SYMBOLIC COMPUTATION OF SUMS WITH
MACSYMA

WOLFRAM KOEPF
Fachbereich Mathematik, Freie Universitat Berlin
Arnimallee 3, W-1000 Berlin 33

ABSTRACT

In this lecture we give an introduction into the symbolic algebra systems
MAcsYMA. MACSYMA is a programming language with the capability to do
symbolic calculations rather than only numerical ones. In a further section
we show some of the difficulties arising by the use of symbolic algebra systems
considering as an example MACSYMA commands associated with summation.

1. General Capabilities of Symbolic Algebra Systems

In this section we present an interactive session showing some of the capabilities of
MAcsYMA*. The lines numbered (C1), (C2), etc., are the input lines which we typed
into the computer, whereas the lines (D1), (D2), etc., contain MACSYMA'’S response.
We start our session with the statements

(C1) writefile("primer.out");

(D1) primer.out
(C2) showtime:true$

Time= O msecs

In the first line, we ask MACSYMA to write our session into file primer.out which
enables us to present the results in this paper. If we finish any statement by a
semicolon, the corresponding D line with the calculated result is shown on the screen,
whereas the output is suppressed if we finish our statement by a dollar sign. The
result, however, is calculated anyway, and may be referred to by its line number. In
line (C2) we assign the value true to the global variable showtime with the effect that
for each further computation the calculation time is shown in milliseconds. MACSYMA
calculates integers and rational numbers with an arbitrary precision, e.g.

(C3) 40!;

Time= 16 msecs
(D3) 815915283247897734345611269596115894272000000000

(C4) 1024/%;
Time= O msecs

0
796792268796775131196886005464956928000000000

By % one refers to the result of the last line. You see that fractions automatically
are represented in lowest terms. There is also an arbitrary precision real arithmetic
available. %pi is the MACSYMA name for the circular constant 7.

(C5) bfloat(%pi);

Time= O msecs
(D5) 3.141592653589793b0
(C6) fpprec:40$

Time= 83 msecs
(C7) bfloat(%pi);

Time= O msecs
(D7) 3.141592653589793238462643383279502884197b0

By the setting fpprec:40$ we set the precision to 40 significant digits.

We can work with polynomials. The MACSYMA command expand expands a
polynomial expression, whereas the factor command succeeds in factorizing any
polynomial if the factorization does not contain algebraic expressions. Note that
the factorization of the next example obviously needs more time, but in spite of the
complexity is quickly done.

(C8) f:expand(product(product(j*x-y~k,k,1,3),j,1,2));

Time= 516 msecs
12 11 2 10 10 2 9 9 3 8 2 8
(D8) Y -3XY +2X Y -3XY +9X Y -3XY -6X Y +11X Y

3 7 27 4 6 3 6 2 6 4 5 3 5
-12X Y +9X Y +4X Y -27TX Y +2X Y +18X Y -12X Y

4 4 3 4 5 3 4 3 5 2 4 2 5 6
+22X Y -6X Y -12X Y + 18X Y -12X Y +4X Y -12X Y+ 8X
(C9) factor(f);

Time= 8266 msecs
2 2 3 3
(D9) -2XD - -2 - -2X & -X%

The product function is self-explaining. Note that MACSYMA (in standard setting)
is not case-sensitive, and its output uses upper case variable names.

We can also work with rational expressions, factoring them and calculating their
partial fraction decompositions.

(C10) g:factor ((6+21xx+21xx"2+6%x"3)/(-2%x—-4*x"2+6%x"3)) ;
Time= 316 msecs
3 X+1) X+2) (2X+1)
(D10) e
2 X-1)X@X+1)
(C11) partfrac(g,x);

Time= 216 msecs

(o1 mmmmmmme—- - e +1

As there are algorithms to do so, one can solve linear systems of equations, as well
as polynomial equations of order at most 4. In many cases, however, this results in
long, unreadable output, which is almost useless. This is not the case for the example

(C12) solve(x~3+a*x"2-a*x = 1,x);
Time= 150 msecs
2 2

SQRT(A + 2 A - 3) + A + 1 SQRT(A + 2 A -3) - A -1
(D12) [X = - —=—=————m—m—mmmmmmmmee o D , X = 1]

Note that again symbolic solutions are available.
Besides the algebraic capabilities there are also analytic ones. One can calculate
limits and derivatives.

