

1 NUMERIC VERSUS SYMBOLIC

COMPUTATION

Wolfram Koepf

Konrad-Zuse-Zentrum

Takustr. 7

D-14195 Berlin

Germany

koepf@zib.de

Abstract: Twentyfive years ago when I studied Physics, only one of the stu-
dents who participated in a laboratory course that I took was possessing one of
the first calculators to process the data we were obtaining. Believe it or not, ev-
erybody else, including me, had to use a slide-rule for this purpose. Nowadays,
the calculator is used by everybody, by far not only for academic purposes.
Hence it is the responsibility of the school education, and here in particular of
the Mathematics education, to take this situation into account, and to teach
our children the (intelligent) use of a calculator.

In my opinion, there is no doubt that sooner or later computer algebra
systems like DERIVE or Mathematica will be used by everybody in the same
way as calculators are used today. Obviously this gives us a new responsibility
to integrate computer algebra systems in the Math curriculum and to teach the
students the use of them. When I realized this, I began to use DERIVE in my
calculus courses at the Free University Berlin in particular for the Math teacher
education [5]–[6].

Whereas calculators brought more numeric computation into the classroom,
computer algebra systems enable the use of more symbolic computation. In
this presentation, I would like to give examples how numeric and symbolic
computations need each other. These examples show in particular with which

1

2

type of mathematical problems the Math education can and should be enhanced
by the use of DERIVE.

Some of my examples might be considered to be too advanced or too far away
from the current curriculum which on the other hand differs quite a lot in all the
different countries which the participants of this meeting come from. Rather
than being static material, my examples are considered to supply ideas to Math
teachers about interesting and important concepts that might be incorporated in
future Math education in connection with the use of computer algebra systems.

WHY DERIVE?

First I would like to justify by an example why I find DERIVE more appropriate
for educational purposes than other systems like Axiom, Macsyma, Maple,
Mathematica, MuPAD or REDUCE, even though in my research I mainly use
the other systems.

Leibniz, one of the developers of the differential and integral calculus, still
doubted the existence of an elementary antiderivative of the rational function

1

1 + x4
.

The reason was that he was not able to find a proper real factorization of the
denominator polynomial

1 + x4

in terms of quadratics. The factorization of this polynomial expression by any
of the mentioned systems returns the input. This seems to approve Leibniz’s
opinion. DERIVE’s handling is different: Applying the Factor menu to
the input 1 + x4 results in a submenu asking the user

Factor: Amount: Trivial Squarefree Rational raDical Complex

This question gives the user—e.g. the experimenting student—the necessary
information about the fact that there are different algorithms that might be
applied. Being satisfied with a rational factorization—this is exactly what the
other systems do—no proper factors are found. However, allowing square roots
using the raDical option generates the factors

1 + x4 = (x2 +
√

2x + 1) (x2 −
√

2x + 1) .

With this factorization in mind, it is easy to find the partial fraction decompo-
sition

−
√

2 x

4 (x2 −
√

2 x + 1)
+

1

2 (x2 −
√

2 x + 1)
+

√
2 x

4 (x2 +
√

2 x + 1)
+

1

2 (x2 +
√

2x + 1)

NUMERIC VERSUS SYMBOLIC COMPUTATION 3

for 1/(1 + x4) (with Expand), and to understand the antiderivative

∫

1

1+x4
dx=

√
2 arctan (

√
2 x−1)

4
+

√
2 arctan (

√
2x+1)

4
−
√

2 ln
(

x2−
√

2 x+1
x2+

√
2 x+1

)

8

which is returned by DERIVE’s integrator.
It is this type of handling that gives DERIVE an educational advantage.

HOFSTADTER’S PROBLEM

To get started I would like to consider an example from geometry that was dis-
covered by Douglas Hofstadter. When experimenting with a geometry program
in connection with the Morley Triangle Theorem, Hofstadter discovered new
centers of triangles, and realized the collinearity of some of them. This was
done by first observing these patterns by a visual approach, and then checking
his conjectures by numerical computations.

Numerical computations can give one a safe feeling about what is happening,
but they do not provide a mathematical proof. Hence, what’s next?

Hofstadter’s problem can be converted to the determinant condition

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

sin (rα)

sin ((1 − r)α)

sin (2α)

sin (−α)

sin ((2 − r)α)

sin ((r − 1)α)

sin (rβ)

sin ((1 − r)β)

sin (2β)

sin (−β)

sin ((2 − r)β)

sin ((r − 1)β)

sin (rγ)

sin ((1 − r)γ)

sin (2γ)

sin (−γ)

sin ((2 − r)γ)

sin ((r − 1)γ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (1.1)

under the assumption that α, β and γ denote the angles of the triangle, and
therefore α + β + γ = π.

DERIVE can prove that this statement is true, hence verifying Hofstadter’s
observation! On the other hand, without the knowledge about certain details
of DERIVE’s capabilities there is no chance to receive this information, i.e. to
simplify the left hand side of (1.1) to zero (compare [3])!

If we enter the determinant under consideration, and substitute γ by π−α−β,
then DERIVE returns a huge expression after simplification, and not zero.

