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Abstract

In this master thesis, we first present Bernstein polynomials with one variable as a proof of the Weierstrass
theorem. These polynomials are special, for providing an explicit representation for polynomials of
uniform approximation. In the second step, we review the main properties of the Bernstein polynomials
of one variable; namely the point-wise convergence, the uniform convergence and the convergence of
the derivatives. In the third step, as our main contribution, we state and prove these main properties
for the multivariate Bernstein polynomials.

Keywords: Polynomials of one and several variables, Bernstein polynomials, multivariate Bernstein
polynomials, approximation, summation, difference, and convergence.

Declaration

I, the undersigned, hereby declare that the work contained in this essay is my original work, and that
any work done by others or by myself previously has been acknowledged and referenced accordingly.

Merlin MOUAFO WOUODJIE, July 7, 2014



Contents

Abstract

1 Introduction

2 Bernstein Polynomials with one Variable

2.1 Recalls and Weierstrass Approximation Theorem

2.2 Definitions and Properties

2.3 Approximation by Bernstein Polynomials

3 Bernstein Polynomials of Several Variables

3.1 Definition and Properties

3.2 Approximation by Bernstein Polynomials with Several Variables . . . . . . ... ... ..

4 Conclusion

A.1 Proof of some lemmas and theorems from chapter 2. . . . . . . .. .. .. ... ...,

References

10
10
11

31

32
32

41



1. Introduction

Interpolation and approximation are very important concepts in various domains of applied sciences such
as Computer science, geological science, numerical analysis, statistics and with its large used in modern
days computers. Due to the relevance of these areas of mathematics, more interest had made the study
matter demand driven. The advancement or breakthrough in field had been due to simple theorems of
polynomial interpolations upon which much practical numerical analysis do rest or rely upon.

Most often, it is not easy to find exacts solutions to most equations governing real life problems. Even
when such solutions can be found, for their practical use, then is a need to find their approximation by
polynomials, when possible.

Weierstrass's theorem asserts the possibility of uniform approximation by polynomials to continuous
functions over a closed interval. An analytic function can be expanded in a uniformly convergent power
series, and a continuous but non analytic function can be expanded in a uniformly convergent series of
general polynomials, with no possibility of rearranging its terms so as to produce a convergent power
series [Dav75]. There are many proofs of the Weierstrass theorem. In this thesis, we shall present one
called "S. Bernstein's proofs” since it give also an explicit representation of the polynomials for uniform
approximation. Bernstein polynomial of one variable, which are defined explicitly as follow for a function

f
Bu(f;) = kzn()f <1k;> <Z> T L

are know to approximate uniformly f on the compact interval [0, 1], provided that f is continuous
on [0,1] [Dav75]. Moreover, the nt" derivative of B, (f;.) converges uniformly to f(™), provided that
fecmo,1].

“In contrast to other modes of approximation, in particular to Tchebyschev or best uniform
approximation, the Bernstein polynomials yields smooth approximants; but there is a price
that must be paid for these beautiful approximations properties: the convergence of the
Bernstein polynomials is very slow.” [Dav75].

Many people like Richard V.Kadison [KAD66], George M.Phillips [Phi03], J. Davis [Dav75] and others,
have worked on this Bernstein polynomial for function with one variable, and have derived some beautiful
properties with major’s ones: uniform convergence, uniform convergence of derivatives, fixed sign for
the pth derivative, deduction of upper and lower bounds of the of the Bernstein polynomial from those
of the corresponding function.

The main problem here is to extend those properties of Bernstein polynomials of one variable by gen-
eralizing them for functions of several real variables. To solve this problem, some people like Mehemet
Acikgoz and Serkan Araci [AA12], have tried to generalize, but not all, those properties of Bernstein
polynomial with one variable to two variables.

In this thesis, to achieve our aim which is to generalize those beautiful properties for functions with
one variable to functions with several variables, we have the following plan: chapter 1 is introduction,
chapter 2 recall some definitions and properties needed, and present also the main properties of Bernstein
polynomials of one variable such as

1)* If f € C[0,1], the Bernstein polynomial B, (f;-) converges uniformly to f,
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2)* If f € CP[0,1], then Bh(f;-) converges uniformly to f®)
3)* If f€CPl0,1], forsome 0 < p<mnand A< f(p)(a:) < B, 0<x<1,then

nP
A< B® (f-2) < B ey
“nn—1)--(n—p+1) P(fix)<B, 0<z<1,

4)* If f is convex in [0, 1], then for n =2,3,---
Bu_1(f;x) > Bu(f;2), 0<az<1,

5)% If f(x) is bounded in [0,1] and z is a point of [0, 1] at which f” exists and is continuous, then

lim n [Ba(f500) — f(w0)] = 50(1 — 20)f" (o)

n—oo

In chapter 3, which is the main part of this thesis and our main contribution, we extend to functions of
several variables the main properties of Bernstein polynomial of one variable. More precisely, we define
the generalized Bernstein polynomial as

Buso g (fi klZO ka0< )ﬁ() 2 (1 = gy,

and prove the following:

1)* If f € C[0,1]™, the Bernstein polynomial By, ... n,.(f;-) converges uniformly to f,

2)* If f € CPrPm[0,1]™, then BEYP™ (f;-) converges uniformly to f(PU:(Pm) where f € CP1-Pm [0, 1]™

7

- is continuous on [0,1]™, 0 <p; <n;, i=1,---,m,

means f is continuous on [0, 1] and "
Tt

3¥Uf f e crrPm[0,1], 0 < p; < mg, i = 1,---,m, and A < fEO=@r)(g .. 2) <

B, (x1,--+,xm) €[0,1]™, then
UG nPi
A< ( Bpl,wpm SXy, X <B, (z1,-,x e [0,1]™,
_;l_[lnz(nz_l) (nz_pz+1) ny, (f 1 m)_ ( 1 m) [ }
4)* If f(x1, -+ ,xm) is convex in [0,1]™, then, for n; =2,3,---, i=1,---,m, we have
Bn1—1,"',nm—1(f;x17 T 7'%.771) Z Bn1,~--,nm(f;$17 e 7xm)7 (xla e 7xm) S [07 1]m
5 If f(x1,---,2pm) is bounded in [0,1]"™ and let (a1, - ,an) is a point of [0, 1]™ at which
f@@(ay,--- ,ap) exists and is continuous, then, for n; =ng =--- =n,, =n
82f
hmn[ (faala 7a‘m)_f<a11"'> Zal li(ah'"’am)'

n—00 €



2. Bernstein Polynomials with one Variable

2.1 Recalls and Weierstrass Approximation Theorem

This section contains material from analysis that will be of used in the later parts of this thesis. It is
presented here for ready reference and review, and it is mainly taken from the book of Davis, James
[Dav75], Phillips [Phi03].

2.1.1 Re«calls.

Forward Differences

Let us discretize the interval [a,b]: a =29 <21 < -+ <z, = bwith z; = 29+ ih, h = zj41 —z; is a
constant, 7 =0,1,--- ,n. We write

f@iv1) = f(@i) = f(zi+h) — f(z:) = Of (i)
which is called a first difference. The symbol A denote difference. Hence
f@ipa) = flai) _ Af(wi)

Tiyl — T h
NP fzi) = D (D f(w) = Df(wigi) — Df(wi) = fwiva) = 2f (wia) + f @)

and call A?f(z;) a second-order difference. Then it seems natural to define higher-order forward
differences recursively as

. We define

A () = A (B (@) = 25 f (@) = D5 (@), k=0
where Alf(x;) = Af(z;) and AV f(2) = f(i).
Lemma 2.1.2. [Phi03]

Let m,n,p be positive integers, f € C™[a,b], and a = 29 < 21 < -+ < m, = b with z; = ¢ + ih,
h = x;+1 — x;, a subdivision of [a, b]. Then

AP f(xo)

deg G].%[),Cvp[, T = f(p)(Eo) . (2.1.1)
Here, f() () means the pt" derivative of f at £y, and if f is a function of m variables then fP1)(Pm) () ... g )
means the pi partial derivatives of f with respect to each of the m several variables at (e1,--- , &)

For integers t, k,n,r > 0 such that n # 0, r # 0, we deduce from [Phi03] this result

Atf <:> _ zt:(—nt—” <;) f <k":r> . with h = % .

r=0

This result can be generalized for a function f of m variables

t1  to tm m
k1 ko k R & 7 k1411 ko412
AtlAt2"'Atm _— ﬂ fr P _ltz T 7
1 2 m f (71177127 7nm> le:omzjo TZO Zl;Il( ) <Tz>] f< Ny ’ no )

km+rm>

Nm

)
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: 1 . , -
with h; = — t;, ki, ni, ri,n > 0 integers, n; # 0, n # 0. Here, A;’ means partial difference of order ¢;
n

3
on the variable number j, j =1, -+ m.