(C13) 1limit((sqrt(1+x)-sqrt(1-x))/x,x,0);
Time= 466 msecs

(D13) 1
(C14) diff(((1+x)/(1-x)) n,x);

Time= 166 msecs

(D14) e
(C15) ratsimp(%);

Time= 200 msecs

(D15) — o

Note that the results not always are written in simplest form as there is no general
decision procedure to decide which of several equivalent representations is the simplest
one. Further the calculation time is minimized if the results are not simplified. It
is up to the user to take care of simplifications. In the above example we used the
ratsimp command to bring the rational result in the usual numerator/denominator
form.

One can calculate Taylor polynomials. The following is an example with which
the author was able to disprove a conjecture of Robertson®. Robertson conjectured
that the function considered has only nonnegative Taylor coefficients. By sqrt and
exp the square root and exponential functions are denoted.

(C16) taylor(sqrt((exp(x)-1)/x),x,0,14);

Time= 1033 msecs
2 3 4 5 6 7
X 5 X X 79 X 3X 71 X 113 X
(D16)/T/ 1 + = + ———— + ——— 4+ ————- + ————= + - + ———————
4 96 128 92160 40960 12386304 247726080

118908518400 22649241600 930128855040 744103084032

12 13 14
935917 X 20287103 X 2452337 X

1218840851644416000 43878270659198976000 210615699164155084800

One of the highlights of symbolic algebra systems is integration. Whereas people
must use heuristic techniques for integration, there is an algorithmic procedure by
Risch® available to decide if an integral is an elementary representable function, and
if yes, to find a representation which can be implemented into a symbolic algebra
system. MACSYMA is very successful with integration, and the following are only
simple examples of its capabilities.

(C17) integrate(exp(-x~2),x,0,inf);
Time= 3516 msecs

SQRT (%PT)
(o) mmmmeeeee

(C18) integrate(exp(x)*sin(x)*x"3,x);

Time= 1633 msecs
3 X 3 2 X
(X -3X+3)%E SINX) + (-X +3X -3X) %E cosx
(p18)

Last but not least MACSYMA’s capabilities to solve ordinary differential equations
are quite astonishing, too. Here are some simple examples.

(C19) ode(n*r(x)*diff(y(x),x)-diff(r(x),x)*y(x)=0,y(x),x);

/usr/local/lib/macsyma_417/ode/ode.o being loaded.
/usr/local/lib/macsyma_417/ode/odeaux.o being loaded.
/usr/local/lib/macsyma_417/ode/ode2.0 being loaded.
Time= 1450 msecs

LOG(R(X))
N
(D19) Y(X) = %C JE
(C20) radcan(%);
Time= 150 msecs
1/N
(D20) Y(X) = %C R(X)

(€21) ode(diff(diff(y(x),x),x)-2*xdiff (y(x),x)+y(x)=0,y(x),x);

Time= 166 msecs
X
(D21) Y(X) = (%K2 X + %K1) %E

Again we requested the simplification of one of the results, this time by the radcan
command which simplifies expressions involving exp and log terms.

You can see that the capabilities of MACSYMA are broad even though we only
mentioned few of the techniques available. However, things are not always that easy
as the examples of this sections seemed to promise. The following price has to be
paid for so much convenience: One must study the language carefully. This will be
illustrated in the next section.

2. Working with Sums

In this section we show some of the difficulties that may arise by the use of symbolic
algebra systems. As an example we consider the MACSYMA commands associated
with summation.

The MACSYMA command sum (ezpression, variable, lo, hi) is designated to do
two entirely different things. First it enables us to treat with formal manipulation of

sums like the change of the summation index, and the combination of formal sums.
Connected with this feature are the MACSYMA functions changevar, intosum, and
sumcontract. On the other hand, sum has some capabilities to give closed form
solutions to certain sums, i.e. it can evaluate specific sums. For the reason to have
these two different types of behavior, sum is not a normal procedure like the inte-
grate command, e.g., but is a special form. The behavior of sum as that of special
forms in MACSYMA, in general, is mostly determined by its evaluation mechanism.
Let us first give a particularly astonishing example of the behavior of the sum

10
command. Suppose we want to evaluate > k, and therefore produce the following

MACSYMA code: .
(C1) f:k;

(D1) K
(C2) sum(f,k,1,10);

(02) 10 K

What happens here? How can the result depend on the variable k£ that was only
intended to be an index variable? The answer lies in the way in which order expres-
sions are evaluated by MAcsymMA. What we had in mind, was: First evaluate the
arguments, especially the first argument, and then sum the corresponding expres-
sion. What MACSYMA makes, is something different. First MACSYMA recognizes
that the sum is of a special type; as the difference of the upper and the lower index
for the summation evaluates to a finite positive integer, we have a finite sum. In these
cases the sum immediately is transformed to its finite counterpart, i.e. in our case to
f+f+f+f+f+f+f+f+f+f. Then finally evaluation occurs, and f is replaced
by its value k, that was defined in line (C1); internal simplification yields (D2). In
the same way e.g. the (nonsense) expression

(C3) sum(f,k,f,f+10);
(D3) 11 K
is handled. Note that this expression does not even have a well-defined counterpart

k+10
(> k ?) if evaluation should occur before writing the sum out.