But observe that it is much easier to discover that a rational expression
equals zero, if it has the form numerator/denominator because then the numer-
ator must equal zero, and one can forget the denominator. Since the setting
Factor Trivial brings any rational expression in this form (did you know

this?), that’s next. Still, DERIVE’s result does not equal zero.

4

The reason is that trigonometric simplifications have to be carried out. To be
on the safe side, one should use one of the settings Manage Trigonometry

Toward Sines or Cosines . This guarantees that the replacements

cos2 x = 1 − sin2 x or sin2 x = 1 − cos2 x, respectively, are applied whenever
possible. Otherwise sin2 x+cos2 x-terms might still be hidden, and zero cannot
be discovered.

If we use Manage Trigonometry Expand Toward Sines , Hofstadter’s
expression easily simplifies to zero, as announced. This finishes my DERIVE
proof of Hofstadter’s Theorem.

As an exercise I ask the reader to prove that (1.1) is true for arbitrary γ,
not necessarily equal to π − α − β! This identity is the reason for Hofstadter’s
success.

ILL-CONDITIONED PROBLEMS

Next, let’s consider the problem to calculate the definite integral

In :=

1
∫

0

xn ex−1 dx

for large n, say for n = 1 000 or n = 1 000 000 to as many digits as possible
(see [9], [8]).

Since for x ∈ [0, 1] the relations

ex ≤ ex ≤ e

are valid, s. Figure 1.1, we get for In the inequalities

1
∫

0

xn+1 dx < In <

1
∫

0

xn dx

or
1

n + 2
< In <

1

n + 1
. (1.2)

Therefore In is decreasing and lim
n→∞

In = 0:

1 > I0 >
1

2
> I1 >

1

3
> · · · >

1

n + 1
> In >

1

n + 2
> · · · > lim

n→∞
In = 0 .

NUMERIC VERSUS SYMBOLIC COMPUTATION 5

Figure 1.1 The inequalities ex ≤ ex ≤ e

Figure 1.2 The integrands xn ex−1

This can also been seen from Figure 1.2, where the integrands are shown for
n = 0, . . . , 15.

Using approX , one can try to use DERIVE’s numerical integration ca-
pabilities. On the other hand, for large n this is not practicable and rather
inefficient since the integrand has large slope (namely n + 1) at the boundary
point x = 1. For n = 1 000 000 this is absolutely hopeless. DERIVE generates
the message Dubious Accuracy.

6

So we pin our hopes in symbolic integration! To meet the point, let’s do it
for n = 20. We get the exact value

I20 =

1
∫

0

x20 ex−1 dx = 895 014 631 192 902 121 − 2 432 902 008 176 640 000

e

= 895 014 631 192 902 121

− 895 014 631 192 902 120.95445 51159 2418 .

If we do this numeric computation with the default number of 6 digits, we
cannot get anything of value since all digits are lost by the final catastrophic

subtraction cancellation. If we use higher precision, 17 digits are lost. We will
see that In is always of the form m − k/e (m, e ∈ N) with very large m, so the
same effect occurs. Hence there is no chance to calculate In for large n by this
method efficiently.

Our next idea is the use of a recurrence equation for In. By partial inte-
gration, one easily discovers that (for example with DERIVE ([5], Chapter 11,
[8]))

In = 1 − n In−1 (n > 0) (1.3)

I0 = 1 − 1

e
= 0.63212 05588 28557 6784... .

If we iterate this recurrence equation, then by induction the formula

In = 1 − n + n(n − 1) + · · · + (−1)n n! − (−1)n n!

e
= m − (−1)n n!

e
(1.4)

is deduced, confirming what we already mentioned: The exact value of In is

the difference of an integer m and the ratio (−1)n n!
e . Since lim

n→∞
In = 0 this is

always the difference of two approximately equal terms of size n!/3.
By the definition

I(n):=IF(n=0,1-1/EXP(1),1-n*I(n-1))

DERIVE can be used to calculate In recursively according to (1.3). However,
if we approximate VECTOR(I(n),n,0,20) we see that we get nonsense, again.
What’s going on?

Unfortunately, the same effect as before applies to the current situation, this
time, however, in each single iteration step! Since

lim
n→∞

n In−1 = 1

NUMERIC VERSUS SYMBOLIC COMPUTATION 7

(see (1.2)), the application of (1.3) corresponds to the subtraction of two ap-
proximately equal numbers, leading to cancellation again. If n ≈ 10, we lose
approximately one digit per iteration step, whereas if n ≈ 106, then we already
lose 6 digits per step! Hence, an application of (1.3) in this form gives us no
chance at all to calculate I106 , besides the fact that a 106-times iteration any-
way would be rather costly. Now we are in big trouble: Is there at all any
method to calculate I106?

The solution is the following: Similarly as the recurrence equation in the
form In := 1 − n In−1 is especially ill-conditioned since n In−1 ≈ 1, the ap-
proximation being better the larger n is, the application of the recursion in
backward direction

In :=
1 − In+1

n + 1
(1.5)

is especially well-conditioned: No cancellation occurs. On the contrary decimal
places are won in each iteration step since one divides by n + 1. This implies
that we gain approximately one decimal place if n ≈ 10, and approximately six
decimal places if n ≈ 106! This sounds great!

