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Abstract: Orthogonal polynomials have a long history, and are still important
objects of consideration in mathematical research as well as in applications in
Mathematical Physics, Chemistry, and Engineering. Quite a lot is known about
them. Particularly well-known are differential equations, recurrence equations,
Rodrigues formulas, generating functions and hypergeometric representations
for the classical systems of Jacobi, Laguerre and Hermite which can be found
in mathematical dictionaries. Less well-known are the corresponding represen-
tations for the classical discrete systems of Hahn, Krawtchouk, Meixner and
Charlier, as well as addition theorems, connection relations between different
systems and other identities for these and other systems of orthogonal poly-
nomials. The ongoing research in this still very active subject of mathematics
expands the knowledge database about orthogonal polynomials continuously.
In the last few decades the classical families have been extended to a rather
large collection of polynomial systems, the so-called Askey-Wilson scheme, and
they have been generalized in other ways as well.

Recently new algorithmic approaches have been discovered to compute differ-
ential, recurrence and similar equations from series or integral representations.
These methods turn out to be quite useful to prove or detect identities for
orthogonal polynomial systems. Further algorithms to detect connection coef-



ficients or to identify polynomial systems from given recurrence equations have
been developed. Although some algorithmic methods had been known already
in the last century, their use was rather limited due to the immense amount of
calculations. Only the existence and distribution of computer algebra systems
makes their use simple and useful for everybody.

In this plenary lecture an overview is given of how algorithmic methods im-
plemented in computer algebra systems can be used to prove identities about
and to detect new knowledge for orthogonal polynomials and other hyperge-
ometric type special functions. Implementations for this type of algorithms
exist in Maple, Mathematica and REDUCE, and maybe also in other computer
algebra systems. Online demonstrations will be given using Maple V.5.

COMPUTER ALGEBRA

What is Computer Algebra?

In the work with programming languages like Pascal or C any variable used
has to be declared to connect the variable name with a fixed amount of memory.
Hence all numbers are static in size. As a result there is a maximal integer that
can be represented, and decimal numbers have a fixed degree of precision.

The situation is quite different in computer algebra systems which constitute
high level programming languages. In this talk we speak about general purpose
systems like Axiom [14], DERIVE [27], Macsyma [23], Maple [6], Mathematica
[32], MuPAD [8] and REDUCE [13]. We will present examples in Maple V.5.

In computer algebra systems numbers are dynamical objects whose size, i.e.
the number of memory cells allocated, depends on their actual size. As a result
there is no maximal integer, one can deal with integers with arbitrary many
digits, and their use is restricted only by time and space limitations of the
memory available. Moreover one can work with decimal numbers of arbitrary
precision.!

As an example, entering the line

> factorial(100);

Maple computes

93326215443944152681699238856266700490715968264381621\

46859296389521759999322991560894146397615651828625369\
7920827223758251185210916864000000000000000000000000

We can factorize this number by the command?
> ifactor(%);
(2)°7(3)* (5)* (7' (11)° (13)7 (17)° (19)° (23)* (29)® (31)° (37)* (41)?
(43)% (47)% (53) (59) (61) (67) (71) (73) (79) (83) (89) (97)
The following computes a binomial coefficient
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> binomial(500,50);

23144228279843004690177568716610488125456578190627925\
22329327913362690

and in the next line 1,001 binomial coefficients are computed and added to-
gether:
> add(binomial (1000,k),k=0..1000);

10715086071862673209484250490600018105614048117055336\
07443750388370351051124936122493198378815695858127594\
67291755314682518714528569231404359845775746985748039\
34567774824230985421074605062371141877954182153046474\

98358194126739876755916554394607706291457119647768654\
2167660429831652624386837205668069376

As you know, the integer factorization of this number is very simple.
> ifactor(%);
( 2)1000

More decisively, in computer algebra systems the work is not restricted to
numbers, but one can easily deal with other mathematical objects. Major ob-
jects of consideration are multivariate polynomials. By the Euclidean algorithm
ged-computations for polynomials can be carried out similarly as for numbers.
Those algorithms are implemented in general purpose computer algebra sys-
tems. Hence rational functions can be put in lowest terms, etc.

As an example, the following computation puts the rational function

1— g0
1— g4

in lowest terms:

> normal((1-x"10)/(1-x"4));

B+ +at+2?+1
z2+1

One of the highlights of computer algebra systems is rational factorization
which can be handled algorithmically (see e.g. [11], Chapter 8). Let’s define a
two-variate polynomial p:

> p:=product (((x+y)~j-1/j°2),j=1..5);

pi= ety =1 (@+17 - D@+ = 5) (@ +)' - 10 (@ +1)° - o)

and let’s expand it
> p:=expand(p);
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This looks monstrous! Like magic Maple is capable to find the factors of
this polynomial from its expanded form:
> factor(p);

1
m($+y—1) (42 + 1+ 8zy +4y?)

(252° + 125z y + 250 2%y + 25022 4° + 125z y* + 2545 — 1)
(92° —1+272°y +272y* +9¢°) 2z + 2y + 1) 2z + 2y — 1)?
The factor command does factorization over Q. Hence the following ratio-

nal function is not factorized properly:
> factor(1/(1+x"4));
1
14 24
despite the fact that the integration command is successful:
> int(1/(1+x"4),x);

2
% \/ﬁln(%) + i V2arctan(z 2+ 1) + % V2arctan(z V2 — 1)
This result suggests that rational factorization can be carried out over Q(v/2)
which can be invoked by
> factor(1/(1+x74),sqrt(2));
1
(22 —2vV2+1) (22 +2vV2+1)

Another important and still very active field are Grébner bases. The compu-
tation of Grobner bases for polynomial ideals has many interesting applications.
One application gives an algorithm to find the complete set of solutions of a
given (nonlinear) polynomial equation system (see e.g. [24]-[25]). This algo-
rithm is available through Maple’s solve command.