For f € Cilz] and k < t we have Af(0) = 0. Here Ci[z] is the linear space of polynomials with
complex coefficients of degree maximum k.

We call the ™" divided difference the quantity

Ty — X0
Leibniz Rule
Theorem 2.1.3. [Phi03]
If the kth derivatives of f and g both exist, then
dk: k k dr dk—r
o U@ = Y (1) 2570 fomrate)
Theorem 2.1.4. [Phi03] For any integer i,k > 0, we have

k
A (flea(e) = 3 (’“) AT f(i) D5 glaier) |

r
r=0

Convex functions

Definition 2.1.5. [Phi03]

A function f is said to be convex on |[a, b] if for any 1,22 € [a, b],
Af(@1) + (1= A) f(z2) = f(Az1 + (1 = A)za)

for any A € [0,1] .

Definition 2.1.6. [Phi03]

A function f is convex on [a, b] if and only if all second order divided differences of f are non-negative.

The Weierstrass Approximation Theorem

The Weierstrass approximation theorem is a famous theorem in mathematical analysis. It asserts that
every continuous function defined on a closed interval can be uniformly approximated as closely as
desired by a polynomial [Dav75].

Theorem 2.1.7. [Dav75]

Let f(x) € Cla,b]. Given e > 0, we can find a polynomial P, (x) (of sufficiently high degree) for which
|f(z) — Py(z)|<e, a<z<b.

An analytic function can be expanded in a uniformly convergent power series, and a continuous but

non analytic function can be expanded in a uniformly convergent series of general polynomials, with no
possibility of rearranging its terms so as to produce a convergent power series [Dav75].
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2.2 Definitions and Properties

Definition 2.2.1. [WQ11]

A Bernstein polynomial of index n is a polynomial expressed in the following form:

n
Zﬁk,nbk,n(l‘) s 0<z<1
k=0

where each ;. ,, k=0,---,n, is a real number and by ,,(z) = (Z) zF(1 — )k

The coefficients f} ,, are called Bernstein coefficients and the polynomials by, ,, () are called Bernstein
basis of degree n.

Definition 2.2.2. [WQ11]
Let f(z) be defined on [0,1]. The nth (n > 1) Bernstein polynomial for f(z) is given by

Balfin) =3 () beate)

For positive integer n, we have the following relation between the n'" (n > 1) Bernstein polynomial for
f(x) and the difference A! of f at 0:

Theorem 2.2.3. [Dav75]
Let f(x) be defined on [0,1]. We have

1
where /\ is applied with step size h = —.
n

We list some pertinent properties of Bernstein polynomials.

Properties 2.2.4. (a)- A recursive definition and degree elevation [WQ11], [Mull2]:

ben(z) = (1 —2)bgpn1(z) + 2bp_1,-1(7) ;

m+1—k k+1
Vk = 0, Y 1 bk7m($) = ka’m_i_l(l') + m+ 1bk+1,m+1($).
(b)- Derivative [Mull2]:
d
%bnk(a:) =n(bg—1n-1(2) + b pn-1(z)) for 0 <z <1.

(c)- Bernstein polynomials as a basis [Mull12], [Hal47], [WQ11] :
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The Bernstein polynomials of order maximum n form a basis for the space of polynomials of
degree less than or equal to n. Therefore, we have

i
o) = ojrbi(x)
k=0

where each 0, kK =0,---,7, is real number.
(d)- ldentities [Phi03] :

* Let n > 1 be an integer.

Bn(1;2) =1, Bp(x;2) =z, Bp(a?z)= 2? + —;
By (1% 7) = (n— 1)(271—2):63 3(n . 1)3:2+ %x,
(n—1)(n—2)(n—-3) » 6n—1)n—2) (2.21)
By(z*2) = 3 zt 4+ 3 x>
-1 , 1
| 3 x +$93

By (exp(ax);z) = [rexp(a/n) + (1 —z)]" , for ae€C.

* From (2.2.1), we have

kzn:o <Z> <fl - “”) (1 - 2)" " = 0;

S (BN ke _sima)

go(z) (Z >3 :(1 )": Ti 241 (2.2.2)
’“Z<k>(” m>x(1 )" =2l - 2)—

’:: <Z> <f‘ R x>4xk(1 ot — (1 - ) B 6)96?&; —x)+1

2.3 Approximation by Bernstein Polynomials

Here we recall the results showing:

- how a bounded function f on [0, 1] can be approximated by Bernstein polynomial at a point = on
[0,1] where f is continuous;

- how a function in C[0, 1] can be approximated uniformly by Bernstein polynomials in [0, 1];

- how the pt" derivative of a function in CP[0, 1] can be approximate uniformly by the pt" derivative
of Bernstein polynomials on [0, 1].

To achieve this goal, we will need the following intermediate results.
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2.3.1 Approximation. The following intermediate result is useful in the proof of the next theorem.

Lemma 2.3.2. ([Dav75], page 110)

For a given 6 > 0 and 0 < x < 1, we have

2 <Z> S 4n152

>3

——x
n

k
——z

<with the sum taken over those values of k=0, ---,n for which
n

)

The following theorem show how a bounded function f on [0,1] can be approximated by Bernstein
polynomial at a point on [0, 1] where f is continuous.

Theorem 2.3.3 (Bermstein). ( [Dav75], page 109)
Let f(x) be bounded on [0,1]. Then

lim By (f;z) = f(x)

n—oo
at any point x € [0,1] at which f is continuous. If f € C[0, 1], the limit holds uniformly in [0, 1].

Remark 2.3.4. [Dav75]

The Bernstein's theorem can be taken as a proof of the existence of polynomials of uniform approximation
(the Weierstrass's theorem), and in addition, it also provides a simple explicit representation for them.

Lemma 2.3.5. ([Dav75], page 112)

For any integer p > 0, the pt" derivative of B,,(f;2) may be expressed in term of pth difference of f as

B,(fjgp(f; z) = U le)! Zn: A <n j—P) <77;L> a:t(l - a:)”’t
) t=0

1

for all n > 0, where A is applied with step size h = .
n—+p

Using the connection between differences and derivatives, we can deduce the following valuable result
from the previous lemma.

Theorem 2.3.6. ([Dav75], page 114)

Let n be a non negative integer and f € CP[0,1], forsome 0 <p <n. If A< f®P)(z) < B, 0<z <1,
then
nP
<
“nn-1)---(n—p+1)

For p = 0, the multiplier of B,(f) is to be interpreted as 1.

BP(fiz)<B, 0<z<1.

S IFf®P(2) >0, 0< z <1 then BY (f;2) >0, 0< z < 1,
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- If f(z) is nondecreasing on 0 < x <1, then B, (f;x) is nondecreasing there,

- If f(z) is convex on 0 < x < 1, then B, (f;x) is convex there.
Remark 2.3.7. [Dav75]
One consequence of this result is that if f)(x) is of fixed sign on [0, 1], then Bflp)(f;:c) also has this
sign on [0, 1].
We shall now deal with some further properties of the Bernstein polynomials.
Theorem 2.3.8. ([Dav75], page 113)
Let f(x) € CP[0, 1], where p is a positive integer. Then

lim BP)(f;z) = f®(z) uniformly on [0,1] .

n—oo
Remark 2.3.9. [Dav75]

As we have just seen that the Bernstein polynomial for f converges to f, in addition, the derivatives of
the Bernstein polynomial for f converge to the corresponding derivatives of f.

Theorem 2.3.10. ([Dav75], page 115)
Let f(x) be convex in [0,1]. Then forn =2,3,---

Bn-1(f;2) > Bu(f;z), 0<z<1.

1 .
If f € C[0,1], the strict inequality holds unless f is linear in each of the intervals [‘71, J 1] ,
n—1"mn-—

j=1,2,--- n. In this case B,_1(f;x) = B,(f; ).

2.3.11 Order of convergence.

We will now study the speed of the convergence of Bernstein polynomials by stating one theorem in
relation with the estimating of the error f(x) — B, (f;z). Before that let us give this lemma which
should help us [Dav75].

Lemma 2.3.12. ([Dav75], page 117)

There is a constant C' independent of a given positive integer n such that for all x in [0, 1],

> (Z) aF(1— 2"k < 75/2 .

’—x >n—1/4

n

For a function twice differentiable, we have an asymptotic error term for its Bernstein polynomial by the
following statement:

Theorem 2.3.13 (Voronovsky). ([Dav75], page 117)

Let f(x) be bounded in [0, 1] and let xo be a point of [0, 1] at which f" exists and is continuous. Then,

lim 1 [Ba(f:20) — f(20)] = ~o(1 — z0) " (x0)

n—0o0 2
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Conclusion : The convergence of the Bernstein polynomials is slow.

Remark 2.3.14. [Dav75]

By a linear substitution:
) t—a
xTr = g
4 b—a
the interval [a, b] can be transformed into the interval unit [0, 1]. Thus, all the results stated above for
a function f defined on [0, 1] can easily be extended on any compact interval [a, b].