There is still one problem: While the recursion in forward direction has a
natural initialization I0 = 1 − 1

e , such an initialization does not exist in the
backward direction. Hence are we lost again? No! Since the application of
the recursion in backward direction raises the precision in each iteration step,
we may start with the bad (but not too bad) initial value In+k = 0, iterating
(1.5) k-times to calculate In. We have only to find an appropriate number k
(a detailed error analysis can be done!) to ensure that the calculated decimal
places indeed are correct.

Using this approach, with only 20 iterations we get 50 correct digits of

I1000 = 0.00099 80049 85051 79787 28810 31699 38385 79102 38591 42748 629... ,

and even only 10 iterations are needed for the calculation of

I106 = 0.00000 09999 98000 00499 99850 00051 99979 70008 76995 86002 11468 8... !

The first result is obtained by defining

IBACK(n):=IF(n=1020,0,(1-IBACK(n+1))/(n+1))

and calculating IBACK(1000), whereas the second result follows with

IBACK(n):=IF(n=1000010,0,(1-IBACK(n+1))/(n+1))

simplifying IBACK(1000000) with approX .

8

ITERATIVE COMPUTATION OF π

In this section I consider another ill-conditioned problem which can be resolved
by symbolic techniques ([9], [8]).

Already Archimedes calculated the number π by an approximation of the
circumference of a circle by inscribed regular polygons. We take the unit circle
and call the sidelength of an inscribed regular n-gon sn.

x

α α

sn

s
2n

Figure 1.3 Calculation of sn by doubling the number of vertices

In Figure 1.3 we find two similar triangles. Hence we have

s2n

1
=

sn

x
.

For x, we furthermore deduce by the Theorems of Thales and Pythagoras

s2
2n + x2 = 4 .

An elimination of x from these two equations (which can be easily done with
DERIVE), yields

s2n =

√

2 −
√

4 − s2
n . (1.6)

NUMERIC VERSUS SYMBOLIC COMPUTATION 9

Since the n-gon has n sides of equal length sn, for its circumference we have

Cn = n sn → 2π .

We can use the initialization with a square, for which we have s4 =
√

2 and
C4 = 4

√
2 (or also with a 6-gon with s6 = 1 and C6 = 6). If n = 2k (k ≥ 2) is

a power of two then we can use the recursive formula

Cn := n sn , sn =











√
2 if n = 4

√

2 −
√

4 − s2
n/2 if n = 2k (k > 2)

for the calculation of Cn.
These formulas lead to the DERIVE functions

S(n):=IF(n=4,SQRT(2),SQRT(2-SQRT(4-S(n/2)^2)))

P(n):=n*S(n)/2

where pn = Cn/2 converges to π. If we use this DERIVE function to calculate
pn, we get unfortunately p211 = 0, far away from π.

Again, this effect is caused by subtraction cancellation! Since for n → ∞
the side length sn tends toward zero, we have moreover

√

4 − s2
n → 2 .

Therefore in the calculation of s2n according to (1.6) the difference of two
numbers occurs which both are approximately equal to 2. This leads to the
completely worthless intermediate result s211 = 0.

How can we resolve this problem? Is there a way to avoid the dangerous
subtraction? It is easy to see (for example using DERIVE) that we can rewrite
the main expression in the following way

√

2 −
√

4 − s2 =
s

√

2 +
√

4 − s2
.

This simple trick has eliminated the unwelcome subtraction. Hence we get a
better approximation of π (with a working precision of 25 digits)

π ≈ 3.14159 26535 89788 64861 1672... .

On the other hand, approximating π, we get

π = 3.14159 26535 89793 23846 2643... , (1.7)

10

hence only 14 digits are valid. This is not due to a bad condition of the
algorithm (other systems don’t fail) but to a simplification problem of DERIVE:
The expression

f(s) :=
s

√

2 +
√

4 − s2

is not approximated accurately enough for small s. DERIVE’s internal sim-
plification mechanism seems to convert our well-conditioned formula to an ill-
conditioned one, again. Substituting s = 2−30 into f(s), e.g., and applying
Simplify yields

f(2−30) =

√
4 294 967 298

65 536
−

√
4 294 967 294

65 536
,

so that with approX subtraction cancellation occurs, again. The similar
representation

f(2−30) =

√
2

32 768
√

2 147 483 649 + 32 768
√

2 147 483 647

would be much better for numerical purposes. Hence in the given case, we have
even to outwit DERIVE!

To do so, we summarize that f(s) is treated badly, for 0 < s < 10−5, say. For
so small numbers, we may replace f(s) by a polynomial approximation which is
good in a neighborhood of s = 0, hence we calculate the Taylor approximation
TAYLOR(s/SQRT(2+SQRT(4-s^2)),s,0,5) giving

f(s) ≈ s

2
+

s3

64
+

7 s5

4096
.

With the implementation

S_AUX(s):=IF(s<10^-5,s/2+s^3/64+7*s^5/4096,s/SQRT(2+SQRT(4-s^2)))

S(n):=IF(n=4,SQRT(2),S_AUX(S(n/2)))

P(n):=n*S(n)/2

the approximation of p(250) yields all 25 digits of (1.7) correctly!