> {solve({-5*x"2+y"2-2%x=1,x"2-1/15%y"~2-2/15*x*y=1},{x,yP };
{{y=2,z=-1},{y=5,2=2}, {y = =3, 2 = 2RootOf (5 _Z> — 2+ _Z)}}

> convert(}%,radical);
1 1
{{y:27$:_1}7{y:5:$:2}a{y:_37$:_g+gm}}

Note that by the conversion to radicals one of the solutions is lost. We will see
more advanced applications of the use of the solve command later.

Computer algebra systems can give graphical representations. Here is the
intersection of the two hyperbolas above that are given implicitly:

> with(plots):

> implicitplot ({-5*x"2+y~2-2%x=1,x"2-1/16%y"2-2/15xx*y=1},

> x=-5..5,y=-5..5,grid=[50,501);




General purpose computer algebra systems can also deal with transcendental
objects. They can compute derivatives, e.g.
> derivative:=diff (exp(x-x~2)*sin(x"6-1),x);
derivative := (1 — 2 x) e@==") sin(z® — 1) + 6e®=2") cos(z® — 1) 2°
and they can do integrations
> integral:=int(derivative,x);

integml — _1]—(_6(—(—1+w) (I 2®+12*+1 a3+ 22 4a+12+1))
2

+ e((—l—i—z) (I 24 T2+ T2+ 122 —2+1 w+I)))

Note that by the differentiation rules differentiation is a purely algebraic op-
eration. On the other hand, it is not so clear that integration can also be
carried out completely algebraically. Risch’s algorithm [28]-[29] is an algebraic
algorithm which decides after finitely many steps whether or not a given ele-
mentary function (rational composition of exp-log functions) has an elementary
antiderivative, and finds it in the affirmative case. Risch’s algorithm converts
trigonometric functions in exponentials, hence in our case the resulting inte-
gral looks rather different from the input expression. This example shows that
functions can come in quite different disguises.

To bring the resulting integral in a form to be comparable with the input
expression, we can use the command

> factor(convert(integral,trig));
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sin((=1+2) (z+1) (z+2° +1) (z® -z + 1))
(cosh((—=1 + z) z) — sinh((—1 + z) ))
The original expression is converted towards the same expression
> factor(convert(exp(x-x~2)*sin(x"6-1),trig));

sin((—14+z)(z+1)(x+22+1) (2> —z +1))
(cosh((—=1 + z) z) — sinh((—1 + z) z))
Computer algebra systems can solve ordinary differential equations as well.
As an example we solve the Euler differential equation

2®y"(z) = 3zy'(z) +2y(z) = 0

by
> dsolve(x"2*diff (y(x),x$2)-3*x*diff (y(x),x)+2*y(x)=0,y(x));
y(z) = _C1 3tVD 4 02 22 V2
We see that Maple gives a basis of the solution space and introduces two inte-
gration constants.

To generate more differential equations which we would like to solve we load
the share library package FormalPowerSeries. This package was written by
Dominik Gruntz [12] and includes algorithms described in [16].

> with(share): with(FPS):

Now we are prepared to generate the differential equation for arcsinze®, for
example,

> DE:=SimpleDE(arcsin(x)*exp(x),x,F);

DE := (—z — 1+ 2?) F(z)
2
a2 20%) (2 F@) + (-1 42) (@ +1) (g F(a)) = 0

and apply dsolve to compute its solution space
> dsolve(DE,F(x));

01 (-1 (g + 1)/ D e
= Gy em
C2(x— 1)WY (2 4+ 1) e In(z + /(z — 1) (z + 1))
i (@=1) @@+ 1)/

As another example, let’s deal with the Bessel functions:
> DE:=SimpleDE(BesselJ(n,x),x,F);
0? 0
DE := (w Fz) 2>+ (-n+2z)(x+n)F(z) + (== F(2))z =0

> dsolve(DE,F(x));




F(z) = _C1 Bessell(n, x) + -C2 BesselY(n, z)
The result is returned immediately showing that Maple has the Bessel differen-
tial equation in a lookup-table. Whereas algorithmic techniques are available
for elementary function solutions of differential equations, this is not so if spe-
cial functions are involved. Maple fails to find a solution for the following simple
example.
> DE:=SimpleDE(BesselJ(0,x)+exp(x),x,F);

DE .=z (2z+1) (6—3 F(z)) — (z+1) (-1+22) F(z)+(z+1) (22-3) (% F(z))

0x?
52
+(2+z-22% (ﬁ F(z))=0
> dsolve(DE,F(x));
F(z) = _Ci1e”
2 el
+ ¢ DESol ({_Y(m) + (% V) + 22 +(2x; (Jrf?f);Y(’“"))} (Y (2) })

HYPERGEOMETRIC FUNCTIONS

The Laguerre polynomials satisfy the differential equation
> DE:=SimpleDE(Laguerrel(n,alpha,x),x,F);
2

9 0
DE := (55 F(x)) o +nF(2) + (—o +a+1) (5 F(z) =0
and Maple finds its general solution?®
> dsolve(DE,F(x));
F(z) = _C1 hypergeom([—n], [a + 1], z)
1
+ _C2 3" hypergeom([—-n — a, —n], [], —=)

x
in terms of hypergeometric functions. Indeed, the first of these hypergeometric
functions is a multiple of the Laguerre polynomial LY (z).

