otherwise we would have proved the Gold-
bach conjecture, as we shall see soon), as we did not consider the fact that the intermediately
remaining sets of possible Goldbach numbers in general form quite irregular sets. So it is
only in the average that the (pgi1—2)/pryith part of the representations in the kth step
survive the elimination.
However, if ¢ is large, it is highly plausible that our estimates are quite accurate.
Using the data of the table we get the following (asymptotic) estimate
Ag) > Pme=2 Pmo1=2 Pmp2=2 314
pmg pmg—l pmg—2 53 2
pmg_2.pmg_4-pmg_6 31A0
pmg pmg_2 pmg_4 53 2
. A > Ay _[%_\/5_7]% 1
2Pm, — 2./9 2./9 4 2
In particular, this estimate suggests that the number of Goldbach representations is not only
greater than zero for all positive even integers g, but increases with increasing g.




Calculations for Large Even Integers

In practice, the given estimate is much too low: To obtain it, we took the product over all odd
numbers rather than the primes only which obviously makes the bound too low. Furthermore,
if g possesses many prime divisors, then—as we remarked—only one rather than two of the
corresponding arithmetic sequences is eliminated further enlarging the number of Goldbach
representations. The prime factorials 2-3 -5 - - - p; possess particularly many prime divisors.

On the other hand, if g possesses only few prime divisors, then there are few Goldbach
summands. This is the case, in particular, for the powers of two that possess only the divisor
two.

Tables 3 and 4 show the numbers of Goldbach representations of the first prime factorials,
and powers of two, respectively, demonstrating the above remarks.

g 2:3-5=301]2-3-5-7=210]2-3-5-7-11=2310|2-3-5-7-11-13 = 30030
number 3 19 114 905

9 1
(42 — ] 0 3 11 42

Table 3: Goldbach representations of prime factorials

g 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536

number | 2 2 5 3 8 11 22 25 53 76 151 244 435

P-4 jo o 1 2 3 5 7T 10 15 2 31 4 6
Table 4: Goldbach representations of powers of two
DERIVE produces these lists with the commands
PRIME (k) :=IF (k=1,2,NEXT_PRIME (PRIME (k-1)))

PRIME_FAC(g) :=PRODUCT(PRIME(k_) ,k_,1,g)

VECTOR([PRIME_FAC(k) ,GOLDBACH_NUMBER(PRIME_FAC(k)),FLOOR(SQRT(PRIME_FAC(k))/4-1/2)1,k,3,6)
and
VECTOR([2"k,GOLDBACH_NUMBER(2"k) ,FLOOR(SQRT(2°k)/4-1/2)1,k,4,16)

The example g = 128 shows that in particular cases (for small g) our estimate is not much
too low. On the other hand, we considered only very small numbers, and it seems as if for
increasing g our estimate is much too low.
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