Numerik steifer Probleme

Aufgabenblatt 3

Aufgabe 1

Consider the matrix

$$
\mathbf{A}=\left(\begin{array}{cccccc}
-1 & 20 & & & & \\
& -2 & 20 & & & \\
& & -3 & 20 & & \\
& & & \ddots & \ddots & \\
& & & & -19 & 20 \\
& & & & & -20
\end{array}\right)
$$

a) Compute the eigenvectors of the matrix \mathbf{A} by solving $\left(\mathbf{A}-\lambda_{i} \mathbf{I}\right) \mathbf{v}_{i}=\mathbf{0}$.
b) Compute numerically the inverse of $\mathbf{T}=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right)$ and determine its largest element. (Observe that \mathbf{T} is thus very badly conditioned.)
c) Compute numerically the solutions of

$$
\dot{\mathbf{y}}=\mathbf{A} \mathbf{y}, \quad y_{i}(0)=1, i=1, \ldots, 20
$$

Plot the components $y_{i}(t)$ for $t \in[0,8]$ in one diagram (use logarithmic scale for the y-axis). What do you observe?

Aufgabe 2

Prove that the stability function of a Runge-Kutta method is given by

$$
R(z)=\frac{\operatorname{det}\left(\mathbf{I}-z \mathbf{A}+z \mathbf{e b}^{T}\right)}{\operatorname{det}(\mathbf{I}-z \mathbf{A})}
$$

where \mathbf{I} is the identity matrix of size s and \mathbf{e} is the s-vector of all ones. Hint: Use Cramer's Rule.

Aufgabe 3

Consider the equation

$$
\dot{\mathbf{y}}(t)=\mathbf{A y}(t)
$$

where $\mathbf{A} \in \mathbb{R}^{n \times n}, \mathbf{A}$ is normal (this means that $\mathbf{A} \mathbf{A}^{T}=\mathbf{A}^{T} \mathbf{A}$) and for all eigenvalues of \mathbf{A}, the real part is nonpositive. Prove that a Runge-Kutta method is A-stable if and only if it is unconditionally contractive in $\|\cdot\|_{2}$ (Definition 6) on the class of problems just described.
Hint: Use the fact that \mathbf{A} is normal if and only if it is diagonalizable by a unitary matrix, i.e. $\mathbf{A}=\mathbf{U}^{*} \mathbf{D} \mathbf{U}$, where $\mathbf{U} \in \mathbb{C}^{n \times n}$ is unitary and $\mathbf{D} \in \mathbb{C}^{n \times n}$ is a diagonal matrix. (4 P)

Abgabe: Montag, 12.11.2012, in der Vorlesung