The generalized hypergeometric series is defined by

@ a - oa — b @)k (a2)k- - (ap)k 4
F Plx) = Apx® = z
ptyq ( by by - by ) ; k k;)(bl)k'(b2)k"'(bq)kk!

k

where (a);, := [] (a+j—1) =T(a+ k)/T'(a), denotes the Pochhammer symbol
j=1
(shifted factorial).
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Ay, is a hypergeometric term and fulfills the recurrence equation (k € Ny :=
{07 ]‘7 27 37 i '})

(k+a1)---(k+ap)
(k+b1)---(k+Dbg)(k+1)

Apg1 = - Ayg

with the initial value
AO =1.

In Maple one has the syntax hypergeom(plist,qlist,x), where
plist = [a1,a2,...,ap) and glist = [b1,b2,...,b4] .

Examples of hypergeometric functions are given by

o0
_1)k 1/2,1
.‘;urctauna::22(k+)1:t:2kJrl =$2F1( é/Q

k=0
_ae) |

As examples from the world of orthogonal polynomials we consider the Legendre
polynomials which can be represented as any of
11—z
2

no = 200 () (T
- A () et = (50 (T

n
k=0

1/2,1/2

Nz = F
arcsinz = z o 1( 3/2
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B () -
- ( ) (—gr;:r%;/z% .17%)
F( —n/2,—n/2+1/2 1_%>.

1
Note that whenever one of the upper parameters of a hypergeometric function
is a negative integer like —n in the above cases, the hypergeometric series is
finite. Again, we see that functions can come in quite different disguises.
Since orthogonal polynomials can be represented by hypergeometric func-
tions we see furthermore that summation is an important issue.

Why does Maple give a simple antidifference for a = (—1)* (:)

> sum((-1) "k*binomial (n,k) ,k);
_ k(=1)* binomial(n, k)
n

and fails to give one for aj = (Z)'?

> sum(binomial(n,k),k);

Z binomial(n, k)
k

The reason is that Gosper’s algorithm for indefinite summation is used which
is a discrete analogue of Risch’s integration algorithm deciding whether or not a
hypergeometric term aj, has a hypergeometric term antidifference s, i.e. sg1—
sk = a. Gosper’s algorithm tells that the first expression has a hypergeometric
term antidifference and the second has not. That’s the whole story. Maple’s
sumtools package contains an implementation of Gosper’s algorithm via the
gosper procedure which is also directly accessible through the sum command
[17].

If we consider the series

> (1) =32

with natural bounds then Maple is successful, again:
> sum(binomial(n,k),k=0..n);
2’”
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In such a case, Zeilberger’s algorithm for definite summation can be used. If
F(n,k) is a hypergeometric term with respect to both n and &, i. e.

F(n +1,k) F(n,k+1)

Fok) 4 —pam €Uk

then Zeilberger’s algorithm generates a holonomic recurrence equation, i.e. a
homogeneous linear recurrence equation with polynomial coefficients, for

Sp 1= ZF(n,k) .

kEZ

In the particular case that the recurrence equation is of first order, then given
one initial value it defines a unique hypergeometric term.

Maple’s sumtools package contains an implementation of Zeilberger’s algo-
rithm via the sumrecursion procedure which is also directly accessible through
the sum command [17]. A newer implementation is available through the hsum
package, developed in [18].

As an example, sumrecursion generates the same recurrence equation for
two different hypergeometric representations of the Legendre polynomials.*

> read ‘hsum.mpl‘;

Copyright 1998 Wolfram Koepf, Konrad — Zuse — Zentrum Berlin

> sumrecursion(
> binomial(n,k)*binomial(-n-1,k)*((1-x)/2)"k,k,P(n));
n+2)Pn+2)—2z(2n+3)P(n+1)+(n+1)P(n)=0

> Sumtohyper(binomial(n,k)*binomial (-n-1,k)*((1-x)/2)"k,k);
1 1
Hypergeom([n + 17 —TL], [1]7 § - 5 3&')

> sumrecursion(1/2 nx(-1) "k*
> binomial(n,k)*binomial (2*n-2*k,n)*x" (n-2*k) ,k,P(n));
n+2)Pn+2)—2z(2n+3)P(n+1)+(n+1)P(n)=0
> Sumtohyper(1/27n*(-1) “k*
> binomial(n,k)*binomial (2*n-2%k,n)*x" (n-2*k) ,k);
1 1 1 1. 1
(=1) K i g —Z 21— 21—
2™ binomial(2n, n) " Hypergeom([ 5™ 5 n+ 2], [-n + 2], x2)
The procedure Sumtohyper converts the series in hypergeometric notation.
Modulo two initial values these computations show that the different series
represent the same functions.
We give some other examples: The computation
> sumrecursion(hyperterm([a,1+a/2,b,c,d,1+2*xa-b-c-d+n,-n],
> [a/2,1+a-b,1+a-c,1+a-d,b+c+d-a-n,1+a+n],1,k) ,k,S(n));
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—(a—d+14+n)(n+1+a—c)(n+1+a—-b)(-b—c—d+a+n+1)
Sm+1)+(1+a+n)(n+1—-d+a—-c)(n+1+a—b—d)
(n+1-b—c+a)S(n)=0

generates Dougall’s identity

a,1+%2,b,c,d,1+2a—b—c—d+n,—n
7Fg 1
3,1+a—b,1+a-c,1+a—d,b+c+d—a—n,1+a+n

I+a)y,1+a-b-c)p(1+a-b—-d),(1+a—c—d),
1+a-bp(l+a—c)ph(l+a—d)y(1l+a—-b—c—d),
(from left to right); and the computation

> sumrecursion(hyperterm([a,b], [a+b+1/2],1,j)*
> hyperterm([a,b], [a+b+1/2],1,k-3),j,C(k));

—(k+1)(1+2a+2b+2k) (2a+2b+k) C(k+1)
+2@2b+k)(k+2a)(a+b+k) Ck) =0
g

generates Clausen’s formula
2
7 a,b 7 2a,2b,a+ b
T =
2 atbr1/2 572\ a+b+1/2,2a+2b

(from left to right) by computing the coefficient of the left hand series written
as Cauchy product.