WHERE IS THE SECOND POLE?

Many people say that the use of graphic calculators and computer algebra
systems in the classroom make “curve discussions” obsolete. And in most cases
they certainly are right. But. . .

NUMERIC VERSUS SYMBOLIC COMPUTATION 11

Here, we investigate the function

r(x) =
1000 (x − 1)

(101x − 100)(100x − 99)
, (1.8)

and we would like to be informed about its qualitative behavior. Let’s check
what DERIVE can show us about the graph of this function!

Figure 1.4 The graph of r(x)

On Figure 1.4, bottom left, we see what DERIVE’s default answer is: The
function looks like the usual hyperbola y = 1/x, moved to the right by one
unit. But this is not correct! By a glimpse on (1.8), we observe that r(x) has a
zero at x = 1, and two poles. Hence, let’s have a more careful look, and zoom
in (with <F9>). We get Figure 1.4, top right. This shows that indeed r(x) has
a zero at x = 1, and gives us an idea about the pole. But weren’t there two
poles? Where is the second pole?

Next, we study the function to find out what is going on: A “curve discus-
sion” is necessary to get the right understanding. We collect what we know:

12

The function r(x) obviously has one zero at x0 = 1 and two poles at the points

x1 =
99

100
= 0.99 and x2 =

100

101
= 0.9900 .

We calculate the zeros of the derivative

x3 = 1−
√

101

1010
= 0.99004 96281... and x4 = 1+

√
101

1010
= 1.009950 372...

with DERIVE. There is a local maximum occurring at x4 that we see in Fig-
ure 1.4, top right.

On the other hand, a local minimum occurs between the poles, having the
value

r(x3) = 201 000 + 20 000
√

101 = 401 997.5124... .

Now we see what is going on! The values of r(x) in the interval [x1, x2] between
the two poles are all larger than 400 000. Without this knowledge we cannot
find the graph! An appropriate scaling yields Figure 1.4, bottom right.

MATHEMATICS BY EXPLORATION

How many terms n of the series

∞
∑

k=1

(−1)k+1

k

have to be summed to approximate its limit ln 2 with an error less than 10−k:

∣

∣

∣

∣

∣

n
∑

k=1

(−1)k+1

k
− ln 2

∣

∣

∣

∣

∣

< 10−k ? (1.9)

One can use DERIVE to find that

n(10−2) = 50 ,

n(10−3) = 500 ,

n(10−4) = 5000 .

This can either be done by trial and error (choose a value of n, and check
whether (1.9) is true or not), or by an iteration using the ITERATES command.
Since the latter is a little tricky, I don’t go into the details. On the other hand,
I would like to mention that one has to take into account that the summation is
ill-conditioned (subtraction cancellation!). Combining successive positive and

NUMERIC VERSUS SYMBOLIC COMPUTATION 13

negative terms makes it well-conditioned. Hence, to prove that n(10−4) = 5000
one can approximate the DERIVE statements LN(2)-SUM(1/(2*k*(2*k-1)),
k,1,2500) and LN(2)-SUM(1/(2*k*(2*k-1)),k,1,2500)-1/5000.

The above series of results enables every student to ask the following research

question: Is it true that

n(10−k) =
10k

2
?

Believe it or not, the conclusion is: yes! This is not an elementary result,
though. For the sake of completeness, I give the argument.

The Euler Summation Formula, applied to the harmonic series

Hn :=
n

∑

k=1

1

k
,

yields the asymptotics (s. [4], Equation (6.66))

Hn = lnn + γ +
1

2n
− 1

12n2
+

1

120n4
− . . . ,

γ denoting the Euler-Mascheroni constant

γ = lim
n→∞

(

Hn − lnn
)

.

From

2n
∑

k=1

(−1)k+1

k
= 1 − 1

2
+

1

3
− 1

4
± · · · − 1

2n

= 1 +
1

2
+

1

3
+

1

4
+ · · · + 1

2n
− 2

(

1

2
+

1

4
+

1

6
+ · · · + 1

2n

)

= H2n − Hn

one gets
2n
∑

k=1

(−1)k+1

k
= ln 2 − 1

4n
+

1

16n2
− . . . ,

proving the assertion.

LINEAR EQUATIONS

Whereas solving systems of linear equations with exact rational arithmetic (e.g.
using DERIVE) by Gauß type elimination procedures in principle is trivial
(nevertheless our students should study these techniques hard until they use

14

DERIVE for the same purpose!), the numerical solution is sometimes rather
difficult. Instead of introducing certain pivoting techniques, I would rather
like to emphasize the understanding under which conditions and why these
numerical problems occur. To understand the underlying mechanisms better,
one can use DERIVE to study them. It will turn out that the exact rational
arithmetic can be of great help in this connection.

As a first example [9], we consider a simple system of two equations with
two variables

780 x + 563 y = 217 (1.10)

913 x + 659 y = 254 . (1.11)

This corresponds to the matrix equation

A ·
(

x
y

)

=

(

217
254

)

with

A =





780 563

913 659





The system is almost singular, hence the problem is ill-conditioned. This corre-
sponds to the fact that the two lines representing (1.10) and (1.11) are almost
collinear: For our eyes, they definitely are collinear, see Figure 1.5, bottom
right! The system (1.10)–(1.11) has the solution

x = 1 and y = −1

whereas the slightly modified system (we change only one coefficient!)