I we really want to have the first argument evaluated, we must tell this explicitly
to MACSYMA using the ev command,

(C4) sum(ev(f),k,1,10);

(D4) 55

which does the job required.

If the difference between the upper and lower index is not a positive integer, then
the behavior of the sum command may be assumed to be similar to the integrate
command. This is not the case either. When using the command integrate, it will
immediately invoke the integration package and try to integrate the corresponding
expression. Only if this fails, the noun form is returned. The default return value
of the sum command, however, is it’s noun form. As mentioned earlier, the phi-
losophy behind this behavior is to be able to transform sums formally. The valid
transformations on sums will be considered in more detail in another lecture.

Here is a typical example of the difference between the integrate and the sum
commands. Note that the noun form of a procedure is returned if we precede the
command name by ’.

(C5) integrate(f,k,1,n);

2
N 1
(D5) -— - -
2 2
(C6) ’integrate(f,k,1,n);
N
/
L
(D6) I K dK
]
/
1
(C7) sum(f,k,1,n);
N
\
(D7) > K
/
K=1

By default, the option simpsum has the value false. Setting it to true causes
simplification of the sum under investigation.

(C8) simpsum:true$

(C9) ’sum(f,k,1,n);

o» e

As you see, if simpsum has value true, even the noun form of sum is evaluated, if
the result is available.

Now we set simpsum back to false to study the behavior of sum with different
kinds of arguments to learn more about which type of evaluation occurs. If the
difference of the upper and lower bounds is an integer, sum always simplifies as we
already saw. Here the behavior differs again if the noun form is called.

(C10) simpsum:false$
(C11) sum(alk]l*x"k,k,0,10);
10 9 8 7 6 5 4 3 2
(D11) A X +AX +AX +AX +AX +#AX +AX +AX +AX +AX+A

10 9 8 7 6 5 4 3 2 1 0

(C12) ’sum(alk]*x"k,k,0,10);

(D12) > A X

If the difference between the upper and lower bounds is not a positive integer, always
the noun form is replied,

(C13) sum(alk]*x"k,k,0,inf);

(D13) > A X

but calling the noun form is faster as MACSYMA does not try to simplify the expres-
sion.

Now we show how arrays (subscripted functions) and functions that occur as input
in sums are evaluated. If we give a[n| a value by the define command, this produces
a pointer to its formula for further evaluations, not more, and so the argument of the
following sum is not evaluated.

(C14) define(alk],k)$

(C15) expril:sum(alk]*x"k,k,0,n);

(D15)

If MACsYMA calculates a[j] for a certain index j, just that particular value a[j] will
be stored in memory for further evaluation, but not a[k] for any other index k. Which
particular values are stored in memory, can be requested by the command arrayinfo.

(C16)

(D16)
(c17)

(C18)

(D18)
(C19)

(D19)

(C20)
(c21)

(D21)
(C22)

(D22)

arrayinfo(a);
[HASHED, 1]
aljl-alk-11$
arrayinfo(a);
[HASHED, 1, [J], [K - 1]1]
sum(al[k]*x"k,k,0,n);
N
\ K
> A X
/ K
K=0
alk]l/aln+11$
arrayinfo(a);
[(HASHED, 1, [J1, [K - 11, [K], [N + 1]1]
sum(al[k]*x"k,k,0,n);
N
\ K
> K X
/
K=20

Line (D16) tells that a is a hashed array of dimension 1 with no precalculated values.
Calculating a[k] for the index k in line (C20) stores that value in memory so that the
argument of the sum now is evaluated. The same effect occurs if we substitute the
sum commands by ev commands. Note that exprl was defined in line (C15).

(C23)

ev(exprl);

(D23) > K X

If simpsum has value true, then further simplification may occur.

(C24) simpsum:true$
(C24) x:1%

(C25) ev(expril);

(28) -

The fact that sum only simplifies its first argument if it is stored in memory has
as a result that an expression involving functions is only simplified in the case that
the difference of its upper and lower bound is a positive integer, as in that case an
ordinary sum is substituted for the formal sum.