In connection with the book project [18] we implemented Zeilberger type
algorithms for other purposes: The procedure Sumrecursion gives three-term

recurrence equations for orthogonal polynomials in a special form. When ap-
plied to the Wilson polynomials

1)
one gets

> Sumrecursion(hyperterm([-n,n+a+b+c+d-1,a+x,a-x],

—n,a+b+c+d+n—1,a—2,a+x
a+ba+c,a+d

Wn(x) = 4F3<

(a+2)(—a+z)Wn,z)=(n+d+a)(a+n+c)(a+b+n)
m+a+b+c+d-1)Whn+1,2)/((e+b+c+d+2n)
(a+2n+c+d+b-1)) —(
(-1+d+c+n)(n—1+b+d)(b+n—1+¢c)n
(a+2n+c+d+b—1)(—2+b+2n+c+a+d)
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(n+d+a)(a+n+c)(a+b+n)(n+a+b+c+d—1)
(a+b+c+d+2n)(a+2n+c+d+b—-1)

(-1+d+c+n)(n—14+b+d)(b+n—-1+¢c)nW(n—1, )
(a+2n+c+d+b—1)(—2+b+2n+c+a+d)

The Wilson polynomials include all classical systems like the Jacobi and Hahn

polynomials as limiting cases.

A version of Zeilberger’s algorithm finds differential equations for sums:
Given the representation

ro=3() () ()

YW(n, x)

+

the computation

> sumdiffeq(binomial(n,k)*binomial(-n-1,k)*((1-x)/2)"k,k,P(x));
2

0 0
—(-1+2z)(z+1) (@ P))+P@)n(n+1)—22 (a P(z))=0
generates the differential equation of the Legendre polynomials.
A version of Zeilberger’s algorithm [1] finds recurrence or differential equa-

tions for definite integrals. The Bateman Integral Representation
:L.>

1
- - )b T'(c)I(d) a,b
et 1ot tm [ Y7 e dt = =22 \Y R
/ ( ) 21<c z F(c+d)21c+d
0

is deduced by

> intrecursion(t”(c-1)*(1-t)~(d-1)*

> hyperterm([a,b], [c],t*x,k),t,B(k));

—(k+1)(k+d+c¢)B(k+1)+B(k)z(b+k)(k+a)=0

The initial value is given by a Beta type integral.

The previous examples were mainly one-liners, but obviously not all ques-
tions are of this type. Hence let’s consider a more difficult one: In Ramanujan’s
second notebook [26] on p. 258 one finds the identity

With Garvan [9] we might ask the question whether there is an extension of
this formula which has the form
x3> (1.1)

A,B 1-z\° p a,b
2F1< C 1_<1+2x)>_(1+2x) 2F1< ¢
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for some A, B,C,a,b,c,d. The following computation with Maple gives

4 1-z)° y i
nl ® 1= (122Y ) = agomyi,m | # 1.2
N (1+2$) Wr2)%bl o) 12

1+d)/2

and moreover shows that this is the only possible extension of the given form
(compare [9]).

We define the left and right hand summands

> first:=hyperterm([A,B], [C],1-((1-x)/(1+2%x))"3,k):

> second:=(2*x+1) “d*hyperterm([a,b], [c],x"3,k):
and compute the differential equations for the left and right hand sums

> DEl:=sumdiffeq(first,k,S(x));

DEl ==z (-1+2)(z+2>+1)(1+2x)* (;—:2 S(z)) +(14+2x)(42* +92° A

—82°C+32°+92°B+92°A+32> +92°B-122°C +92xA+92B
—:c—GxC—C)((% S(z)) +9(-1+2)*ABS(z) =0
> DE2:=sumdiffeq(second,k,S(x));

2

DE2 :=z(-1+z)(z+2°+1)(1+2z)? (%S(w)) +(1+22)22* +62%b

—4dz* +62*a+32°b+32%a+ 23 +4dr —6cx+4x—3c+2)
0
(a S(z)) + (4d*z* —122*bd — 122 ad + 362" ba — 623 ad — 22%d
—623bd+362°ba+92°ba+12cxrd—12dr —4d°x —4d+6cd)
S(z) =0
Both differential equation must be equivalent. After elimination of the highest
derivative order
> DE:=collect(collect(op(1,DE1)-op(1,DE2),S(x)),diff(S(x),x));

DE := (1+22)(42*+92°A-82°C +32° +92° B+ 922 A + 327
+922B-1222C+92A+92B—-2—-62C—-C) — (1 +22)(22*
+6z*b—4dz* +62*a+32°b+32%a+ 2% +4dr—6cx+42 -3¢

0 .
+2))(5, S@)) + (9 (-1+2)2AB—-4d’z* +122*bd + 122" ad
—36z'ba+62°ad+223d+623bd—362°ba—92°ba—12cxd
+12dz +4d*z+4d—6cd)S(2)
the coefficient polynomials of S(z) and S’(x) must be identical to zero which
leads to the system of equations
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> firstcoeff:=collect(frontend(coeff, [DE,S(x)]),x):
> secondcoeff:=collect(frontend(coeff,[DE,diff(S(x),x)]),x):
> LIST:={coeffs(firstcoeff,x)} union {coeffs(secondcoeff,x)};

LIST := {12bd+ 12ad — 36 ba — 4d>, 2d+ 6 bd — 36 ba + 6 ad,

—18AB —12¢d+12d+4d*, —9ba+9AB,9AB+4d—6c¢cd,
4-12b+8d—12a, —3b—3a+8+27TA—32C +27B,
—8d+12¢—T+2TA+27TB—-24C,9A+9B-9—-8C —4d+ 12¢,
6+184A—-16C+18B +4d—12b—12a, —C + 3¢ — 2}

All the members of LIST must equal zero which constitutes a nonlinear poly-
nomial system for the unknowns A, B, C, a, b, c,d.

