# Internet Resources for Mathematics 

Prof. Dr. Wolfram Koepf

University of Kassel
http://www.mathematik.uni-kassel.de/~koepf
July 29, 2008
Yaounde, Cameroon

$$
\begin{aligned}
& \text { U N I K A S S EL } \\
& \text { V ERSSIT 'A' T }
\end{aligned}
$$

## Abstract

## Topics of This Talk

- In this talk I would like to show you how the internet can be used as work bench for the researcher.
- As a mathematician I will concentrate on internet resources with mathematical contents which, however, might be also of interest for other people.
- These internet resources are open for the international public.


## Summary

- Integer Sequences
- Decimal Numbers
- Orthogonal Polynomials
- Mathematical Encyclopedias
- Recreational Sites


## Integer Sequences

## Integer Sequences Resources

- The text book The Encyclopedia of Integer Sequences by Neil Sloane and Simon Plouffe offers a rich database of integer sequences.
- Using the book, you can answer questions like this: How does the sequence

$$
1,1,2,3,5,8,13, \ldots
$$

continue?

- More importantly: Everybody has access to the internet based On-Line Encyclopedia of Integer Sequences.
- This database can be easily used to identify a given sequence.


## Integer Sequences

## The Fibonacci Sequence

- The Fibonacci sequence given by $F_{1}=1, F_{2}=1$ and

$$
F_{n}=F_{n-1}+F_{n-2}
$$

has many, many applications and origins.

- A mathematical journal is devoted entirely to these numbers: The Fibonacci Quarterly.
- The Fibonacci numbers in Wikipedia.
- They are connected with the golden ratio.
- Fibonacci numbers occur in the nature, for example in the sun flower and in many more flowers and fruits.
- Here is a short movie about this sequence.


## Integer Sequences

## Just Another Example

- Assume you come up in your research with the sequence

$$
\frac{(2 n)!}{n!(n+1)!}
$$

where $n!=1 \cdot 2 \cdots n$ denotes the factorial function.

- These numbers can easily be calculated. However, the question is: Are these numbers known?
- We compute the starting sequence:

$$
1,2,5,14,42,132,429,1430,4862,16796, \ldots
$$

and try to find out!

## Identification of Decimal Numbers

## Inverse Symbolic Calculator

- We connect with the Inverse Symbolic Calculator by Simon Plouffe.
- The item Simple Lookup and Browser searches in a database whether the unknown decimal number $x$ is listed. Hence this works like an inverse telephone book.
- We look up the number $x=\ln (\pi \sqrt{2}) \approx 1.4913034761293$ by a Simple Lookup.
- The item Smart Lookup searches in a database whether $x$ is listed, but not only for $x$, but also for $\ln x, e^{x}, \sin x$ etc.


## Decimal Numbers

## Integer Relations Algorithms

- The item Integer Relation Algorithms tries to find a polynomial relation between the constant given and other mathematical constants.
- For this purpose modern mathematical algorithms like the PSLQ Integer Relation Algorithm are used.
- If successful, this method can find complicated relations and identities.
- We try $x=\sqrt{2+\sqrt{3}}$ using Integer Relation Algorithms.


## A More Specialized Topic

## Orthogonal Polynomials

- Using the Maple Computer Algebra System, jointly with René Swarttouw I have created a web site for orthogonal polynomials of the so-called Askey-Wilson scheme
- With CAOP (Computer Algebra and Orthogonal Polynomials) one can compute recurrence relations and differential equations for classical systems in the web.
- Calling CAOP...
- Here obviously also modern algorithms are used to generate these results.


## Mathematical Encyclopedias

## Wikipedia

- The web contains several important encyclopedias.
- We have already seen Wikipedia.
- This encyclopedia is created by the web users themselves and has rather good control mechanisms.
- Wikipedia is fast growing and incorporates informations about almost everything.
- Let us search Wikipedia for some beautiful results by Leonard Euler.


## The Most Remarkable Formula of Mathematics

## Euler's Formula



## The Most Remarkable Formula of Mathematics

## Euler's Formula



## The Most Remarkable Formula of Mathematics

## Euler's Formula



## The Most Remarkable Formula of Mathematics

## Euler's Formula



## The Most Remarkable Formula of Mathematics

## Euler's Formula



## The Most Remarkable Formula of Mathematics

## Euler's Formula



## Introduction of Graph Theory

## Euler Solved Real World Problems

- Euler introduced Graph Theory into Mathematics.
- He solved the problem of the seven bridges of Königsberg.
- If a graph contains such a tour it is called an Euler graph.
- Euler investigated properties of polyhedra which are connected with the modern notion of planar graphs.
- His investigations resulted in the polyhedron formula: The number of vertices plus the number of faces minus the number of edges of a polyhedron always equals 2 :

$$
V+F-E=2
$$

- Planar graphs have the Four Color Property.


## Mathematical Encyclopedias

## MathWorld

- Another more specialized encyclopedia is MathWorld.
- This encyclopedia was created by Eric Weisstein and is hosted by Wolfram Research.
- MathWorld includes many mathematical formulae which can be created or checked with Mathematica.
- Let us search MathWorld for Euler.



## Mathematical Encyclopedias

## WebMathematica

- If you don't have a Mathematica license, you can nevertheless use some Mathematica materials, accessible on WebMathematica.
- Let's check the Polyhedron Explorer which deals with Platonic solids.
- The truncated icosahedron is an Archimedean solid and is well-known as a soccer ball.
- It also occurs in chemistry as one of the so-called Fulleren molecules $C_{60}$.


## Mathematical Encyclopedias

## Wolfram Demonstrations Project

- As last encyclopedic program we visit the Wolfram Demonstrations Project.
- The project comes as a byproduct of the newest software release Mathematica 6.
- As an example, let us create the Sierpinski triangle.
- With Mathematica, we can create the demonstration ourselves: Sierpinski source
- Sierpinski triangle after 10 steps.


## Recreational Sites

## An example from YouTube

- As final example a short movie from www.youtube.com: Mathematics Genius


## Many Thanks for Your Interest!

