
unilogo

CA Orthogonal Polynomials Hypergeometrics Properties Recurrences Zeilberger Finale

Methods of Computer Algebra for
Orthogonal Polynomials

Prof. Dr. Wolfram Koepf

University of Kassel

www.mathematik.uni-kassel.de/˜koepf

Rutgers Experimental Mathematics Seminar
January, 30, 2014 / Rutgers University

http://www.mathematik.uni-kassel.de/~koepf


unilogo

CA Orthogonal Polynomials Hypergeometrics Properties Recurrences Zeilberger Finale

Online Demonstrations with Computer Algebra

Computer Algebra Systems
I will use the computer algebra system Maple to program
and demonstrate the considered methods.

Algorithms
The mostly used algorithms are:

Algorithms of Linear Algebra with many variables
Multivariate polynomial factorization
and the solution of non-linear systems of polynomial
equations.
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Orthogonal Polynomials

Scalar Products
Given: a scalar product

〈f ,g〉 :=

∫ β

α
f (x)g(x) dµ(x)

with non-negative Borel measure µ(x) supported in the interval
[α,β] (or equivalently as a Riemann-Stieltjes integral with
nondecreasing µ(x)).

Special Cases

absolutely continuous measure dµ(x) = ρ(x) dx with
weight function ρ(x),
discrete measure µ(x) = ρ(x) supported in Z.
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Orthogonal Polynomials

Orthogonality

A system of polynomials (Pn(x))n=0 with deg(Pn) = n

Pn(x) = knxn + k ′nxn−1 + k ′′n xn−2 + · · · , kn 6= 0

is called orthogonal (OPS) w. r. t. the positive-definite
measure µ(x), if

〈Pm,Pn〉 =

{
0 if m 6= n

hn > 0 if m = n
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General Properties of OPS

Main Properties
(Three-term Recurrence) Every OPS satisfies

x Pn(x) = an Pn+1(x) + bn Pn(x) + cn Pn−1(x) .

(Zeros) All zeros of an OPS are simple, lie in the interior of
[α,β] and have some nice interlacing properties.
(Representation by Moments)

Pn(x) = Cn

∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 · · · µn
µ1 µ2 · · · µn+1
...

...
...

...
µn−1 µn+1 · · · µ2n−1

1 x · · · xn

∣∣∣∣∣∣∣∣∣∣∣
,

where µn :=
∫ β
α xndµ(x) denote the moments of dµ(x).
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Classical Families

Classical “Continuous” Families
The classical OPS (Pn(x))n=0 can be defined as the polynomial
solutions of the differential equation:

σ(x)P ′′n (x) + τ (x)P ′n(x)− λnPn(x) = 0 .

Conclusions
n = 1 yields τ (x) = dx + e,d 6= 0
n = 2 yields σ(x) = ax2 + bx + c
The coefficient of xn yields λn = n(a(n − 1) + d)
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Classical Families

Classification
These classical families can be classified (modulo linear trans-
formations) according to the following scheme (Bochner (1929))

σ(x) = 0 powers xn

σ(x) = 1 Hermite polynomials
σ(x) = x Laguerre polynomials
σ(x) = 1− x2 Jacobi polynomials
σ(x) = x2 Bessel polynomials

Ingredients
For the theory one needs

a representing family fn(x), here the powers fn(x) = xn,
an operator, here the derivative operator D, with the simple
property D fn(x) = n fn−1(x).
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Hermite, Laguerre, Jacobi and Bessel
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Classical Families

Pearson Differential Equation

The corresponding weight function ρ(x) satisfies the Pearson
Differential Equation

d
dx

(
σ(x)ρ(x)

)
= τ (x)ρ(x) .

Weight Function
Hence it is given by

ρ(x) =
C

σ(x)
e
∫ τ (x)

σ(x)dx
.
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Classical Continuous Families

The following properties are equivalent, each defining the
classical continuous families.

Differential equation for (Pn(x))n=0.
Pearson Differential Equation (σ ρ)′ = τ ρ for weight ρ(x).
With (Pn(x))n=0 also (P ′n+1(x))n=0 is an OPS.
Derivative Rule:

σ(x) P ′n(x) = αn Pn+1(x) + βn Pn(x) + γn Pn−1(x) .

Structure Relation: Pn(x) satisfies

Pn(x) = ân P ′n+1(x) + b̂n P ′n(x) + ĉn P ′n−1(x) .

Rodrigues Formula: Pn(x) is given as

Pn(x) =
En

ρ(x)

dn

dxn

(
ρ(x)σ(x)n

)
.
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Classical Discrete Families

Classical Discrete OPS
By replacing the differential operator D by the difference
operator ∆f (x) = f (x + 1)− f (x) one gets a rather similar
theory for the classical discrete OPS that are solutions of
certain difference equations.
In this case the representing family are the falling factorials
fn(x) = xn = x(x − 1) · · · (x − n + 1) with the property
∆ fn(x) = n fn−1(x).
The classification leads to the Charlier, Meixner,
Krawtchouk and Hahn polynomials.
Both the continuous and the discrete classical OPS can be
represented by hypergeometric functions.
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Hypergeometric Functions

Generalized Hypergeometric Function

The formal power series

pFq

(
a1, . . . ,ap

b1, . . . ,bq

∣∣∣∣∣ z
)

=
∞∑

k=0

Ak zk ,

whose summands αk = Akzk have a rational term ratio

αk+1

αk
=

Ak+1 zk+1

Ak zk =
(k + a1) · · · (k + ap)

(k + b1) · · · (k + bq)

z
(k + 1)

,

is called the generalized hypergeometric function.
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Hypergeometric Functions

Hypergeometric Terms

The summand αk = Akzk of a hypergeometric series is called
a hypergeometric term.