Remember that Maple is capable to find the complete set of solutions of such
a system leading to

> solve(LIST,{A,B,C,a,b,c,d});

{d:d,c:1d+§,B:1d,b:%d,a—% %d C:%+%d,A % %d},
{b—é-l-gdd dc—%d+g,B:%d,az%d,C:%+%d,A:; 1cl}
{d= dc——d+ B—%+ db—%d az%+%d,0=%+%d,fl:%d},
{b—§+3dd dc—6d+2 B—§+;da ;d C—% ;dA ;d}
Since in the hypergeometric sums in (1.1) A and B as well as a and b can be

interchanged, all four different solutions correspond to (1.2).

Finally, we consider ¢g-hypergeometric sums, also called basic hypergeomet-
ric series. There is a summation theory for g-hypergeometric terms a; for
which ay.y1/ay, is rational w.r.t. ¢*, and for many of the results and algorithms
corresponding g-versions exist, see e.g. [18].

By a g-analogue of Zeilberger’s algorithm [20], we get for the g-Laguerre
polynomials

> q) -n
L) (z:q) = (7n ( 4
w(ma) =" 0, g

q _an+a+1>
)

a three-term recurrence equation which is computed by an implementation of
Harald Boing [5], see [18].
> read ‘gsum.mpl‘;

Copyright 1998, Harald Boeing & Wolfram Koepf

Konrad — Zuse — Zentrum Berlin
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> qgsumrecursion(gpochhammer (q~ (alpha+1),q,n)/
> qpochhammer(q,q,n)*qphihyperterm([q~(-n)],
> [q~(alpha+1)],q,-x*q" (n+alpha+1),k),q,k,L(n));

a(-1+ ¢ L) — (= + @t g — g + ¢ 4 g(mFet ) Ln — 1)
—(@—¢“**™)qL(n-2)=0

ORTHOGONAL POLYNOMIALS

Assume that a scalar product

10) = [ 1690 duto
is given with nonnegative measure p supported in the interval (a,b). Particular
cases are:
m  absolutely continuous measure du(z) = p(z) dr with weight function p(z),
m  discrete measure p(xy) supported by Z.
A family p,(z) of polynomials
pu(®) =kpa" + k2" 4., k,#0 (1.3)

is called orthogonal w.r.t. the measure p(z) if

{ 0 if m#n

(P> Prm) 2 #0 ifm=n

The classical orthogonal polynomials can be alternatively defined as the poly-
nomial solutions (1.3) of the differential equation

o(@)y" () + 7(z)y'(z) + Any(z) =0. (1.4)
Substituting (1.3) in (1.4) one gets the conclusions:
m n=1 = 7(z)=dz+e,
m n=2 = o(x)=az’+br+c,
m  equating coeficient of 2 = A, =-n(a(n—-1)+4d) .

From this one deduces [4] that the classical orthogonal polynomials can be
classified modulo linear transformations according to the scheme
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l.a=b=c=e=0,d=1 = pn(z) = 2™,
2.a=b=e=0,c=1,d=—-2 = pn(z) = Hn(z), the Hermite polynomials,
3. a=c=0,b=1 d=-1, e=a+l1 = pu(z) = L(na)(m), the Laguerre
polynomials,
da. a=1,b=c=d=e=0 = pn(z) =2",
4b.a=1,b=c=0,d=a+2 e=2 =  pu(z) = B (z), the Bessel
polynomials,

5. a=1,b=0,c=—1,d=a+8+2,e=a-B = pu(z)=P*? (z), the Jacobi
polynomials.

Table 1.1 Normal Forms of Classical Polynomials

The weight function p(z) corresponding to the differential equation satisfies
Pearson’s differential equation

2 (o) p(@) = 7(0) p(o)

Hence it is given as®

The multiplication with p(x) makes the differential equation self-adjoint

2 (5@) p(@) ¥/ (@)) + A pla)y(a) = 0.

The classical discrete orthogonal polynomials can be analogously defined as the
polynomial solutions (1.3) of the difference equation

o(z) AVy(z) + 7(z) Ay(z) + \py(z) =0 (1.5)
where
Ay(z) =y(z+1) —y(z), Vylz) =y(z) —ylz-1).
Again it turns out that 7(z) = dz +e, o(z) = az? + bz + ¢, and \, =

—n(a(n — 1) + d), and the classical discrete orthogonal polynomials can be
classified modulo linear transformations according to the scheme
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1. o(z)=1, 7(z)=az+ B = pa(z)= K,ga’ﬂ)(x),
2a. o(z) =2z, 0c(x)+7(x) =0 = puz)=22=z(z—-1)---(z—n+1),
2b. o(z) =z, o(z) + 7(z) = p (n # 0) =  pa(z) = c,(f)(a:), the Charlier
polynomials,
3 o(z)=w o)+ 7(x)=ply+x) =  pa(x) = mgy’”)(x), the Meixner
polynomials,
4 o(z) =z, o(x)+7(x) = £, (N—2z) = pnlz) = kP (z, N), the Krawtchouk
polynomials,

5 o(z)=2(N+a—1), o(z)+7(@)=(2+8+1)(N—1—2) = pn(z) = b (z, N),
the Hahn polynomials,

6 o(z)=z(z+p), o(x)+7(@)=(V+N—1—2)(N—1—2) = pa(z) =h"")(z, N),
the Hahn-Eberlein polynomials).