The Bernstein polynomial on [a,b]

The Bernstein polynomial for a function f defined on [a,b], denoted BS(f;.) is defined as follows:

=3 (1)1 (-0 o) (i75) (=2)

n

_ (b_la)nz (’;) f <(b—a)fl +a> t—a)*b-t""* telab].

k=0




3. Bernstein Polynomials of Several Variables

Here we generalize all the results for the Bernstein polynomials with one variable to several vari-
ables. The proofs use many materials from analysis, algebra, probabilities which can be found from
[Guz03],[Jel12],[BE9S5],[JMR12],[Rud87],[Fel64],[CC71] and [CTOY].

3.1 Definition and Properties

We shall now derive the properties of the m-dimensional generalization of the Bernstein polynomials.
First we give m-dimensional generalization of the Bernstein polynomials.

Definition 3.1.1 (Generalization). ([Dav75], page 122)

Let f(x1,---,2,) be defined on [0,1]™ and n; > 1, 4 = 1,---,m, integers. The (ny,--- ,n,)"
Bernstein polynomial for f(x1,--- ,x,,) is given by

ni Nm m
Bnlf",nm(f;xlf" 7$m) = Z Z f <,’Iza 77’?”) ku’unz('m)
m/i=1

k1=0 km=0

where by, n,(2) = <ZZ> xf’(l —)mR =1, m.
(2

Using the results obtained with one variable, it is easy to obtain some pertinent properties for the
generalization of Bernstein polynomials.

Properties 3.1.2.

1- Let m > 1, j1,---,Jm be integers. Then

) J1 Jm  m
I pdm — § . § ) s
7y Ty = Haﬁ,kibk‘mi (i)

k1=0  km=0i=1

where 0, ;, ki =0,---,7;, 1 <1 < m, are real numbers.

77

2- Letn; > 1,5, i:=1,--- ,m, be integer. Then

Bn1,~~-,nm (1;%1, o w%'m) - 17

m
. . . 3.1.1
Bnl»"' Mm (H mgl;xlv o ,.',Em) = H an (xzz’ fﬁl) ( )
i=1 ]

m m
By, <exp <Z ai:ci) ST, ,xm> = H [z; exp(a;/ni) + (1 —z;)|™ .
i=1

=1
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3.2 Approximation by Bernstein Polynomials with Several Variables

3.2.1 Approximation.
Theorem 3.2.2.

Let f(x1,--- ,xm) be defined on |0,

(f,xlv

TL17

1
where /\; is applied with step size h; = —,

Proof:
ni
By ([0, s 2m) =
k1=0
n2
ko=0

k
We take the first variable of f and fix the others. Hence f (1,--- ,

k

"fm

1y

t1=

)

-3

SIPTES

0 tm=0

i=1,--,m.

m

1=2

g1 <1> and we apply the theorem 2.2.3 to get

ni

n2

ko=0

n2

(faxla

nl, ,J}m)

ko=0

-Z[

o)t

km=0

km=0
m
=2

Nm

2|

km=0

t1
.1"1

ZA191

t1=0

S aps

t1=0 <
)

n2

St (o

ko=0

ni

t1=0

Al £(0,

(0
BIhHE

ki
K

ko
712 ’n3

k3

70)

(1 — )i

Il

=1

. We have for positive integers n;, 1 <i<m

n;
t;

t;



Section 3.2. Approximation by Bernstein Polynomials with Several Variables Page 12

k k
We repeat the action with the second variable of the function Aﬁlf <0, —2, e ,m>, to get
no Nm,
ni na k l{j n n
y L1, , L Atl At2 <070737"' 7m> xtlth < 1) < 2>
BT Zo kzo Lz:o tzz:o n3 nm )1\t \ 2
11 <kl> (1= )™
i=3 N

Then

Nm ny n2 n3 L k;m ,
Bt =30 353255 (35 ap ap g (o0 22, B (1)

k4=0 km=0 [t1=0t2=0 k3s=0
m
K t1 o [ 721 ng i\ |, ki i—ki
‘ (1 N 1173)”3 3) x11$22 <t1> (t2>:| H1 <kz> i (1 B xl)n ‘
1=

k km
Similarly with the third variable of Aﬁl A? f (0,0, nj? e ,), we get
3

Nm

n1, (fvxlv y & Z Z [i i i Atl At? Ath <O O O fL )$t11$t22$§3

4=0 km=0 Lt1=0t2=01t3=0
S (n e
i i ki1 _ o \ni—ki
O (G
i=1 =4
By repeating successively the actions with the 4th 5t ... mt" variables but with the functions

k k k k
A?A?A?f <0’0’0,ni’... ’m) 7 A?A?A?Afff (0’0’0’0’712’... ,m> Lo ,A?A?"‘A:zfll

m Nim

k
f (0,0,0, -0, m) respectively, we obtain the result. [
n

m
Lemma 3.2.3.
For given §; >0, i =1,--- ,m and (z1, -+ ,xm) € [0,1]™, We have
m
; ) 1
SRR SHS | () E T
k k iR 2
1= m
L2 S N L 4 ané
ni Nm

Z&)-

. k;
<we sum over those value of k; =0, - ,n; for which ‘ —x;
n
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Proof:
m
IR | (R
k k i=1 2
flfxl >0 7m7mm >0m
niy Nim
m
=11 > <n> 2t (1 — )"
: ki
=1 kz
— —x;|>0;
2
v 1 1
< H | = — ( using lemma 2.3.2) .
. n;0; )
=1 4m H nzdl
i=1
O

Remark 3.2.4. Lemma 3.2.3 is still valid if the summation is not on all the k;, 1 < i < m but on some
of them. In this case, the upper bound will contain only terms involved in the summation.

Theorem 3.2.5.

Let f(x1, - ,zm) be bounded in the m-dimensional cube 0 < x; < 1, ¢ = 1,--- ,m. Then
By, o (f321,- -+, xm) converges towards f(x1,--- ,xm) at any point of continuity of this function,
as n; — oo for all i. If f € C[0,1]™, the limit holds uniformly in [0, 1]™.

Proof: Because of space limitation, we prove this theorem for two variables and provide clear indications
for the proof for m variables (which we have done).

The function f(z1,x2) is assumed bounded in [0,1]2. Hence for some
M >0, |f(z1,22)| < M, V(z1,72) € [0,1]?, and for any two points (a1, as), (81, 52) € [0,1]?
|flon, a2) = f(Br, B2)| < 2M .

Let (21, 72) € [0,1]? be a point of continuity of f. Given & > 0, we can find &1, d, depending on (1, z2)
and ¢ such that |f(z1,z2) — f(y1,y2)| < g whenever |z; — y;| < §;, i=1,2.

Since By, n,(1;21,22) = 1, we have

f(x1,22) =f(x1,22) By ny (1; 21, 22)

ni  no
=f(z1,2) D Y <Zi> (1 —z)mh (Z;) ah? (1 — my)m2 k2

k1=0 k2=0
ni ng
= Z Z f(xl,:L'Z) ni xlflﬂ _xl)m—k:l n2 x§2(1 _'1,2)712—]62'
kl k2
k1=0 k2=0
Let us consider the set £ = {0,--- ,n1} x {0,--- ,n2}, and for j = 1,2, define the sets
k;
Qj =qk; €{0,---,n;}: ;—xj < 0; (3.2.1)
J
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and

F:{Ov anl} X {Oa ,nQ}\(Ql XQZ)
= (21 x Q)¢ (the complement of Q; x Q9 in E)
=Qf x Q5UQT x QU x QF

where the small ¢ over the set means the complement of this set in E. We have

|f(@1,22) — By o (f3 21, )|

Z Z fxy,22) ( >x]f1(1 — )R <22> ah? (1 — my)2 ke
2
k1=0 ko=
-3 (B ) () et () b - e
n1 n9 1 2

k1=0k2=0

ﬁ @ ni k1 n1—k1 2 ko ng—ka
Z Z [ x1,x2) (711’712)] <k1> 27t (1 — 1) ey ) 22 (1 —2x9)

k1=0 ko=0
k)l k2 niy k1 —k n9 k _k
o e 1— ni—ki 2(1 — na—ks
(w1, 22) (nﬂm)‘ <k1 7' ( ) ko 5 ( T32)

<ZZ

=0k2=0

Hence,

|f(a:1,x2) - Bn1,n2(f§ Zy, 1‘2)|

5 o1 (3 BT (2) 0 () -

Q1 Q9
kl k2 k ni— ng k no—
ﬂf]_,xQ <n17n2>‘ (l{j1> $11(1—$1) 1=k ]{j2 x22(1_l‘2) 2 k2.

