## Programming Techniques in Computer Algebra

Prof. Dr. Wolfram Koepf

Universität Kassel
http://www.mathematik.uni-kassel.de/~koepf
March 18, 2010
Yaounde, Cameroon

## Abstract

## Topics of This Talk

- In this talk important programming techniques and mathematical algorithms are discussed and presented.
- After starting with iteration and recursion, we show the efficiency of divide-and-conquer algorithms.
- The Extended Euclidean Algorithm and modular powers form the basis for the RSA cryptographic system.
- The talk finishes with an implementation of RSA and demonstrates an error-correcting code.


## Summary

- Text Book on Computer Algebra
- Arithmetic of Large Integers
- Prime Numbers and Powers
- The RSA Cryptographic System

The programs that I will consider in this talk were developed for my (unfortunately German language!) text book

Computeralgebra, Springer, Berlin/Heidelberg, 2006
and can be downloaded from my web page:

http://www.mathematik.uni-kassel.de/ koepf/CA

$$
\begin{aligned}
& \mathbf{U} \text { N I K K A S S S E L } \\
& \text { V E R } \\
& \hline
\end{aligned}
$$

## Arithmetic of Large Integers

## Greatest Common Divisor

- Already the internal simplification of rational numbers needs the computation of greatest common divisors.
- However: The factorization of large integers is very time consuming!


## Euclidean Algorithm

To compute the GCD (recursively), one uses the relations:

- $\operatorname{GCD}(a, b)=\operatorname{GCD}(|a|,|b|)$, if $a<0$ or $b<0$
- $\operatorname{GCD}(a, b)=\operatorname{GCD}(b, a)$, if $a<b$
- $\operatorname{GCD}(a, 0)=a$
- $\operatorname{GCD}(a, b)=\operatorname{GCD}(b, a \bmod b)$

Mathematica

U N I K A S S EL
V ERSSIT 'A' T

## Extended Euclidean Algorithm

## Extended Euclidean Algorithm

- An iterative application of the Euclidean Algorithm yields additional informations.
- For $a, b \in \mathbb{Z}$ this so-called Extended Euclidean Algorithm yields $g=\operatorname{GCD}(a, b)$ and coefficients $s, t \in \mathbb{Z}$ such that

$$
g=s a+t b .
$$

- Conversely: If for suitable $s, t \in \mathbb{Z}$ the relation $1=s a+t b$ is valid, then $a$ and $b$ are relatively prime.


## Prime Number Test

## Fermat's Little Theorem

For a prime number $p \in \mathbb{P}$ and $a \in \mathbb{Z}$ the relation

$$
a^{p}=a \quad(\bmod p)
$$

is valid, or respectively

$$
a^{p-1}=1 \quad(\bmod p), \quad \text { if } \operatorname{GCD}(a, p)=1
$$

## Fermat Test

If this relation is not valid for a number $a \in \mathbb{Z}$, the $p$ cannot be a prime number!

## Efficient Computation of Powers

## Divide and Conquer Algorithm

- To utilize the Fermat test, modular powers should be computed very efficiently.
- The modular power $a^{n}(\bmod p)$ is computed efficiently by reducing powers of size $n$ to powers of size $n / 2$.
- Such a method is called a Divide and Conquer Algorithm.
- Recursive formulation of this algorithm:
- $a^{0} \bmod p=1$
- $a^{n} \bmod p=\left(a^{n / 2} \bmod p\right)^{2} \bmod p$ for even $n$
- $a^{n} \bmod p=\left(a^{n-1} \bmod p\right) \cdot a \bmod p$ for odd $n$
- Mathematica
- Question: How does an iterative version of this algorithm work?