Table 1.2 Normal Forms of Classical Discrete Polynomials

Here K% (z) are connected with the Charlier polynomials by

K£a,ﬂ)(m) — (_l)n c(n—l/a) (—.’L’ _ 1 z ﬂ) )

The discrete measure p(x) corresponding to the difference equation satisfies the
Pearson type difference equation

A(o(@) pl@)) = (@) pla) -
Hence it is a hypergeometric term, given by the term ratio

plz+1)  o(x) +7(z)

plz) — olz+1)

The multiplication with p(x) makes the difference equation self-adjoint

A(a(x) p(z) Vy(a:)) +Any(z) =0.

Orthogonal polynomials have some structural properties. Most importantly,
they satisfy a three-term recurrence equation of the special form

Pny1(2) = (An 2 + By) pu(x) — Crpn_1(2) . (1.6)

Favard’s Theorem (see e.g. [7], Theorem 4.4) states that if on the other hand
pn(x) satisfies (1.6) and if Cp, /A, > 0 for all n > 0, then p,(z) forms a family
of orthogonal polynomials.
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CAOP: Computer Algebraand Orthogonal
Polynomials

CAOP isapackage for calculating formulas for orthogonal polynomials belonging to the Askey-scheme
by Maple. With the present version users can compute recurrence relations, differential and difference
equations or make a plot of every polynomial in the Askey scheme, without having Maple installed on
their own computer. It is also possible to multiply the polynomial by a scaling function, to change the
argument and to give vaues to the parameters by filling out a form, before doing the calculation. Asan
extra option the user can choose the layout of the output: prettyprint, lineprint or LaTeX. The latter two
options make it possible to insert the output in another Maple worksheet respectively in aLaTeX
document by a simple mouse-action.

Furthermore there are some help pages available for users who are not familiar with Maple. They can be
viewed simultaniously whilefilling in the form.

The algorithms used to calculate the various formulas are devel oped by Wolfram Koepf. The code is not
restricted to Maple Version V.3.

If you want to use CAOP choose one of the following options:
® Calculate arecurrence relation
® Calculate adifferential/ce equation

® Makeaplot

]
* 7o Home Page of the Askey-Wilson-scheme project

Figure 1.1 The CAOP Homepage

At this point I would like to point you to the CAOP Web site at the URL
http://www.can.nl/~demo/CAOP/CAOP.html which was developed by René
Swarttouw [31] and with which the on-line computation of differential /difference
and recurrence equations for the orthogonal families of the Askey-Wilson scheme
([3], see also [15]) can be carried out. Figure 1.1 shows the CAOP home page.

If we then click on Calculate a recurrence relation, Figure 1.2 appears
and gives us the option to choose a family of the Askey-Wilson scheme.

Let’s choose the Laguerre polynomials. This opens Figure 1.3. This page
gives the definition of the Laguerre polynomials in terms of a hypergeometric
function. Next, the user has the possibility to multiply by an arbitrary scale
factor (depending on n), and then invisibly for the user our Maple package
will compute the recurrence equation valid for this particularly standardized
polynomial system. Observe that this is more than a mathematical dictionary
can offer.
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As an example, we choose the scale factor 1/binomial(a,n), and CAOP an-

Recurrencerelationswith CAOP

One of the features of the CAOP package is the calculation of a three-term recurrence relation of certain
orthogonal polynomials belonging to the Askey-scheme. The package uses Maple 5.3 and several
agorithms written by W. Koepf. Please choose one of the listed orthogonal polynomials.

® Wilson polynomials

® Racah polynomials

® Continuous Dual Hahn polynomials
® Continuous Hahn polynomials
® Hahn polynomials

® Dua Hahn polynomials

® Meixner-Pollaczek polynomials
® Jacobi polynomials

® Meixner polynomials

® Krawtchouk polynomials

® | aguerre polynomials

® Charlier polynomials

® Hermite polynomials

Goto:
| |
* CAOP Home page

Figure 1.2 CAOP: Computation of Recurrence Equations

swers

(a=n)(-1+a—-n)p(n+2)+(a—n)(—a+x2—-3-2n)p(n+1)
+p() (n+1) @@+ 1+7) =0

where
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Recurrencerelation for Laguerre polynomials

Y ou have chosen Laguerre polynomials which are defined by

e - St ()

Before you let Maple do the calculation, you can multiply by a scale factor, change the argument and
give avalue for the parameter a. Helppages on Maple-style and Maple functions are available.

Type ascalefactor (in the variable n), using Maple-style input: 1
Type an argument (in the variable x), using Maple-style input: x

Typeavauefora(a>-1): a

Select the output format Pretty Print
If you want to submit your input to the computer please press Submit

Figure 1.3 CAOP: Laguerre Polynomials

Similarly CAOP can compute differential and difference equations for orthog-
onal polynomials multiplied by a factor (depending on x).