Using the fact that f is continuous and bounded, we have

|f(z1,22) — Bny o (f3 21, 22)]

ni no
2305 ()b (32) e - oyt
1 2

IN
2o ™
—
ok
T
ol
\_/
~3>~
=
[a—
|
&
g
+
[\
S
>
Gl
v
&
~—
3
K

IN
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Since (k‘hkg) Q N X Qy <— (k‘l,kz) € (Ql X QQ)C = Q'i X Qg U Qf X Q9 Uy X Qg, we have
(k1,k2) € Qf x QF or (k1,k2) € Qf x Qg or (k1,k2) € 1 x Q5. Hence, we split the sum over F' as
follows:

. ni k ni—k
= (k1> zyt (1 — )™
Q1

(Zi) (1 — -Tl)mkl) 2. <Z§> w52 (1 — o)k
< )
1

1 1 1
< .
- 477,15% 47125% 477,15% + 4712(5%

n;
1 =1,2 the expression Z (ZZ) xfz(l — :(;Z)nz—kz < Z <Zl> fo(l — xl)m—k’z =1
I k=0 7

0

(using the lemma 2.3.2 and bounding for

Let us assume n;,7 = 1,2 are such that 47%522 > 1. Then
=y 1 1 1
7 ki n,—k;
i 1 _ . 7 7 < a . a . a . _
ZH <kz> L ( ;) = MaXi<i<2 {4%152-2} + maxi<i<2 {47%'5@'2} + maxi<i<2 {47%512}

= 3 max 1 <2 vl
1<ii< 4”162

€ 1
|f(x1,22) — By o (fi21,22)| < 5 +6M | maxi<i<od ¢ ) -
2 4n7;5i

Therefore,

1
For n1,ne sufficiently large, we have 6 M | maxj<;<o — < E. Therefore
- 4n¢5i 2

+-o=c

| ™

|f(ZL’1,IL'2) - Bn1,n2(f; $17$2)| <
Here, it should be noticed that the minimum integer n1g and nog such that
|f(x1,22) = Bpymo(fr21,22)| <€ Vng > nyo, na > ngo

depend on d; and &2 which themselves depend on 1 and zo. This is why we have only point-wise
convergence.

Suppose now that f € C[0,1]?, then f is uniformly continuous on [0,1]? i.e. given & > 0, we can find
1, 02 depending just on £, but no on any element in [0, 1] such that |f(z1,2z2) — f(y1,92)| < % for all
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(z1,72), (y1,2) € [0,1]? satisfying |z; — vi| < &;, i = 1,2. By following the same process, we obtain
that

€ 1
|f(z1,22) — Bpy o (f571,22)] < 3 +6M (maxlgigz {W}) , Vri,x9 €[0,1].
i0;

Hence, there exist ng; and ngy depending only on £ and not on z1 and x9 such that
|f(21,22) — By o (f571,22)| <&, x1,22 € [0,1], n1 > no1, n2 > noa.

Therefore, the convergence is uniform in [0, 1]2.

The proof for m variables is obtained in the same way by representing F' as union of m different disjoint
sets Fj:

_<ﬁ9> :OFk, with Fk:ﬁggad, 0<a; <1 and zm:a,-:k
=1

k=1 i=1 i=1
where Q[O”] { g% :: zz :(1)'

O

Lemma 3.2.6.

For p1,--+ ,pm >0 with 0 < p; <n;, i=1,2,--- ,m, the (p1,--- ,pm)th derivative of

B 4p1, nmtpm (f3 21, -+, Zm) may be expressed in terms of (py, - - - ,pm)" differences of f as
m Nm

B i (fi01.0 [H O DT SRR ]

i=1 t=0  tm=0 Lt P

tm - g t; o\t

i=1
Proof: We write

n1+p1 Nm~+Pm k k m n
. DY fr— DY 1 DY m Z
Bt cmsplfion o) = Y o 30 f (e ()

k1=0 km=0 i=1
Cahi(1 — gy)mih

2

_n2+p2 nmApm | m1ApL ky K ni
-2 2|2 G ) ()

k2=0 Em=0 | k1=0
aft -t [ () st et
i=2 N
We take the first variable of f and fix the others. Hence f A is seen as a
ni+p1 N + Pm

k
function g1 ( ! ):
niy +p1
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" L | "R k1 ni k1 n1—k1
By tpr, mmtpm ([321 - Tm) = Z Z Z g1 ny + p1 k1 2yt (1 — 1)

km=0 k1=0

m
iz . U

[T (5 ) et —art

, k;

=2

n2+p2 Nm+Pm

= Z Z By 4p, (91, 71)] ﬁ (Zj) ahi(1— gk

=0 km=0 =2
Hence
bei-ﬁ-pl, Mm+DPm (falila 7'7;m)
n2+p2 Nm~+Pm
i ni—k;

- Z Z [B"Pﬁ‘i‘l)l(gl’xl (k)m 1_xz

k2_0 km:() ?

n2+p2 Nm~+DPm -
= Z e Z (nl +p1)! Aflgl > <n1> -Til(l _ $1)n1t1] H (nz> xkl(l o k;

! . i

k2=0 km=0 s t1=0 n erl s k;

n2+p2 N +Pm [
= Z Z (nl +p1 < .. km) <n1) xt1(1 _ l‘l)nl_tll
= ' ’ 1

ko=0 km=0 L n: t1 O ny + pl no + p2 N, + Pm t1

m
i=2 N

_"23 ps...”zp MZT” ni ”2Ap1f< bk km )
o | 1 ) ) )
ks=0  km=0 [ 0 n1+pi ng+p2 Nm + Dm

n2\ k no—k ny\ i ni—t s i\ kg \ni—k;
k:2> x5 (1 — x9)"? 2) <t1> o (1 — )™ 1] H <kz> z; (1 — ;) )

=3

N\

We repeat the action with the second variable of the function

t k k
AI]_)lf< ! ) 2 P ~ >,Weget
ny+p1 ng2+p2 Nm + Pm
Bgifélv ©Mm+DPm (f7 1, ,Im)
:nszfigni’ H (nz +pz i i Apl APQ < t1 to k3 o
= S L\ = ni+pi no+p2ng+ps
km m) 4 (nl> "y
—_— 1—a)™ " x ki (1—-= ‘
Nim +pm) g (ti ( H Z)
n3+ps3 Nm+Pm 2 ny  n2 n3+ps3
-y Y H”zﬂ% SY (S anaps(-n t2 ks
B L n1+p1’ ne +p2’ ng+ps’ ’
k3=0 k=0 i=1 t1=012=0 \ kz=0 1
k n 2 n " (n
m 3 ks n3—ks 7 t; n;—t; 7 k; n;—k;
T2 (1 — 23 ) < >x 1—x)" < >a: 1— )",
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. . . t t k k
After with the third variable of Al AL f ( LU AL S m> we get
ny+p1 ng+p2 n3+ps Nm + Pm
Bﬁi’f;’lpf’ mmtpm (f321, 0 Tm)

S () S oo (e
nz' ’ ’ ,

ni+pi ne+p2n3+p3s na+ps

ka=0 i=1 t2=0

k 2 n m o
m ( t; n;—k; i ki ni—k

- ﬂjll 1_1: 7 k3 x-l 1_$ i i

=1 i=4
which can be written as
P1,P2,P .
Bn11+§71,3 nm+pm(fa X1, )xm)

n5+ps  Nmt+Pm 3 (s +p ni n2 n3 [natpa t to t3
-y . ¥ (H i Z)ZZZ ZA?A?A?J’( , :

)
n n n
ks5=0 km=0 =1 t1=0t2=0t3=0 k4=0 1+p1 2+p2 3+p3

3
k4 km n4> ta —k ) <n> t B
s Tt (1 —xg)t || ) a1 — )
N4 + P4 N +pm> <t4 8 Y o\t ( d

i=1
J1 (;;) 2 (L= h
i=5
By repeating successively the actions with the 4t 5t ... mt variables but with the functions
Atl Atz At3f < tl t2 tS k4 o k?m > Atl AtQ At3 At4f < tl
b2 ni+png+p’ng+psngtps nmtpn) T2 T2 ny+pr’

t t t k k t t

2 , 3 , 4 , 5 Ly, m >,"-,A§1A§2-"Af#_1l < 1 , 2 ,
ng +p2 N3 +p3 N4 +ps N5+ Ps Nm + Pm ny+p1 N2 +p2

tmfl km . .
, , respectively, we obtain the result. [J
Nm—1+ Pm—1 Nm + Pm
Theorem 3.2.7.
Let 0 < p; <ny, i =1,---,m, be fixed an integers and the restriction of f to each of its variables i
belong to CPi[0, 1], t=1,---,m. If
A<f pM)(‘rh 7xm) §B7 ($17"' 7‘7:771) S [07 1]m
2
nk
then A < C BRVTR (fiwa, e om) < B, (21,00 1) € 0,1

For allp; =0, i =1,--- ,m, the multiplier of B}}"""’h™ is to be interpreted as 1.