781 x + 563 y = 217

913 x + 659 y = 254

has the solution

x =
1

660
and y =

23

60
.

The two different outputs (x, y) and (x, y) have nothing to do with each other.
They have a distance

∣

∣

∣
(x, y) − (x, y)

∣

∣

∣
=

√
12 541

55
≈ 2.03612... .

NUMERIC VERSUS SYMBOLIC COMPUTATION 15

Figure 1.5 Geometric representation of linear equations

Hence a relative modification of about a thousandth in the coefficients of A
that we consider as the input data, yields a change in the output (x, y), i.e.
the solution of the corresponding equations system, of about one: Such input
faults are amplified by a factor of 1 000, hence the condition of A is bad! The
worst case amplification factor gives the term condition a precise meaning.

If we solve the system (1.10)–(1.11) numerically with DERIVE with the
default number of 6 digits, we still get x = 1, y = −1. Using a working
precision of only four digits yields however

[x = @1, y = 0.001517 (254 − 913 @1)] .

Here @1 denotes an arbitrary parameter. Hence with a precision of four digits
the two lines are identical, and all points of this line are solutions of (1.10)–
(1.11)!

Note that on the other hand, the similar system

780 x + 563 y = 217

913 x − 659 y = 254

16

has quite different behavior, see Figure 1.5, bottom left, although only one sign
is different. The new system has the solution

x =
286 005

1 028 039
and y =

1

1 028 039
,

and the modified system (changing again one coefficient slightly)

781 x + 563 y = 217

913 x − 659 y = 254

leads to

x =
12 435

44 726
and y = − 1

4 066

with
∣

∣

∣(x, y) − (x, y)
∣

∣

∣ =
62 175

√
50 714

45 980 072 314
≈ 3.04515 · 10−4 ,

having the same order of magnitude as the input fault: This linear system is
not ill-conditioned.

How can we measure the condition of a linear system corresponding to a
matrix A? It turns out that the condition is high (bad) if either the entries of
A or those of A−1 are of high magnitude. Obviously, if A is singular (A−1 does
not exist) then the condition is arbitrarily bad, cond(A) = ∞, say. If

‖A‖ = ‖ajk‖ := max
jk

|ajk|

is the norm of A, given by the maximum modulus of its entries, then for non-
singular A one defines the condition by the product

cond(A) := ‖A‖ · ‖A−1‖ .

It turns out that this matrix condition measures the worst case amplification
factor of input faults. It is invariant under the multiplication of rows by a
constant, corresponding to the fact that such a modified equations system has
the same solution.

The matrix norm and condition can be calculated by the DERIVE functions

NORM(A):=MAX(MAX(VECTOR(VECTOR(ABS(A SUB j_ SUB k_),

j_,1,DIMENSION(A)),

k_,1,DIMENSION(A))))

COND(A):=IF(DET(A)=0,inf,NORM(A)*NORM(A^(-1)))

NUMERIC VERSUS SYMBOLIC COMPUTATION 17

With these functions, we get

cond





780 563

913 659



 = 833 569

and

cond





780 563

913 −659



 =
833 569

1 028 039
= 0.810834 .

The large condition number of the first matrix tells us everything about the
bad condition of this mapping.

Now we are on safe grounds to have a detailed look at the Hilbert Matrices

Hn :=































1
1

2

1

3
· · · 1

n

1

2

1

3

1

4
· · · 1

n + 1

...
...

...
1

j + k − 1

...

1

n

1

n + 1

1

n + 2
· · · 1

2n − 1































.

They can be defined by the DERIVE function

HILBERT(n):=VECTOR(VECTOR(1/(j_+k_-1),j_,1,n),k_,1,n)

They give well-known examples of ill-conditioned matrices. The larger we
choose n, the worse is the condition of Hn. Let’s check this with DERIVE. Us-
ing approX , we approximate the call VECTOR(COND(HILBERT(n)),n,1,20).
This yields

[

1, 12, 192, 6480, 1.792 · 105, 4.41 · 106, 1.33402 · 108, 4.25180 · 109, 1.27470 · 1010

6.19417·1010, 6.58486·1010, 7.34160·1010, 2.22089·1011, 5.23931·1011, 1.20211·1010,

2.80244 · 1010, 2.43921 · 1010, 1.95063 · 1010, 2.40912 · 1010, 2.54206 · 1010
]

.

The result looks as if the condition is never worse than about 1011. This is
neither plausible nor true. But what the hell. . . Oh, yeah, the calculation of
the condition needs the calculation of the inverse matrix, and the calculation
of the inverse is ill-conditioned and produces nonsense results!

18

An exact calculation shows e.g. that

condH20 = 3 613 560 329 006 048 768 624 640 000 = 3.61356 · 1027 .