The classical families have many more interesting properties: They satisfy a
derivative/difference rule

() P (z) = an Pnt1 (%) + Brpn (@) + M Pa-1(2) ,

0(2) Vpu(®) = an pnt1(2) + Bnpn(®) + Yo pn-1(2) ,

respectively, their derivatives ¢, := p},;; (and differences ¢, :== App41) are of
the same type, again,

o' (2) 4y (2)(2) + 7' (2) g (@) + Ay an(2) =0,
o'(2) AV¢n(2) + 7'(2) Agn(2) + X}, gn(2) =0,
and therefore satisfy a three-term recurrence equation of the type
2P, (x) = oy Pl g1 () + B P, () + 75 P 1 (2)

TApn(7) = af, Apnia () + B, Apa(z) + 77, Apn-1(2) -
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A combination of these identities finally leads to the connection identities
Pn(2) = @ Ploy1(2) + b pry(2) + S prmy (@)
or
Dn (.7}) = an Apn—i—l (IL') + bn Apn (.7}) + 871, Apn—l(x) )

respectively.
Note that in the Jacobi and Hahn cases, the explicit connection identities
read as follows:

2 (n+a+p+1) @
(a,0) _ plaB)
/P" @) de = o a3+ @n 1 1at 4t ot @

2(a—f) (a,)
(2n+a+p) 2n+a+5+2) Py0(a)
2(n+a) (n+p) (@) (1)

(n+a+p) @nta+pB) @nta+p+1) "

and

(@:B)(p N) = nta+pf+1 h(aaﬂ) N
Zhn ($7 ) (2n+a+ﬁ+1)(2n+a+ﬂ+2) n+1 ('Z'a )

T

_2n2+2n+2na+2nﬁ+a—aN+ﬁN+a5+ﬂ+52
2n+a+8) 2n+a+5+2)

(nta) (n+5) (n — N) (n+a+f+N) | (a,p)
(n+a+p) (2n+a+p) 2n+a+p+1) ™!

and can be interpreted as a definite integral or definite sum, respectively.
Let’s assume a family of polynomials (1.3) satisfies the differential equation
(1.4) or difference equation (1.5), and we would like to know the recurrence
equation (1.6) in terms of the coefficients a, b, ¢, d, e of o and 7.
Using computer algebra (or by hand computations) the following method
gives the coefficients A,,, B,, and C), of the desired relation in terms of a, b, ¢, d, e,
N, kn—1,kn, and k,4+1 by linear algebra:

hiP) (z, N)

(z,N) .

1. Substitute
pn() = kn2" + kL™ Pk 2"

in the differential /difference equation.

2. Equate the coefficients of " to determine \,,. As already mentioned this
gives A, = —n (a(n — 1) +d).
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3. Equate the coefficients of 2"~ and 2™~2. This gives k!, and k!, respec-
tively, in terms of k.

4. Substitute p,(z) in the proposed equation, and equate again the three
highest coefficients. This computes the three unknowns A,, B, and C,
successively.

As an example, we give the recurrence equation coefficients in the continuous
case (see [22], [19]):

kn—i—l
An= )
kn
B — 2bn(an+td—a)—e(-d+2a) knt1
" (d+2an)(d—2a+2an) kn
and
—(an+d—2a)n kg1

Cn =

(d—2a+2an)? (2an—3a+d) 2an—a+d) k,_1
((an+d—2a)n(4ca—b2)+4azc—ab2+aez—4acd+db2—bed+d2c).

Similar representations hold in the discrete case, as well as for the other coeffi-
cients ap, Bn, Yn, @, B, vk, Gn, by, and €, all of which can be easily determined
by the use of computer algebra [19].

As soon as we have these explicit formulas, we can determine the classical
orthogonal polynomial solutions of a given holonomic recurrence equation by
the following algorithm:

1. Given A,, B, and C,, by
pn+1(x) = (An T+ Bn) Pn(ﬂf) - Cn pn—l(m) (An 7£ 07 Bna Cn € Q(’I’L)) ’
define

kny1 Up
=A,=— s Wn
k. o, (Un, wr, € Q[n])

2. Use the explicit formulas for B,, and C,, and this term ratio to receive
two polynomial identities w.r.t. n, in terms of the unknowns a, b, ¢, d, e.

3. Equate the coefficients, and solve the corresponding polynomial system
for a,b,c,d and e.

Note that, again, the crucial step 3. is to find the complete set of solutions of a
nonlinear polynomial system for the unknowns a, b, ¢, d, e. Note, moreover, that
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this system might have several solutions. With Koornwinder and Swarttouw
we consider the example recurrence equation

Prs2(®) = (2 = n = 1) Py (@) + @ (n +1)° pa(z) = 0. (1.7)

Note that a parameter a is involved, and the solution might depend on its
value.
The algorithm gives the unique solution

1
{b=20,c=c,d=—4c,e:0,a:0,a: Z} )
Hence a =1/4,

1
(:c + 5) pr(z) —2xpl () —2npu(z) =0
and

pla) =2e7%"

in the interval [—1/2, 00], corresponding to shifted Laguerre polynomials.
In Maple, this is given by
> read retode;
> RE:=p(n+2)-(x-n-1)*p(n+1)+alpha*(n+1) "2*p(n);
RE:=pn+2)—(z—n—-1)pn+1)+a(n+1)*pn)
> REtoDE(RE,p(n),x);

Warning : parameters have the values,

1
{b=20,a=Z,d=—4c7c=c,a=0,e=0}

[5 22+ 1) 5y B0, 2) = 22 (5 b, 2)) = 2p(n, 2) =0,

5 ool 26729, 1]

Obviously there is a corresponding algorithm for the discrete case. Let’s
check whether the given recurrence equation (1.7) has classical discrete orthog-
onal polynomial solutions.