S Af fe)Pm) (o 2) >0, (21, ) € [0,1]™ then

B?Li: ”7pm (fvxlv T amm) >0, (xl’ T ,SUm) € [07 ]-]m
- If f(z1, - ,zm) is convex on (x1, - ,xpy) € [0,1]™ then By, ... n,,(fi21, - ,Tm) is convex

there.
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Proof: We begin with equation (3.2.2) and replace n; by n; — p;, i =1,--- ,m. We have

Z Z Aﬁn”'ﬁﬁqu<::1f“

] ni—p1 Nm —Pm
t1=0 tm=0

m
n;!
Bph "7p'm — | I A
N1, (f xl? 7xm) [ (nz _pz)‘

m
tm) H <n1> :Ct’(l _ m.)ni_pi—ti
) 3\t Z

1
Then, using (2.1.1) with h; = —, i =1,--- ,m, we write
n;
APL.. AP f o te ey e,)
! m nt’ N it by ’
where = < ey, < H—pz, i=1,---,m. Thus
n; n;
Bgi:“,pm (faxla"' )
m ni—p1 Nm —Pm
| D R S 523)
i=1 t1=0 tm=0 m
Wi =Pi\ tigq _ .. \ni—pi—t;
XH( ¢ >:):Z (1 —m)
=1
m ni—p1 Nm —Pm
ni(n; —1)---(ny —p;i +1)
:[H e D DD DIV L ORI
i=1 i t1=0 tm=0

) H <nz ; pi) xfz(l _ xi)ni—pi_ti ) (3.2.4)

=1

A< Jt‘(pl)“'(pm)(x17 ooy xm) < B, (x1,--- ,my) €10,1]™
A< f(pl)...(pm)(gtp... e,) < B

ni—p1 Nm—Pm m
—= A< fP)Cm) (g, o gy ) Z Z H <nz > 2bi(l— )" Pt < B
t1=0 tm=0 1i=1
ni1—p1 Nm—Pm m
( since Z Z H (m pz> iz‘(l D 1>
t1=0 tm=0 i=1
NN (p1)-+(pm) 1 i = Pi\ tiq _ . \ni—pi—ti
— A< Z Z f (gtlj...’&‘tm)H N (1 — ;) <B
t1=0 tm=0 i=1

}_[1 ni(n; — 1) ‘z(ni —pit1)
(X1, - ,zm) €10,1]™ (using (3.2.4)) .

When all p; = 0, the multiplier of Bh 0™ is

prh'-"pm (f?xlv ;xm) < B for all

m .
n?i
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¥ Af fe0Pm)(gy oo 2,) >0, (21,00, @) € [0,1]™, we set A =0 and obtain
n nbi
0< i Bhbobm (fiay, - k) forall (z1,---,2m) € (0,17,
= gnz(nz_l)(nz_pz“‘l) ny, (f 1 m) ( 1 m) [ ]
that means Bhy 0 (fixa,-+ ,xm) >0, (21, ,2m) € [0,1]™
¢ t (2)-(2)
* If fis convex, AT AZ f (1,~-- ,m) > 0 and hence we have / 2(&1’ 5 =) >0
ny Nm ng---n2
(p1)-(pm) t t
since / . (gtl’pm +Etm) =AM AR f (1,-~~ , m) , that means
f@@ (g, ep,) > 0. Thus from (3.2.4) with p; =2 Vi =1,--- ,m,
Brzu, ,nm(fvxla"' ,xm)ZO, (mlv"' ,:L‘m)e [Oal]m

That implies By, ... n,, is convex in every closed interval of (0,1)™. since By, ... ,, is continuous,
it is convex in [0, 1]™

O
Theorem 3.2.8.
. oPi
Let 0 < p; < ng, i = 0,---,m, be fixed integers, f continuous on [0,1]™ and Eg is continu-
Ty
ous on [0,1]™, i =1---m. Then BEY"Pm (fiaq, -+, 2,,) converges towards f®1)=Pm)(gy ... z,)

uniformly on [0, 1]™

Proof: We have already shown that the the above result holds for p; = 0,Vi = 0,--- ,;m. We have to
see the case when p; are not all zero.

We begin with the expression for By )P (f; 21, - -+, @4,) given in (3.2.2) and write (using (2.1.1)
1
with h; = ,i=1,---,m
n; + Di
AP AP f b tm — f(pl)-"(pm)(gt“'” +Etm)
! T\ g i+ P " _
H(nz + pi)”
i=1
tA .
where €ti<ﬂ, t1=1,---,m. We get
ni +pi n; + pi
e (ng +p t
.. m m 1
thpf” s tpm (fr 21,5 7;pm):[H i T Di Z ZAM'“A% f(n il
i=1 t1=0  t;m=0 1P

t e
m i t; n;—t;
, x, (1 —x;)™
nm+pm)lj(t) 51—,
_ ﬁ (nz+pz

p b (nz+p pl

Z Z fem) (g, gy )
ﬁ (::) i (1 =)™
i=1

tm=0
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which give us

- - u“ n; ) i —ts
= Z Z FeEm) (g, . ,Etm)H <t1> ah (1 — )it (3.2.5)

t1=0 tm=0 =1

We then approximate fP1)=(Pm) (g, ... gy ) writing

f(pl)“'(pm)(gtl, e 7€tm,)

_ fB2)(om) <t1 tm) + [f@l)--(pm)(%... ) = f) (tl tm)] '

) M
ni Nm ni Nim

We thus obtain
ﬁ ni!(n; + p;)Pi
(n; + pi)!

i=1
SR t tm
-y oy <f<p1>~-<pm> <n11 n) + [ ey, a,)

t1=0 tm=0

o)) (:Lll . f;n)]) 11 <?Z> 215(1 — gyt

=1

B s (501 )

:Tl(xla"' 7xm) +T2(l'1,"‘ ,fm) where
ni

- t tm \ T (10 & .
Ty(wr,-am) = Yoy fEV ) (7;1, ,n> 11 <Z> bt (1 — a;)™ih

t1=0 tm=0 =1
ni Nom

t tm
T2($17 T ,xm) = Z o Z [f(pl)'..(pm)(gtl’ T 7Etm) - f(pl)(pm) (TLII, o n>:|

t1=0 tm=0

TI(7) b=
t;

i=1
t t;
Since ’ - ! +p1’ t=1,---,m, t; =0,--- ,n; it follows from the bounds on ¢;,, ¢ =
n; + p; ng n; + p;

1, ,m, that

ti] ti+pi ti :

5ti_i< z+pz_ % _ Pi L i=1,---,m.

n; ng+p; nNi+pi N t+pi

From the uniform continuity of f®1)(®m) (g ... z ) given € > 0, we can find n; such that for all

n; > Nso and all t;,

‘f(pl)...(pm)(gtp o Er)) — f(pl)---(pm) (tl tm)‘ < e.

ni’ nm
Thus T5(z1,- -+ , @) converges uniformly to zero on [0, 1]™. We have
(. \Pi
Hwﬁl as n; —»o0, Vi=1,---,m,
paley (n; + pi)!
and we see from theorem (3.2.5) with f(P1)"(Pm) in place of f that Ty(z1,--- ,x,;,) converges uniformly

to feV®m)(zy ... x,,). This completes the proof. [
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Theorem 3.2.9.

Let f(z1,--- ,xm) be convex in [0,1]™. Then, for n; =2,3,---,
1=1,---,m, we have
Bn1*1,---,nm*1(f;m17 o 733m) Z ni, N (f,wla 733771)’ (331, e ,CL'm) € [07 1]m

Proof: We have already solve the case for one variable in appendix; now because of long calculations,
space limitation, we will just show how this theorem work for two variables.