Here DERIVE’s rationally exact arithmetic is very helpful. If we Simplify

the call VECTOR(COND(HILBERT(n)),n,1,20) (generating rationally exact out-
put), and use approX afterwards, then we receive the correct condition
numbers

[

1, 12, 192, 6480, 179200, 4.41000 · 106, 1.33402 · 108, 4.24994 · 109, 1.22367 · 1011,

3.48067·1012, 1.17643·1014, 3.65944·1015, 1.06518·1017, 3.52176·1018, 1.14708·1020,

3.52527 · 1021, 1.10552 · 1023, 3.71252 · 1024, 1.18439 · 1026, 3.61356 · 1027
]

.

Just for fun, the following is the output of the matrix product HILBERT(10) .

HILBERT(10)^(-1):1

































0.995822 −0.0111111 0 0 0 0 0 0 0 0
0 2.6 1 1 −1 −1 2 0 −2 1

0.00201612 1.33333 3 3 −2 −1 1 0 −3 −2
−0.00322061 0.128205 2 3 −4 0 1 0 −2 −1
0.00208986 0.412087 2 3 0 0 1 −2 −3 −2
−0.00133689 −0.647619 2 1 −2 1 3 −2 0 −1
−0.00497347 0.533333 0 3 −1 1 2 0 −1 −2

0 0.691176 1 3 −2 1 0 0 −1 −2
−2.60264 · 10−4 1.24369 0 0 −3 3 −3 1 −1 −1
−0.00121580 2.12865 1 1 −1 2 −2 −3 −1 0

































calculated by 6-digit precision! This should be the unit matrix!

COMPUTATION OF CHEBYSHEV POLYNOMIALS

Loading ORTH_POL.MTH, one can calculate classical orthogonal polynomials.
But strange things happen. . . 2 Let’s assume we would like to know T100(1/4),
the value of the hundredth Chebyshev polynomial of the first kind at the point
x = 1/4. Let’s do it! Simplifying CHEBYCHEV_T(100,1/4) yields

T100(1/4) =
2 512 136 227 142 750 476 878 317 151 377

2 535 301 200 456 458 802 993 406 410 752
.

This, indeed, is the correct value of T100(1/4). On the other hand, if we
approX the expression CHEBYCHEV_T(100,1/4), we get the stupid result

T100(1/4) ≈ 38.8363 !

NUMERIC VERSUS SYMBOLIC COMPUTATION 19

Looking at T100(x) (it is an alternating series!) gives us the clue that, again,
subtraction cancellation occurs. What a pity!

Here is a method to resolve this question. Using the identities ([1], (22.7.24))

T2n(x) = 2 Tn(x)2 − 1

for even n, and
T2n−1(x) = 2 Tn(x) Tn−1(x) − x

for odd n gives an efficient method to compute Tn(x) which moreover is nu-
merically stable! Hence (for numerical purposes) we may define

CHEBYSHEVT(n,x):=IF(n=0,1,IF(n=1,x,

IF(FLOOR(n/2)=n/2,2*CHEBYSHEVT(n/2,x)^2-1,

2*CHEBYSHEVT((n-1)/2,x)*CHEBYSHEVT((n+1)/2,x)-x)))

If we approX the expression CHEBYSHEVT(100,1/4) we get immediately
T100(1/4) ≈ 0.990863. There is no problem to approximate Tn(x0) for much
larger n ≈ 106 using this code.

The underlying divide-and-conquer approach (Tn(x) is calculated with the
aid of predecessors Tm(x) whose index m has only half the size of n) is not the
fastest method to calculate the expanded polynomial Tn(x) though. For this
purpose, in the DERIVE file ORTH_POL.MTH, the definition

Tn(x) =
n

2

bn/2c
∑

k=0

(−1)k (n − k − 1)!

k! (n − 2k)!
(2x)n−2k =

bn/2c
∑

k=0

ak

is given. Due to DERIVE’s fast calculation of the occurring factorial terms this
is not a bad choice. But one can do better avoiding the calculation of factorials!

Since one has the rational term ratio

ak

ak−1
= − (n − 2 k + 2) (n − 2 k + 1)

4 k x2 (n − k)
(1.12)

and the initial value
a0 = 2n−1 xn (1.13)

one can implement the Chebyshev polynomials (for symbolic purposes) by

CHEBYSHEVT_LIST(n,x):=ITERATES([a_ SUB 1+1,

-(n-2*a_ SUB 1+2)*(n-2*a_ SUB 1+1)/

(4*a_ SUB 1*x^2*(n-a_ SUB 1))*a_ SUB 2],

a_,[1,2^(n-1)*x^n],FLOOR(n/2))

20

CHEBYSHEVT(n,x):=SUM((CHEBYSHEVT_LIST(n,x)) SUB k_ SUB 2,

k_,1,FLOOR(n/2)+1)

which is an almost direct translation of (1.12)–(1.13). Here a_ is an abbrevi-
ation for the vector (k, ak), hence a_ SUB 1 denotes k, and a_ SUB 2 denotes
ak.

Do not use this implementation for numerical purposes since it has the same
cancellation defect as above! But with this code one can calculate T10000(x),
e.g., in reasonable time.3 DERIVE is as fast (or even faster) as the other systems
Axiom, Macsyma, Maple, Mathematica, MuPAD or REDUCE [7]!

