Numerik steifer Probleme

Aufgabenblatt 9

Aufgabe 1

a) Let $\mathbf{A}, \mathbf{P} \in \mathbb{R}^{n \times n}$ be regular matrices. Show that $\sigma(\mathbf{P A})=\sigma(\mathbf{A P})$.

This means that the spectra corresponding to left and right preconditioning are equal.
b) Note that any SPD matrix $\mathbf{B} \in \mathbb{R}^{n \times n}$ may be decomposed as $\mathbf{B}=\mathbf{Q}^{T} \mathbf{D Q}$, where the orthonormal matrix \mathbf{Q} contains the eigenvectors of \mathbf{B} and the diagonal matrix \mathbf{D} the eigenvalues. For $\alpha \in \mathbb{R}$, we define the SPD matrix $\mathbf{B}^{\alpha}=\mathbf{Q}^{T} \mathbf{D}^{\alpha} \mathbf{Q}$.
Let now $\mathbf{A}, \mathbf{P} \in \mathbb{R}^{n \times n}$ be SPD matrices. Show that $\sigma(\mathbf{P A})=\sigma\left(\mathbf{P}^{1 / 2} \mathbf{A} \mathbf{P}^{1 / 2}\right)$. Suppose, we want to solve the system $\mathbf{A x}=\mathbf{b}$. Is the CG algorithm directly applicable to the new preconditioned system $\mathbf{P}^{1 / 2} \mathbf{A} \mathbf{P}^{1 / 2} \mathbf{u}=\mathbf{P}^{1 / 2} \mathbf{b}$?

Aufgabe 2

Consider the initial value problem with $\mathbf{y}\left(t_{0}\right)=\mathbf{y}_{0}$ and

$$
\dot{\mathbf{y}}=\left(\begin{array}{cc}
-100 & 0 \\
y_{1} & -10
\end{array}\right) \mathbf{y} .
$$

Suppose, you solve the system using the implicit Euler scheme and a Jacobian-Free Newton-GMRES method. How does the approximation to the matrix vector product look like? How would this change, if this would be a stage inside a DIRK method for the same equation?

Aufgabe 3

Consider the nonlinear convection diffusion equation

$$
\partial_{t} u=\beta \cdot \nabla u+\nabla \cdot\left(u^{3} \nabla u\right),
$$

for $u(x), x \in(0,1)^{2}, t \in[0,0.002]$ with

$$
\beta=-200\binom{\sin \gamma}{\cos \gamma}
$$

$\gamma=0.35 \pi$. As initial data, choose $u_{0}=2$ in $[0.2,0.3]^{2}$ and $u_{0}=1$ everywhere else. At the boundary we set $u=1$.

Discretize this in space using upwind for the convective term and a five-point-stencil with central differences for the second term with $\Delta x=1 / 100$. Use boundary conditions appropriate for upwind and the time adaptive method of Cash in time.

Implement a Jacobian-Free Newton-GMRES method and use that to solve the resulting nonlinear equation systems. For the approximation of the matrix vector product $\mathbf{A q}$, choose $\epsilon=\sqrt{\epsilon_{\text {machine }} /\|\mathbf{q}\|_{2}}$, where $\epsilon_{\text {machine }}$ is machine precision. Plot the solution.
To check your result, use the explicit Euler method with a tiny time step to obtain a reference solution and compare your error to that.

Abgabe: Montag, 14.1.2012, in der Vorlesung