Set t; = - Yi_ i =1,2. Then

—

k; ki ks ki ki ks

wi (=) M =1t ie. (=)™ =t (3.2.6)
I+ti=(01—z)! xfl(l — )k = tfi(l +t)

(1 - ml)inl(l - x2)7n2 [Bnl 1,ng— 1 f 371,:172) Bnl,nz (f7x17x2)]

ni—1ng—1
Ky np—1 -1\ & —ki—1_k ko1
= 1_ 1 2 1_ 2
ZZ (n1—1 n2_1>< >( )xl( 1) x5 ( T3)

kl 0]{?2
ki k
SR () @) @)
k1=0 ko2=0 ny n2 2
ni—1no—1 " ) L
= ! 1= kl kg
= > Zf<n1—1 n2—1)< ky >< >t (1+t1)t5* (1 + t2)
k1=0 k2=0
km .
S (e ) () () oo
TLm kl
= km=0
ny— 1n2 1 o .
1= kigks | (1
ZZ <n1—1 ng—l) [( k1 >< ko )tth}( + 1 +to + tita)
k1=0 k2=0

-2 2 () () ()]

niy— lngl k:g
- Z Zf(nl—l n2—1>
k

k1=0 k2=0
ny no—1 .
kl_l 2 nl—l ’I’Lg—l k1 ko
¢ 2 (o) () (M)
k1=1 k2=0 J
ni—1 ng _
k’l kQ -1 ny — 1 n9 1 k1 ko
¢ () (M ) () e
k1=0 ka=1 L
ny o n2 - _
ki —1 ko—1 ny— 1Y (m2 — 1\ ik ks
* Z Z <n11’n2 1) <k1—1 k2 1 tl t2
k1=1kz=1 L
ny N2 k1 ko ni no 1 ko
- Z Z —, to (using some change of variables).
ny n9 kl ]{72
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Then
(1 - xl)_nl(l - 532)_”2 [Bm—l,ng—l(f% I, 952) - Bn1,n2(f;x17332)]

nlfl TL2*1 kl k2 nl —_ 1 n2 - ]- k‘l k2
_ Z Z f , tl t2
n—1"ng—1 k1 ks

k1=1 ko=
< > tkl tk2_

ni—1ng—1
k‘l—l ]4}2
+ Z Z f<’fl1 ng—l >
e

ni—1no—1 k 1
-
Y (G

Pap ] ni—1mng—1

ni—1ng—1

ko — 1
I
im1 ko—1 n1—1 ng—1

SIS ()

k1=1 ko=1

[
[§
[

k1=1 ko=1
1 ko

/—\\_/\/\/

Zz> thgh

) (i
sl 20 () ()]

S [ )]

S () (]« B () [(220)
o 3ok (o) ] B (R () ]
e () (o]« S () () ]
- SB[ S (o) ()]
B[] ) ()]

which implies

(1 —21) ™ (1 = 22) " [Bny—1,ns—1(f3 21, 22) — Bpyny (fi 71, 22)]

e k1 ko ny— 1Y\ (no—1\ g &
- sz np—1ny—1 k k hits?
Pt 1 2 1 2

ni—1ng—1
k1 —1 ko ny — 1\ (n2 =1\ & ks
- 22 G (o) ()
ni—1ng—1
kl kg—l n1—1 n2—1 k1 ko
s X)) () s
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ni—1ng—1

D ID ¥

k1=1 ko=1

k

n

(

ni—1ng—1

1 — 1k2—1 ?7,1—1
k1—1

1—1"ng—1

) (e

1
1

o]

)

ki k
) [() ()]
e\ 1 2
no—1 - ni—1
ko ng — 1Y\ % k1 nt—1\ &
t5? tyt
" Zf( nz—l) ( ko )2}+Zf<n1—1’>[< ko)t
ko=1 - k1=1
’I’LQ 1 r n1—1
ko no — 1\ ko k-1 ny— 1\ g
+ (1,n21) ( o >t1t2 + > f o0 [ 2 1)8
ko=1 - ki=1
1’L2 1 - ny—1
ko —1 no — 1\ . kq n1— 1\ kn
0 152 A
i (’n2—1> <k2—1>2}+zf(n1—1’>[< ko )t
ko=1 - k1=1
nz 1 - ni—1
ko — 1 ng — 1 n1 ko k-1 ny —1 k14mno
+ <1,n2_1> <k2 1>t1 2+ > f ) [ o)1
ko=1 - k1=1
k2 1 & ko1 N1 g
el n2 ni ko e kl ni k1,n9 ni
- > f(1 ) + L) [ 02|+ £(0,0) + f(1,0)8
2 n 1
ko=1 =1
RO, D)+ F(L 1) — (0, ) FO,1)E82 — £(1,007 — f(1, 1) 2
nlzlnaz2 77,1—1 712—1 f 1 + 711—1 n2—1 f kl—l ]{,‘2
ng—1’ n2—1 ki —1 ko ng—1nyg—1
k1=1 ko=1
n1—1 /{?2—1 /{?1—1 k‘g—l

+< .
@1

>

n2

ko

+

I nog — 1
L k2
It is obvious to show that

("

)(Zzii
)i (
() (

>f(n11 ng — 1

ki k2 \ | ke
- & tth
nl’n2>] 12
]{71 n1—1
n1—1’0>+<k1—1
k‘l n1—1
—1
)G+ (i
ng — 1
)+ (s
n2—1
)+ (s

ne
)- ()

1

n

)+
)/

)/

o0
ne

with k,n positive integer n > k.

711—1
k1 —1

k1 —
n1—1

n2—1
ko — 1

) - (i
) (
1)

k1
ni
ko
5 o
ko —1
no — 1

)-(

)/
) (

k1
ni

7,0

nlfl’ngfl

)]

)

k1,no
tl t2

)
t2

ni ko
ke



Section 3.2. Approximation by Bernstein Polynomials with Several Variables Page 25

So

(1 —21) ™ (1 —22)" " [Bn,—1,n0—1(f1 21, 2) — Bpy ny (f5 71, 72)]

i lne 2 nl—k‘l nz—k‘z ]{31 k‘g k‘l n2—k72 k‘l—l ]{72
= > Z : f : + = f ,
ni no n1—1 n2—1 ny ny ’I’Ll—l 712—1

k1=1 ko=

+n1—k1'@f kl ’kz—l —|—kl'k2f kl 1 kg —f ﬁ7@ tlflt§2
ni no n1—1 TLQ—l %) 711—1 no — 1 ny n9

+k§1<zi> mklf(nl 1’0>+ f(nl_i())—f(i,O)_t’fl
) [t () B (k) o ()
S [ )+ ) ()]
CE ) () (122 s (1)

ko ks
)

]{71 nQ—kQ ]{71 —1 kQ kQ kl —1 k‘g— 1 kl k?Q
+7”L1< no f<n1—17n2—1>+n2f<n1—1’n2—1)_f<n1—1’n2>>

—k k k k ki—1 k ki k
+ ni lf 1 ’72 +71f L ’72 —f 71’72 t]fltl2€2
niy ny — 1 ng niy ny — 1 no ny N9
ni—1 - -
—k k k ki—1 k
+ ni ni 1f 1 ’0 +71f 1 ,0 —f 71’0 tllgl
k1 ni ny—1 ny” \np—1 ny
ki=1 - N
ni—1 -
ni ny — ]{31 k‘l k‘l k‘l -1 ]{31 k
1) +— L) —f— 1) t}ese
! k:zl <k1) L ™ f<”1—1’ >+ 1f<n1—1’ / 1 !
1=
no—1 - -
no no — kZQ kz kg k:g -1 k:g k
- _ _“ t 2
" kzl<k2>- n2 f<07”2—1>+ 2f<07n2—1 T\ % I
0=
ng—1 - -
n9 no — kQ kQ kQ kQ -1 kQ ni Lk
1 — 1 — 1, —= || t7% 52
+kzl<k2>_ N9 f<7n2_1>+ 2f(7n2_1 f 5 ) 1 lo
o=
For ¢ = 1,2, let us set
) kz kl kz — ]. k
/\i = e , T1 = A To = and T3
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Then 1 —X; = — and Nz + (1 — \)xa = — = z3. Hence, the fact that f is convex give us

n; n;

—k k k k k ko —1 k k
n2 — Ko Lk F2 L k2 —f( 1,2>>O
no n1—1 712—1 no n1—1 n2—1 n1—1 no
ng—kg kl—l kg kQ kl—l kg—l kl kg

r2 _ 2 >0

no f nl—l’ng—l +n2f n1—17n2—1 f(nl—l,TLQ)_
—k k k k ki—1 k ki k
MRy ,2)+1f(1 ,2)—f<1,2>20

ni n1—1 no ni n1—1 n9g ny N9

—k k k ki —1 k
P (o) + (o) = £ (2H0) >0

nq ny—1 nq ny —1 ni

—k k k ki1 —1 k
P () () = (2] 20

n1 ny—1 n1 ny —1 ni

—k k k ko — 1 k
P02+ 20, 2= ) = f(0,2]) >0

M9 ng — 1 n2 ng — 1 2

—k -1 k
mehep (g, R Y R oY () 5

9o ng — 1 N2 ng — 1 n2

Thus, we have (1 —x2) " (1 —x2)™ "2 [Bp,—1n9—1(f;21,22) — By no(f;21,22)] > 0. That means
By —1ma—1(f521,22) > Bny o (f3 21, 22), Yar,22 € [0,1] .

O

3.2.10 Order of convergence. To provide information about the speed of convergence of multivariate
Bernstein polynomial, we need the following intermediate results.

Lemma 3.2.11.
There is a constant C' independent of n; such that for all (z1,--- ,zy) € [0,1]™, i=1,--- ,m,
m
; . Y C
1 i 3/2
ﬁ—zl >n; k—m—zm S [
ni MNom, =1
Proof:

ky k i=1
——x an1/4 o P
ni Nm
m
T N
=T X (§)era-am™
k;
=1k —1/4
— —X; >n
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Using the lemma 2.3.12 we have

Z Z ﬁ <Zz> xi@ (1 — a;)mi—hi

k k =
71_x1 >TL1_1/4 i —Tm ZTLT_TL1/4
ni Nm
m
C; .
< H ! with C; constants
3/2
i=1 \"

= — ¢ with C constant (C =Cy---Cp,).