## Carmichael Numbers

## Carmichael Numbers

- An integer $p$ which is not prime, but nevertheless satisfies Fermat's criterion, is called a Carmichael number.
- Fact: There are infinitely many Carmichael numbers.
- Carmichael numbers are not recognized by Fermat's test.
- We compute the first Carmichael numbers. Mathematica


## Criterion for Carmichael Numbers

An integer $p \in \mathbb{N} \subset \mathbb{P}$ is a Carmichael number if and only if

- $p=p_{1} \cdots p_{n}$ with pairwise different primes $p_{k} \in \mathbb{P}$
- $p_{k}-1 \mid p-1$ for all $k=1, \ldots, n$. Mathematica


## Cryptographic Systems

Cryptographic Systems

- By a cryptographic system a message $N$ is encoded by a function $E$ and a key e

$$
K=E_{e}(N)
$$

- The decoding is carried out by a function $D$ with key $d$ :

$$
D_{d}(K)=D_{d}\left(E_{e}(N)\right)=N .
$$

- The functions $E$ and $D$ should be efficiently computable.
- One problem is the key exchange.

[^0]
## Diffie-Hellman Key Exchange

## Modular Logarithm

- The inverse of the real exponential function $x \mapsto 2^{x}$ is simple to compute.
- The inverse of the integer exponential function $x \mapsto 2^{x}$ is also simple to compute.
- However, the inverse of the modular exponential function $x \mapsto 2^{x}(\bmod p)$ is difficult to compute.


## Diffie-Hellman Key Exchange

## Protocol of Diffie-Hellman Key Exchange (1976)

- Anna and Barbara want to exchange a common key. They choose numbers $g \in \mathbb{N}$ and $p \in \mathbb{P}$. These can be assumed to be public.

A chooses $a<p$
A computes $\alpha:=g^{a} \bmod p$
A sends $\alpha$ to B
A computes $s:=\beta^{a} \bmod p$

B chooses $b<p$
B computes $\beta:=g^{b} \bmod p$
B sends $\beta$ to A
B computes $t:=\alpha^{b} \bmod p$

Correctness of algorithm

$$
s=\beta^{a}=\left(g^{b}\right)^{a}=\left(g^{a}\right)^{b}=\alpha^{b}=t .
$$

## Asymmetric Cryptography

Asymmetric Cryptography

- The RSA algorithm is an example of an asymmetric cryptographic system.
- In such systems all participants have their own personal keys $e$ and $d$.
- Their encoding keys e are made public, whereas their decoding keys $d$ are kept secret (private).
- Key exchange of the private key $d$ is therefore not necessary.


## The RSA Cryptographic System

## Cryptographic Protocol of the RSA System (1978)

The potential recipient and participant of the system

- computes a 200 digit decimal number $m=p \cdot q$ with $p, q \in \mathbb{P}$,
- computes $\varphi=(p-1)(q-1)$,
- computes and publishes a public key e which is relatively prime with $\varphi$
- and computes his private key $d$ with the property $e \cdot d=1 \bmod \varphi$.
- The encoding and decoding functions are given by

$$
K=E_{e}(N)=N^{e}(\bmod m) \text { and } D_{d}(K)=K^{d}(\bmod m) .
$$

## The RSA Cryptographic System

## What do we Need fo RSA?

- Computation of large prime numbers: NextPrime
- Powers $N^{e} \bmod m$ must be computed efficiently: PowerMod
- We must compute the modular inverse $d=e^{-1}(\bmod m)$ : PowerMod
- The latter is actually an application of the Extended Euclidean Algorithm.

Mathematica

- The correctness of the algorithm results from Fermat's Little Theorem.
- Above all: With suitable auxiliary functions messages are converted towards integers and eventually transformed back.


## Error Correcting Codes

## Why is Error-Correction Necessary?

- We saw that cryptography assumes that messages are transferred error-free.
- If you use a music CD or a CD-ROM, it can contain up to hundreds of thousands of errors!
- All these errors must be corrected. Otherwise you cannot hear the music or your programs do not work.
- For this purpose highly specialized, so called Reed-Solomon codes, are used.
- Let's demonstrate such a code which can correct two errors.

Mathematica

Many Thanks for Your Interest!


[^0]:    U N I K A S S EL
    V ERSSIT 'A' T