(C26) expr2:’sum(a(k),k,1,n)$
(C27) define(a(k),k)$

(C28) ev(expr2);

(D28) > A(K)

With one of the following constructions it is possible to get this expression evaluated,
too.

(C29) apply(’sum, [a(k),k,1,n]);

(29> e

10

(€30) sum(’’(a(k)),k,1,n);

(®3) e

On the other hand, soon we will introduce the nusum command that resolves all the
problems that are connected with sum, and makes the above constructions obsolete.

3. The Computation of Sums

Before doing so we want to mention that the sum function with simpsum option
true is able to give closed form solutions in the case of infinite sums of the form

1
for fixed k € N, e.g.
(C31) sum(1/k~(30),k,1,inf);
30
6892673020804 JPI

(D31) e
5660878804669082674070015625

or in the case of the sums i k™ for fixed m € N, e.g.
k=0

(C32) sum(k~10,k,0,n);
11 10 9 7 5 3

6N +33N +55N -66N +66N -33N +50N
(D32) e

and finally in certain other cases as e.g.

(C33) sum(binomial(n,k),k,0,n);

(D33) 2

On the other hand, there is no way to decide in advance for which arguments the
sum function will find a closed form solution. For example the similar example is
not solved

11

(C34) sum((-1)"k*binomial(n,k),k,0,n);

N

\ K
(D34) > (- 1) BINOMIAL(N, K)
/

K=0

For the purpose of getting closed form solutions of sums, there is the more powerful
function nusum that is an implementation of the so-called Gosper algorithm®!. This

n
algorithm is successful in all cases where the closed form solution F,, := > a; of
k=ko
the indefinite summation, i.e. the summation with variable upper bound, has rational

ratio Fj,y1/F,. This is the case, e.g., if F}, is expressible in terms of factorials and
rational functions.

As the nusum command is a function rather than a special form, none of the prob-
lems above occurs here. Its behavior depends on the setting of the option simpsum,
too. We highly recommend the following usage of sum and nusum:

1. For formal manipulations of sums use sum with the setting simpsum: false,
calling the noun form,

2. for closed form solutions of sums use nusum with the setting simpsum: true.

All closed form results that had been found by the sum command in the above
MAcCSYMA session are found by the Gosper algorithm, and so by nusum, as well.
But we want to mention that sometimes the Gosper algorithm is pretty much slower.
This is, e.g., the case in the example on line (C32).

On the other hand the Gosper algorithm is able to handle, e.g., the following
examples that are not done by the sum function.

(C35) nusum((-1) “k*binomial (n,k),k,0,n);

/usr/local/lib/macsyma_417/share/nusum.o being loaded.
(D35) 0

(C36) nusum(kx*k!,k,0,n);

(D36) N+ 1) -1

Sometimes it is necessary to load an even stronger package, nusuml. This is, e.g.,
the case if one of the lower or upper bounds equals +oo.

(C37) nusum(alk]*y~k,k,0,inf);

12

(D37) mmmmmmmmm e + —mmmmme

(C38) load(nusumil)$

/usr/local/lib/macsyma_417/share/nusuml.o being loaded.
(C39) nusum(alk]*y~k,k,0,inf);

Is ABS(Y) - 1 positive, negative, or zero?
n;
Is Y positive, negative, or zero?

p;
Is Y -1 positive or negative?
n;

@3 T

As you see, without nusum1, nusum treats oo as an ordinary variable and does not

carry out the limit.

If MACSYMA needs some information for its calculations, it asks the user. Here
we answered that y should be in the interval (0,1).

With nusum1 loaded, it is best to use the closedform command. It can handle
sums, and products, and uses all available techniques to solve finite, symbolic indefi-
nite, and infinite sums and products. So instead of the above statement we can also
use

(C40) assume(y>0,y<1)$

(C41) closedform(sum(alk]*y“k,k,0,inf));

(41 e
Y -2Y+1

The assume command tells MACSYMA in advance that y € (0, 1), so it will not have

to ask any more.
Quite complicated infinite sums can be handled by the closedform procedure:

(C42) closedform(sum(k~2/(k"2+a"2)"3,k,1,inf));

3 2 2 2
%PI COTH(%PI A) CSCH (%PI A) %PI CSCH (%PI A) %PI COTH(%PI A)
(D42) - ———————————————m e m e + mmmmm + mmmmm
8 A 2 3

13

(C43) trigsimp(trigreduce(trigexpand(%)));

/usr/local/lib/macsyma_417/share/trigsimp.o being loaded.
2 2 3 2
%PI COSH(%PI A) SINH (%PI A) + %PI A SINH(%PI A) - 2 %PI A COSH(%PI A)

16 A SINH (%PI A)

The trigsimp, trigreduce and trigexpand commands simplify trigonometric ex-
pressions.