[

i=1

g

Remark 3.2.12. Lemma 2.3.12 is still valid if the summation is not on all the k;, 1 <4 < m but on
some of them. In this case, the upper bound will contain only terms involved in the summation.

Theorem 3.2.13.
Let f(x1,--- ,xm) be bounded in [0,1]™] and let (a1,- - ,an) be a point of [0,1]™ at which

f@=@(ay,--- ,an) exists and is continuous. Then, forn; =ng =--- =n,, =n
1 & O*f
T}g&”[ (f7a17 aam)_f(ah"' 7am)]:2'§;ai(1_ai)a$?(a17'“ 7am)'
1=
Proof: Since () (2) (a1,--- ,anm) exists and is continuous, then using Taylor expansion of order two
[z, am)
m m
0
:f(ala"' 7am)+i_218£(a1>"' aam)( _az gaf at, - s m)(mi—ai)2
m
5> 8%% ) (@i = ai) (g = a) | (o) Y (g
i,j=1,i#j Jj=1
where limg,, . o ) (ar e am) S(T1, 0 5 Tm) = 0. set (w1, ,2p) = ) multiplying

(2

both side by [/, (2) alf”"'(l —a;)" % and sum from k; = 0to k; = n, forall i = 1,--- ,m, we obtain
1

,Tb(f;ala” : 7am)

=f(ai,- - ﬂm)JFZai.(al’”' ) Z Z (n_aZ)H<IZ> aki(1— a;)" i

i=1 k:1 =0 km= i=1
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1 & & ~oN- (K ks 1
—1-5 Z axia$j(a17...’am)z...z(n—ai> (;—%)H(;)

i.j=1,i#j

i ai(l — ai) (92
_f(ah 7am>+i§:; m Tx?( 1, aam)
m n n kl km k'j 2 m n ke s
3| (B ) (e ) T () a0
7=1 | k1=0 km=0 =1
Let
B m n n kl km kj 2 m n ke "
S=3 |30 3 s (B ) (B ) T () -
7j=1 | k1=0 km=0 i=1
1
and £ > 0. We can find n, i = 1,--- ,m sufficiently large that |z; — a;| < 1 implies
n
|s(z1, -+ ,zm)| < e (since Mg, oz (ar, - am) S(T1, 5 Tm) = ()) .
Let Q; =k |k DL for i = d
et Q; =<k €{0,---,n;}: g—ai<m ori=1,---,m an

F={0,,n}x-x{0,,n}\ {0 xx U}
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S| < Z

(o ) (o) 0o

Jj=1 [ 4
kl km k; * N n ; n—k;
> ()\() I (5, e -0 ]
F i=1 N
2

IN

[0)
(]
(]
(]
N
s |

|

<)

<
~_
s
N
T3
~__
s
R
—

—

IS
N

7

ey

m
where M = SUP (g1, zm)€[0,1]™ |S(:U1, T ,l‘m)’ Z(‘r] - aj)2

j=1
< 5]27:; é(’g—%)Q(;)a?u— +M;[Hl:< > 1—ai)n_ki]
< EZ <a’ — ) EF: LH1< > ] ( using equations (2.2.2)).

Using the same procedure as we have used to show the theorem 3.2.5, but with the lemma 3.2.11
instead of the lemma 3.2.3, we bounded the summation on F' as follow:

ZH( > —a;)" M < imaxlﬁiém{ 3/2} Z > maxlﬁjﬁp{ﬂifz}

F =1 =1 p=2 1<i1 <-<ip<m

CZ‘ s m Ci
m | maXi<i<m W —I—Zz:; ; Maxi<i<m W

C;
= (2m — ]_) (maxl<i<m 32 }) .

s 23 () e (monn ) )

IN

Therefore,

and we have

m

0B i) = Jlar o] = > O T
i=1

— |nS| < &‘i;ai(l —ai) + M [Qm -b <max1<"<’” {n?/?})] '
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C; .
By taken n so large that M [(2’” -1) (maxlgigm {1/2}>] < £ we obtain
n

a1 — a) 2
0B n(fia1, - am) — flat, - am)] _ZMQ(%... )

2 0x?
1+ ai(l- ai)]

=|nS| < ¢

i=1 g
=1

Since ¢ is arbitrary, we have

n=s00 2 Ox?

Mmoa (1 —a) H2
lim n[Bn,~~~,n(f;a17"’ 7am) _f(a17"' 7am)] = Zwa f(ala"' 7am) .
i=1

[

Conclusion : The order of convergence of Bernstein polynomials with several variables for a bounded
function f(x1, - ,2m), (1, -+ ,2m) € [0,1]™, in some neighborhood of (ai,- - ,a;) € [0,1]™ con-
taining in [0,1]™, where f®)(ay,--- ,a,,) exists, is least than Taylor's one. This convergence is very

slow.



4. Conclusion

In this work, we have studied the properties of Bernstein polynomials with one variable, for a function

f(x) defined on [0, 1], given by
r) = kiof (5) (1) sHa—ar+.

and show how to generalized those properties to several variables by defining the polynomials
n17 (fwrla , L Z Z Tty T H L Z; (1_x2)
k1=0 im i=1 N

called the (ng,--- ,n,,)™" Bernstein polynomials for f(z1,- - -
erties. Amount those properties, the major’s ones are:

, Tp,) and which also keep the same prop-

1)* If f €C[0,1]™, the By, ... n,.(f;) converges uniformly to f,

2)* If f € CPrPm[0,1]™, then BEY: D™ (f;-) converges uniformly to f(P1)+(Pm) where f € CP1Pm [0, 1]™

Di
means f is continuous on [0, 1] and Sap is continuous on [0,1]™, 0 <p; <n;, i=1,---,m,
x 7
¥ I f e cr Pm[ A0 < pp < mg, i = 1,---,m, and A < f(pl)"'(pm)(xl’... ) <
B, (x1,--+,xm) €[0,1]™, then
m nbi
< U Buobm (frgy, e ag) < B, (w1, @m) € [0,1]™,
4)* If f(x1,--+ ,xm) is convex in [0,1]™, then, for n; =2,3,---, i=1,--- m, we have
Bn1—1,~~-,nm—1(f§xla s 7xm) > Bn1,~--7nm(f5 T1, - me)a (xl, T 737m) € [07 1]m
5 If f(z1,---,xm) is bounded in [0,1]™] and let (a1, - ,an) is a point of [0, 1]™ at which
f(2)"'(2) (a1,--- ,am) exists and is continuous, then, forn; =ng =---=ny, =n
1 & 0?
B 0 (B fans ) = flan )] = 53 01— )7 ﬁ(al, ).
1=

Using Bernstein polynomials with one and several variables we have a proof and the generalization of
Weierstrass theorem. More better, we also have an explicit representation of polynomials for uniform
approximation.

Currently, it is shown that the convergence order of the discussed polynomials is very slow. Therefore,
we recommend in our future work to improve this speed of convergence.

The proofs we have provided for multivariate Bernstein polynomial are our own contribution. We are in
process of cheeking if there are references in relation to this but we believe that some of these proofs
might be new results.
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Appendix A.

A.1 Proof of some lemmas and theorems from chapter 2

For a well understanding about the proof in Chapter 3, let us recall some proofs of chapter 2. All those
proofs have been done in [Dav75], but here we give them with some explanations which are necessary

to understand them very well.
A.1.1 Proof of some lemmas from chapter 2.

Lemma 2.3.2

1 2
Proof: E—w > 0= = E—x > 1. Hence
n 52 \(n
Z " 2F(1 -z < Z l(E —x)? " a*(1 —z)nk
. k L 52'n k
‘—Z’ >4 ——z|>6
n n
<1n ko “(n k(1 _ g)n—k
= 5721970 ﬁ x k €r ( SL‘)
1 z(1—x) . .
< FZh— (using one of equations (2.2.2))
1 1
. <l
< g2 Since Ve e [0,1], z(l—xz)< 1
Il
Lemma 2.3.5
Proof: We write
= k n+p\ k k
. — N n+p—
st (255) () 0+
and differentiate p times, giving
n-+p
®) (. _ k n+p
B0 =31 () (107) P
dP
where P(x) = @xk(l — x)ntrk

We now use the Leibniz rule to differentiate the product z* and (1 — x)"*P~* We find that

k!

dj 7‘$k_j, k'—jZO
0, k—3j<0
and ( )
. _n+p—k) i .
dpP—J e _117]%1_1‘71-%] k:7 k‘—]gn
(L) h = S O S TR

0,

k—j>n.
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Thus the pt" derivative of 2#(1 — z)"*tP=F is

x) = y Cypd (PY K (= Rk ik
Pay= 2. (D (')(k—j) ‘ (1=2)

! — k)
j=0,(0<k—j<n) in+j—Fk)!