AUTOMATIC DIFFERENTIATION

As a final topic I would like to introduce automatic differentiation. A first
simple example is given by the function

F (x) :=

{

sin x if x > 0
arctanx otherwise

,

and the problem is to differentiate F (x). DERIVE’s builtin solution is to define
F (x) in terms of characteristic functions

F(x):=CHI(0,x,infinity)*SIN(x)+CHI(-infinity,x,0)*ATAN(x)

Then differentiation of F (x) is possible and yields a representation in terms of
the sign function. The representation used

f := χ(0,∞) sin x + χ(−∞,0] arctan x

is not really a functional one but is one in terms of expressions, namely as a sum
of two products of certain subexpressions. Note that we normally represent
functions by expressions and do then differentiation using the differentiation
rules, in our case

f ′ = χ′
(0,∞) sin x + χ(0,∞) cos x + χ′

(−∞,0] arctan x + χ(−∞,0]
1

1 + x2
.

DERIVE knows how to differentiate the characteristic function, and hence finds
f ′. On the other hand, we can interpret F (x) as a program, given with the aid
of the IF programming construct:

F(x):=IF(x>0,SIN(x),ATAN(x))

DERIVE does not differentiate such a program. Automatic differentiation is a
method to differentiate programs rather than functions. The result is then an-
other program which calculates the derivative. We will see that in a certain way

NUMERIC VERSUS SYMBOLIC COMPUTATION 21

this is more direct than the expression approach. Obviously it is more general
since all expressions can be understood as (rather short) programs. The main
technique is to differentiate the occurring local variables. This works for many
programming constructs including loops etc., but since DERIVE’s program-
ming capabilities are rather limited, we will only consider the IF construct. In
our example case, local variables are implicitly given, a:=SIN(x), b:=ATAN(x).
Differentiating these, we get e.g.

F ′(x) =







d
dx sin x if x > 0

d
dx arctan x otherwise

. (1.14)

To underline the fact that the result is a program that calculates the derivative
function, we give the derivative function a separate name, and call it FP(x).
By (1.14) we can define this derivative function by the definition

FP(x):=IF(x>0,DIF(SIN(x),x),DIF(ATAN(x),x))

Applying this technique iteratively, we can obtain representations for all higher
derivatives of F (x).

The advantage of automatic differentiation is its general applicability. In
addition, the method can reduce computing time and memory requirements
significantly.

To prove the usefulness of this approach, I give a more complicated recursive
example. Let

G(x, n) :=















0 n = 0

x n = 1

G(x, n − 1) + sin(G(x, n − 2)) n > 1

.

Figure 1.6 shows the graphs of G(x, n) for n = 0, . . . , 10. We would like to find
the values G′(0, n) for arbitrary n ∈ N0, and G′′′(0, 100), e.g. Try to calculate
these!

We define

G(x,n):=IF(n=0,0,IF(n=1,x,G(x,n-1)+SIN(G(x,n-2))))

Using the classical approach, we cannot calculate DIF(G(x,n),x), but we can
do the same for specific n. This yields very complicated expressions. Calculat-
ing VECTOR(DIF(G(x,n),x),n,0,10), and substituting x = 0 into the result,
we receive

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55] .

22

Figure 1.6 The functions G(x, n) for n = 0, . . . , 10

Could it be that these numbers are the Fibonacci numbers Fn, given by the
recurrence equation

Fn = Fn−1 + Fn−2 , F0 = 0 , F1 = 1 ? (1.15)

It seems to be so but how can we prove it?
Let’s continue with automatic differentiation. We can define the derivative

GP(x,n) and the second and third derivatives GPP(x,n) and GPPP(x,n) of
G(x, n), respectively, by

GP(x,n):=IF(n=0,0,IF(n=1,1,GP(x,n-1)+GP(x,n-2)*COS(G(x,n-2))))

GPP(x,n):=IF(n=0,0,IF(n=1,0,GPP(x,n-1)

+GPP(x,n-2)*COS(G(x,n-2))-SIN(G(x,n-2))*GP(x,n-2)^2))

GPPP(x,n):=IF(n=0,0,IF(n=1,0,GPPP(x,n-1)

+GPPP(x,n-2)*COS(G(x,n-2))-GPP(x,n-2)*SIN(G(x,n-2))*GP(x,n-2)

NUMERIC VERSUS SYMBOLIC COMPUTATION 23

-COS(G(x,n-2))*GP(x,n-2)^3

-2*SIN(G(x,n-2))*GP(x,n-2)*GPP(x,n-2)))

Here we applied iteratively the chain and product rules. I ask the reader to
check these results! Note that now we have programs to calculate G′(x, n),
G′′(x, n), and G′′′(x, n). In particular, for x = 0 the program to calculate
G′(x, n) reads as

G′(0, n) :=















0 n = 0

1 n = 1

G′(0, n − 1) + G′(0, n − 2) cos(G(0, n − 2)) n > 1

.

Since by definition G(0, n) = 0, this is exactly the definition (1.15) of the
Fibonacci numbers! Hence our first question is completely solved by this ap-
proach.