Formula for Hypergeometric Terms

For the coefficients of the generalized hypergeometric function
one gets the following formula using the shifted factorial
(Pochhammer symbol) (a)k = a(a + 1) · · · (a + k − 1)

pFq

(
a1, . . . ,ap

b1, . . . ,bq

∣∣∣∣∣ z
)

=
∞∑

k=0

(a1)k · · · (ap)k

(b1)k · · · (bq)k

zk

k !
.
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Hypergeometric Functions

OPS as Hypergeometric Functions

Substituting the power series f (x) =
∞∑

k=0
Ak xk into the

differential equation and equating coefficients yields a
recurrence equation for Ak .
Using this recurrence one gets for example for the
Laguerre polynomials

Lα
n (x) =

(
n + α

n

)
1F1

(
−n

α + 1

∣∣∣∣∣ x
)

=
n∑

k=0

(−1)k

k !

(
n + α

n − k

)
xk ,

and the Hahn polynomials are given by

Q(α,β)
n (x ,N) = 3F2

(
−n,−x ,n + 1 + α + β

α + 1,−N

∣∣∣∣∣1
)
.
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Properties of Classical OPS

Relations Between Classical OPS
Using linear algebra one can compute the coefficients of the
following identities – expressed through the parameters
a,b, c,d und e – (Lesky (1985), K./Schmersau (1998)):

(RE) x Pn(x) = an Pn+1(x) + bn Pn(x) + cn Pn−1(x)

(DR) σ(x) P ′n(x) = αn Pn+1(x) + βn Pn(x) + γn Pn−1(x)

(SR) Pn(x) = ân P ′n+1(x) + b̂n P ′n(x) + ĉn P ′n−1(x)

Maple
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Classical OPS Solutions of Holonomic Recurrence
Equations

Inverse Algorithm

We showed that the coefficients of the recurrence equation
of the classical systems can be written in terms of the
coefficients a,b, c,d , and e of the differential / difference
equation.
If one uses these formulas in the backward direction, then
one can determine the possible differential / difference
equations from a given recurrence.
For this purpose one must solve a non-linear system.
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Classical OPS Solutions of Holonomic Recurrence
Equations

Example
Given: the recurrence equation

Pn+2(x)− (x − n − 1) Pn+1(x) + α(n + 1)2Pn(x) = 0

Does this equation have classical OPS solutions? Maple
We find out that the solutions of this equation are shifted
Laguerre polynomials for α = 1/4. For α < 1/4 the
recurrence has Meixner and Krawtchouk polynomial
solutions.
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Zeilberger Algorithm

Recurrence Equations for Hypergeometric Series

Doron Zeilberger (1990) designed an algorithm to compute
recurrence equations for hypergeometric sums of the type

sn =
∞∑

k=−∞
F (n, k) .

Holonomic Recurrence Equations
His algorithm results in a holonomic recurrence equation for sn.
A recurrence equation is called holonomic if it is linear,
homogeneous, and has polynomial coefficients.
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Doron Zeilberger
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Zeilberger Algorithm

Differential Equations for Hypergeometric Series

A similar algorithm yields a holonomic differential equation for
series of the form

s(x) =
∞∑

k=−∞
F (x , k) .

Algebra of Holonomic Differential resp. Recurrence Equations

Holonomic functions form an algebra, i. e. sum and product
of holonomic functions are again holonomic, and there are
linear algebra algorithms to determine the resulting
differential and recurrence equations.
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Zeilberger Algorithm

Application to Orthogonal Polynomials
As an example, we will apply Zeilberger’s algorithm to the
Laguerre polynomials

Lα
n (x) =

n∑
k=0

(−1)k

k !

(
n + α

n − k

)
xk .

With the above algorithms one can also compute
recurrence and differential equations for the square
Lα

n (x)2, or for the difference Lα
n+1(x)− Lα

n (x).
Maple
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Power Series Algorithm

Inverse Algorithm

Whereas Zeilberger’s algorithm uses the right hand side of

f (x) =
∞∑

k=−∞
Ak xk

to detect its left hand side (or a differential equation for it),
my FPS algorithm (= Formal Power Series) starts from the
left hand side to detect the right hand side.
This algorithm (K. (1992)) has been embedded in Maple by
Torsten Sprenger as
convert(...,FormalPowerSeries).

Maple
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Online Orthogonal Polynomials

CAOP = Computer Algebra and Orthogonal Polynomials

CAOP is a web tool for calculating formulas for orthogonal
polynomials belonging to the Askey-Wilson scheme using
Maple.
The implementation of CAOP was originally done by René
Swarttouw as part of the Askey-Wilson Scheme Project
performed at RIACA in Eindhoven in 2004.
The present site is a completely revised version of this
project which has been done by Torsten Sprenger under
my supervision in 2012 and is maintained at the University
of Kassel.
http://www.caop.org/

http://www.caop.org/
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Askey-Wilson Scheme

Askey-Wilson Scheme
In CAOP you saw all the families of the Askey-Wilson
Scheme.
Besides the already mentioned cases there are the

discrete measure supported in qZ (Hahn tableau);
discrete measure supported on a quadratic lattice (Wilson
tableau);
discrete measure supported on a q-quadratic lattice
(Askey-Wilson tableau).

It turns out that the three above classes can be treated in a
similar way as the continuous and the discrete cases
leading to similar theories.
However, these computations are very tedious and can be
done much easier with the use of computer algebra. This
research is ongoing and not yet finished.
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I would like to thank you very much for your interest!