We also note that

<n—]:p) (k ﬁlwﬁﬁif?i;: N (n;p)! (kﬁJ) ’ Ly

hence

Bff;pu, z)

%5 @) O () et e

k=0 j=0,(0<k—j<n)

_"if’ Z f<nip)

k=0 j= 0(0<k‘ ]<n)

(P) (n+p)! <k " ) (—1)PIh=3(1 — 2)""=* using equation (A.1.1)

. . <t<n
witht =k —j i.e. { <i<p

0
0
e [ () 0] ()

J=0

S (1) (o

where A is applied with step size h = .
n+p

Lemma 2.3.12
Proof: Let n > 1, m > 0 be integers, and consider for = € [0, 1] the sum
_ g m [T k n—k
Smn(z) = kz_o(k — nx) (k> (1 —x) (A.1.2)

which satisfy the relation

{ Smiin(z) = 2(1 = ) [S}, . (2) + mnSp_1 ()]
Son(x) =1 Sin(z)=0  Syu(z) =nz(l —x).

We may conclude from this recurrence that each sum Sy, ,,(x) is a polynomial in z. Using this recurrence
relation, we have for some constant C, |Sg ()| < Cn3 for x € [0, 1].
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_ 6
In as much as |— — x| > n—1/4 implies M >1
n n9/2
ny\ k n—k 1 6 (1) k n—k
Z (k)x (I1—z)" "< Z W(k—nm) <k>x (1—=x)
ﬁ—m >n—1/4 ——z|>n—1/4
n | n |
1 < )
< —=Y (k—nz)° " a*(1—z)nk
n9/2 k
k=0
1
= WSGW(Q:) (using equation (2.2.2) with m = 6)
cn? _C
nd/2  p3/2

O
A.1.2 Proof of some theorems from chapter 2.
Theorem 2.3.3

Proof: The function f(z) is assumed bounded in [0, 1]. Hence, for some M > 0, |f(x)| < M and for
any two values «, 8 € [0, 1],

|flar, - yam) = f(Bry-, Bm)| < 2M .

Let x € [0, 1] be a point of continuity of f. Given £ > 0, we can find § depending on x and ¢ such that
|f(z) — fly)| < % whenever |z — y| < J. Since By, (1;x) = 1 we have

f@) =f(a Zf ( ) (1 —a)*

|f(z) = Bu(f;2)]

g k
<@ -1 (3] () Aot
k=0
<y \f(z) .y <fj)’ (})aa-arts ¥ ‘f(rv) .y (fj)' (1) e -ar
ﬁfx <5 E*w >6
n n
€ n yn—k —k
<3 > <k> (1 - +2M Z () (1—z)"
‘k—z <é ——x|>6
n n
< ;kzo (Z) 2*(1—z)"F 4+ 2Mm <4 162> (using lemma 2.3.2)
€ M : :
< B + 952 (using one of the equations 2.2.1) .
For n sufficiently large, we have % % Then |f(z) — Bu(f;2)| < %—F % =
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Suppose now that f € C[0,1], then f is uniformly continuous on [0,1] i.e. given € > 0, we can find ¢
depending just on ¢ such that |f(z) — f(y)| < g for all z,y € [0, 1] satisfying |z — y| < . Hence the
inequality

|f(x) = Bn(fi2)| <e

holds independently of the x selected and the convergence to f(z) is uniform in [0,1]. O

Theorem 2.3.8

Proof: We have already show that the the above result holds for p = 0. We have to see the case when
p are not all zero.

We begin with the expression for By | ,(f;x) given in (3.2.2) and write (using (2.1.1)

with h = ! )
n—+p

t 7f@@0
it <n +p> ~ (n+p)p
where <5t<t+p.
n-+p n-+p
‘ n
By lfi0) =y S 1) () a1 -t

t=0

We then approximate f®)(g;) writing
£ () = f®) <:L) N [f@)(%) _ ) <2>} ‘

nl(n +p)?
(n+p)!

o= S50 (0) ()0

Ty(z)= [f@) () — f <fl>} (;‘) 21— z)"

We thus obtain

By, (f;2) = Ti(x) + Ta(x) where

t=0
. t t .
Since - < +p’ t=0,---,n it follows from the bounds on ; that
+p n n-+p
t t+p t P
g — —| < — = .
n n+p n+p n+p

From the uniform continuity of f(p)(x), given € > 0, we can find ng such that for all n > ng and all ¢,
t
'f(m (e)) — f <n> ‘ e

Thus Ty (x) converges uniformly to zero on [0, 1]. We have

nl(n + p)P

—1 as n— o0,
(n+p)!
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and we see from theorem (3.2.5) with f() in place of f that Tj(x) converges uniformly to f®)(x).
This completes the proof. [

Theorem 2.3.10

Proof: Set ¢t = 37 . Then
1—=x
T O S
{ l+t=(01—z)"! i.e. { 2P (1 — z)~F1 = F(1 +t) (A.1.3)

TG 37 () (1) w419
= Zz;éf nﬁl) ;1 tk(l—i_t)_kiof(?]z) Z)tk:
n—1
() ()

k n—1 s k n—1 “ kN (n
- 25 (e ) () e - () ()
k=0 k=0 k=0

By using the change of variable, replacing k& + 1 by k& in the second term of the left of our previous
equality, we have

(1 - x)in [Bn—l(.ﬁ x) - Bn(f7 x)]

- 50(:5) <"21)t’“+if(kil)(Zii)f“,i;f(ﬁ) (:)

(n_1)+ f(n_l) ()]
_ “Odktk Whered,f_”nf<nﬁl)+jjf<§j)—f<§>'
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Let us write

k k
It follows that 1 — A= — and Az; + (1 — A\)za = — = x3. Hence
n n

di, =Af(x1) + (1 = A) f(z2) — f(=3)
=Af(21) + (1 =N f(z2) — f(Az1 + (1 — N)z2)
>0 since f is convex.

So (1—x) " [Bn-1(f;z) — Bn(f;x)] >0, and we deduce that B,,_i(f;x) > B,(f;z), = €]0,1].

1 .
Let f € C[0,1] and f is linear in each intervals [] T ‘]1], j=1,---,n—1; then for k =
n—1mn-—
1, ,n—1
n—k k k k—1 k
w5 ) e () - o ()
n n—1 n n—1 n
n—k k kk—1 k
n n—1 nn—1 n
=f(0)
=0 V0<k<n-—1.
That implies

(1 —2)""[Bn-1(f;2) — Ba(f;2)] =0,
and then we have
anl(f;l‘):Bn(le')v T € [03 1]'

Conversely, if B,_1(f;z) = Bn(f;z), forall z €[0,1] then

—_

n—

n k
(k) dit® =0
k=1

n

:><k,>dktk:0 Vk=1,---,n—1 = d,=0 Vk=1,--- ,n—1

since <Z> #0Vk=1,--- ,n—1.

1 .

Since f € C[0,1] and f is convex, then f is linear in each interval [j T J J , j=1,--- ,n—1,.
n—1n-—

O

Theorem 2.3.13

Proof: Since f”(x() exists and is continuous, then using Taylor expansion of order two

J" (o) (x — x0)?
2

2

f(x) =f(xo) + f'(z0)(x — xz0) +

+ s(z)(z — x0)
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k
where lim,_,,, s(x) = 0. set z = e multiplying both side by <Z> 2k (1 —20)" % and sum from k = 0

to k = n, we obtain

Batsio) =t + a0 3 (£ o) (7) b1 —oyrro4 0 (5 %)2 (1) b - o

k=0

SO () (o

=f(xo) + zo(l ;Ci)f”(l‘o) + kzn::os <z> <: - a:o>2 <Z> k(1 — zo)"*

(using the equations (2.2.2)) .

-5 (2) () ()0

, . r .
and € > 0. We can find n sufficiently large that |z — x| < =y implies
n

Let

|s(z)| < e (since limgz_,z, s(z)=0).

a5 T O] (En) () an-ar
) @0

55;0 (i - 900)2 (Z) zo(L—wo)" * + M Y (Z) (1 — @) F

IN

where M = supy<,<;|s(z)|(z — )2

1-— MC
€ (IO( x0)> + for some constant C
n n3/2

( using lemma (2.3.12) and one of the equations (2.2.2))

IN

1-— 1-— MC
Bu7s20) — flan) - 200 | = js) < Sl =)y A0
— [ lBufio0) - fan)] - 2O )| = fus < (1 - aw) + 25
n

MC
By taken n so large that 7 < €/2 we have
n

nlBa(fia0) - fan)] = 2O )] = S| < efan(t = aw) 1]
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Since ¢ is arbitrary, then

lim 0 [By(f:20) — f(a0)] = 2L 20)

n—oo 2

f//($0) )
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