Using the linear transformation z %, the discrete version of the algo-
rithm gives the rational solution

b(—e+d+b)

{a 0, ,C d

,d=d,e=c¢e,
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po 4426 e _ bld+b)
ST 9T YT (av2n)2 S
This yields

d 1
b=—(1£ ————— ) .
2 ( m)
For 1 — 4 a > 0 this corresponds to Meixner or Krawtchouk polynomials.
Finally, we consider the computation of connection coefficients. Let P,(z) =
knz™ + ... (n € No) denote a family of polynomials of degree exactly n and

Qm(z) = kpax™ + ... (m € Nyg) denote a family of polynomials of degree

exactly m. Then
n

Po(z) = ) Ca(n) Qm(2) -
m=0

The coefficients Cy,(n) (n € Ng, m = 0,...,n) are called the connection co-
efficients between the systems P,(z) and Q.,(x). Interesting subproblems are
given if

B Qn(z) =z™ (power series representation)
m  P,(z) = 2™ (representation of powers)

Note that if both subproblems have hypergeometric term solutions, then an
application of Zeilberger’s algorithm yields Cy, (n): Combining

Pp(x) =) Aj(n)a?

JEZ
and '
2 =" Bu(j) Qum(z)
MEZ

yields

Pu(z) = ) Crn(n) Qm(z)

m=0

with

Cm(n) = Z Aj(n) Br(j) -
jez
The corresponding subproblems in the discrete case are

B Q. (r) =z (series representation)

s P,(x) = 22 (representation of falling factorials)
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Again, if both have hypergeometric term solutions, then Zeilberger’s algorithm
yields Cy, (n).
How can we determine C,,(n)? By rewriting the recurrence equations

z Pp(x) = an Ppy1(x) + by Po(z) + ¢p Pr_1(2)
and _
T Qm(m) =am Qm+1 (37) +bm Qm(m) +Cm Qm—l(m) s
and equating coefficients one gets the first “cross rule” [30]
an Crn(n 4+ 1) + by, Crp(n) + ¢, Crp(n — 1) =
-1 Cmfl(n) + I_)m Cm (n) + Em+1 Cm+1(n) .
Using both recurrence equations for the derivatives

z Py (x) = a;, Py (2) + B, P(@) + 77 P 1 (@)

and .
T Qp(2) = @y Q11 (%) + B, Q1 () + iy Qi1 (2)

(or the analogous ones in the discrete case), results in the second cross rule [19]
ap Cn(n+1) + 6, Cm(n) + 77, Cm(n — 1) =

a;—l Crm—1(n) + B:n Cm(n) + 7:n+1 Cmy1(n) .

A third cross rule derived from the connection identity turns out to be linearly
dependent.
Now we assume 7 (z) = o(z). Then, using both derivative rules

() P, () = an Poi1(z) + Bn Pa() + vn Paos(2)

and _
() Q1 (2) = T Qi1 (2) + By, @ (2) + T Q@ () 5

(or the analogous ones in the discrete case), leads to the third cross rule [19]
an C(n+1) + B Cru(n) + 4 Cra(n — 1) =

@1 C1(1) + B Con (1) + Vg1 Crnga (1) -
With the use of computer algebra we can eliminate two of the five variables
Cn(n+1), Cp(n), Crn(n—1), Cpr—1(n) and Cy,y1(n). This gives three-term
recurrence equations for Cp,(n) w.r.t. m and w.r.t. n which define Cp,(n)
uniquely.
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P, (z) - Qmn(x)
Py = PTP(x)
P (x) —  PYY(x)
P z) - PPV()

L'z — LY (x)
B(x) — B(a)

Table 1.3 Hypergeometric Term Connection Coefficients: Continuous Case

hP (@, N) = kP (z,N)
e (@, N) = AP (2, N)
Az, N) = (2, N)
m{rH) (x) — mgi’”)(x)
m{r®) (z) - msg’”)(m)
kP (@,N) = kP (z,N)
kP (x,N) = k& (x,M)
cgf)(z') — c%)(m)
K&y - K&O(x)

Table 1.4 Hypergeometric Term Connection Coefficients: Discrete Case

In many instances the recurrence equations reduce to two terms. Then their
hypergeometric term solutions are easily identified. In Tables 1.3-1.4 it is shown
between which polynomial systems such a hypergeometric connection relation
is valid.

Note that Askey and Gasper [2] were the first who used recurrence equations
to prove the positivity of the connection coefficients between certain instances of
the Jacobi polynomials. In Gasper [10], almost all the results of Tables 1.3-1.4
were published, but the use of computer algebra unifies this development.

Using a similar approach, it turns out that all classical continuous and dis-
crete polynomials have hypergeometric representations (where the Jacobi poly-
nomials are developed at x = +1) and hypergeometric type representations
for the powers/falling factorials. Again, these are well-known, but the given
approach unifies their treatment.

A similar technique can be used for polynomial solutions of higher order
differential/difference equations [30]; parameter derivatives of the orthogonal
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polynomials can be computed using their connection formulas [19], e.g.

L(a)

:0

CONCLUSION

We gave some examples of the use of computer algebra in the work with or-
thogonal polynomials. I am convinced that the more people know about the
algorithmic methods available in that field, and the more computer algebra
systems are used in research and applications, the more these methods will be
used. This lecture might help in this direction.

Note that the Maple packages hsum, qsum and retode can be obtained from
the author.
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Notes

1. Therefore computer algebra systems are generally slower than numerically oriented
systems.

2. % refers to the previous result. In older Maple versions you must use " instead.

3. This is the result of Maple V.4. Release V.5 gives the result in terms of the Whittaker
functions.

4. The other hypergeometric representations can be handled similarly.

5. For the Bessel polynomials p(z) is not a weight function since the integrals diverge.
They can be interpreted as orthogonal polynomials on the unit circle though.
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