We list some more examples for the use of the sum, nusum and closedform
commands.

n

Example 1. Calculate 3 k° using the sum and the nusum commands, and com-
k=0

pare the calculation times.

The following MACSYMA statements produce the result.

simpsum:true$
showtime:true$
sum(k~9,k,0,n);

Time= 233 msecs
10 9 8 6 4 2
2N + 10N + 15N -14 N + 10N -3 N

nusum(k~9,k,0,n);

Time= 25283 msecs
2 2 2 4 3 2
N (N+1) (N +N-1) (2N +4N -N -3N+ 3)

factor(sum(k~9,k,0,n));

Time= 666 msecs
2 2 2 4 3 2
N (N+1) (N +N-1) 2N +4N -N -3N+ 3)

In this example the Gosper algorithm is much slower than the built-in solver used by
the sum command.

Example 2. Calculate the following sums.
o0 1 n

() SR 0<y<)), () Yo (©) (KK +2k) |

k=0 k=1 k=1

14

n 4) 00 (_1)k: k2 00 k2
@ > (2w, ©) Y 7o 0 Y e
2 2\3 ? 2 2\4
k=0 \j=0 k=1 (k2 +a?) k=1 (k2 + a?)
The following MACSYMA commands produce the results.
simpsum:true$
load (nusum)$
load (nusumi)$
assume(y>0,y<1)$
nusum(k~2*y~k,k,0,inf);
Y (Y + 1)
3
Y - 1)
nusum(1/k~6,k,1,inf);
6
%PI
945
nusum (k! 2% (k~2+2*xk) ,k,1,n) ;
2
N+ 1) -1
nusum(sum(k~j,j,0,4) ,k,0,n);
3 2
(N+1) (12 N + 33N + 37N + 38N + 60)
60
closedform(sum((-1) "kxk~2/(k"2+a"2)"3,k,1,inf));
3 2 %PI A %PI A 2 2 %PIL A
%PI SECH (-———-) TANH(%PI TANH(-----) %PI SECH (--—-—--)
2 2 2
-_ E,E———————— - - + _________________
64 A 3
32 A 64 A
3 %PI A 2 2 %PI A %PI A
%PI COTH(-———-) CSCH (%PI CSCH (-----) %PI COTH(-----)
2 2 2
_ E,—————— e — + _________________ + _______________
64 A 2 3
64 A 32 A
trigsimp(trigreduce(trigexpand(%)));
2 3 WPI A %PI A %P1 A
((2 %PI A COSH (---—--) - %PI A COSH(-----)) SINH(-—---)
2 2 2
3 2 3 2 2 %PI A
+ (2 4PI - 2 4PI A) COSH () + (2 %PI A - 2 %PI) COSH (----—-)
2

15

3 2 3 3 %PI A 3 %PI A
- %PI A)/(64 A COSH (-----) SINH (-———-))
closedform(sum(k~2/(k~2+a"2)"4,k,1,inf));

4 2 2 2 2
%PI CSCH (%PI A) (3 CSCH (%PI A) + 2) #PI CSCH (%PI A) #PI COTH(%PI A)

trigsimp(trigreduce(trigexpand(%)));

3 2 4 3 2
(3 %PI COSH(%PI A) SINH (%PI A) + (3 %PI A - 4 %PI A) SINH (%PI A)

4 3 5 4
-6 %PI A)/(96 A SINH (%PI A))

References

1. R. L. Graham, D. E. Knuth ans O. Patashnik, Concrete Mathematics: A Founda-
tion for Computer Science (Addison-Wesley Publ. Co., Reading, Massachusetts,
1988), § 5.7.

2. R. W. Gosper Jr., Decision procedure for indefinite hypergeometric summation
(Proc. Natl. Acad. Sci. USA 75, 1978), p. 40-42.

3. W. Koepf, On two conjectures of M. S. Robertson (Complex Variables 16, 1991),
p. 127-130.

4. MACSYMA: Reference Manual, Version 13 (Symbolics, USA, 1988).

5. R. H. Risch, The problem of integration in finite terms (Trans. Amer. Math. Soc.
139, 1969), p. 167-189.

16