The above program cannot solve our second question to find G′′′(0, 100),
though. The reason is that the program GPPP(x,n) is recursive, which calls
itself twice, moreover calling G(x,n), GP(x,n) as well as GPP(x,n). Those
programs are highly inefficient, see e.g. the DERIVE User Manual [2], § 10.6.
Other systems like Maple have a remember option for this purpose that store
computed results in the memory. Such an option would help a lot in this
situation.

Calling GPPP(0,13), we can calculate G′′′(0, 13) = −995424 in 70 seconds on
an INTEL 486 CPU, 100 MHz. On the other hand, if one rewrites all recursive
computations by iterative ones, then one gets in a second

G′′′(0, 100) =

−3497461101660385688954109997243219765648878232202900028526850.

Note that there is no chance at all to find this value by the calculation of the
hundredth derivative of G(x, n), substituting x = 0!

CONCLUSION AND FUTURE DIRECTIONS OF DERIVE

In the Abstract, I announced to give examples how numeric and symbolic
computations need each other. Some of the examples given were about sym-
bolic identities, hence mathematical theorems (e.g. Hofstadter’s Theorem) that
needed numerical (and graphical) evidence to be discovered, but then could be
proved by sophisticated symbolic computations. Other examples showed ill-
conditioned numerical computations which could be replaced by well-condition-
ed ones using symbolic techniques. Finally the “curve discussion” example

24

showed that graphical techniques—despite of their importance and chances—
are not always capable to show the qualitative behavior of the functions we are
dealing with directly. Sometimes the combination with symbolic computations
cannot be avoided.

It is the combination of numeric and symbolic capabilities, enriched by
graphical ones, that gives a program like DERIVE an essential advantage over
a calculator (or graphics calculator).

Whereas for most problems occurring in school education DERIVE does a
gorgeous job, there are some well-known algorithms that in my opinion are
missing in DERIVE and should be integrated in the future.

Polynomial zeros Questions like: Where are the zeros of the Wilkinson

polynomial

P (x) := (x − 1)(x − 2) · · · (x − 20) − x19

107

= x20 − 219.00000 01 x19 + 20615 x18 + . . .

cannot be solved by DERIVE although there are efficient methods imple-
mented and available in other computer algebra systems. DERIVE can
be utilized to give graphical evidence to the interesting fact that P (x)
has only 14 real zeros, and no real zero in the interval [10, 20]. Note that
one should use the left hand representation to plot the graph since the
expanded form again is ill-conditioned!

Solution of Polynomial Systems Even a simple system like

x y − 8 = 0 and x2 − 5 x + y + 2 = 0

corresponding to the intersection of a hyperbola and a parabola, cannot
be solved by DERIVE’s SOLVE command since it is nonlinear. Mighty
methods based on the calculation of Gröbner bases are available in other
computer algebra systems that are capable to find all solutions of a poly-
nomial system.

On the other hand, not all other systems find the solutions for questions
like: For which of the parameters a, b and m are the following true:

2
√

b
√

a +
√

b
+

√
a3+

√
b
3

√
a+

√
b

−√
a
√

b

a + b
= 1 ,

and √
1+m√

1+m −
√

1−m
+

1 − m

m − 1 +
√

1+m
√

1−m
=

m

1 −
√

1 + m
√

1 − m
?

DERIVE is successful!

REFERENCES 25

Notes

1. If you use approX for the factors first, then the result is even worse. Why?

2. The results of the ORTH POL.MTH package can be reproduced in older versions (up to
3.. . .) of DERIVE. In the newer releases the code of this section is already adopted.

3. To avoid the generation of the immensely complicated output on the screen—which
takes much longer than the computation itself—use the dummy function DUMMY(term):="done".

References

[1] Abramowitz, M. and Stegun, I.A.: Handbook of Mathematical Functions.

Dover Publ., New York, 1964.

[2] DERIVE User Manual, Version 3. Seventh Edition, 1994.

[3] Engel, A.: Geometrische Beweise mit dem PC. In: Tagungsband der DE-

RIVE Days Düsseldorf, 19.–21. April 1995. Ed. by Bärbel Barzel, Lan-
desmedienzentrum Rheinland-Pfalz, Düsseldorf, 1995, 27–36.

[4] Graham, R.L., Knuth, D.E. and Patashnik, O.: Concrete Mathematics. A

Foundation for Computer Science. Addison-Wesley, Reading, Massachus-
sets. Second Edition, 1994.

[5] Koepf, W., Ben-Israel, A., Gilbert, R.P.: Mathematik mit DERIVE.

Vieweg, Braunschweig/Wiesbaden, 1993.

[6] Koepf, W.: Höhere Analysis mit DERIVE, Vieweg, Braunschweig/Wies-
baden, 1994.

[7] Koepf, W.: Efficient computation of orthogonal polynomials in computer
algebra. Konrad-Zuse-Zentrum Berlin (ZIB), Preprint SC 95-42; updated
version available at http://www.zib.de/koepf.

[8] Koepf, W.: DERIVE für den Mathematikunterricht. Vieweg, Braun-
schweig/Wiesbaden, 1996.

[9] Neundorf, W.: Kondition eines Problems und angepaßte Lösungs-
methoden. Lecture given at the DMV-Tagung, Ulm, September 1995.

