Numerik steifer Probleme

Aufgabenblatt 9

Aufgabe 1

a) Let $\mathbf{A}, \mathbf{P} \in \mathbb{R}^{n \times n}$ be regular matrices. Show that $\sigma(\mathbf{PA}) = \sigma(\mathbf{AP})$.

This means that the spectra corresponding to left and right preconditioning are equal.

b) Note that any SPD matrix $\mathbf{B} \in \mathbb{R}^{n \times n}$ may be decomposed as $\mathbf{B} = \mathbf{Q}^T \mathbf{D} \mathbf{Q}$, where the orthonormal matrix \mathbf{Q} contains the eigenvectors of \mathbf{B} and the diagonal matrix \mathbf{D} the eigenvalues. For $\alpha \in \mathbb{R}$, we define the SPD matrix $\mathbf{B}^{\alpha} = \mathbf{Q}^T \mathbf{D}^{\alpha} \mathbf{Q}$.

Let now $\mathbf{A}, \mathbf{P} \in \mathbb{R}^{n \times n}$ be SPD matrices. Show that $\sigma(\mathbf{PA}) = \sigma(\mathbf{P}^{1/2}\mathbf{A}\mathbf{P}^{1/2})$. Suppose, we want to solve the system $\mathbf{Ax} = \mathbf{b}$. Is the CG algorithm directly applicable to the new preconditioned system $\mathbf{P}^{1/2}\mathbf{A}\mathbf{P}^{1/2}\mathbf{u} = \mathbf{P}^{1/2}\mathbf{b}$?

Aufgabe 2

Consider the initial value problem with $\mathbf{y}(t_0) = \mathbf{y}_0$ and

$$\dot{\mathbf{y}} = \left(\begin{array}{cc} -100 & 0\\ y_1 & -10 \end{array}\right) \mathbf{y}.$$

Suppose, you solve the system using the implicit Euler scheme and a Jacobian-Free Newton-GMRES method. How does the approximation to the matrix vector product look like? How would this change, if this would be a stage inside a DIRK method for the same equation? (4 P)

Aufgabe 3

Consider the nonlinear convection diffusion equation

$$\partial_t u = \beta \cdot \nabla u + \nabla \cdot (u^3 \nabla u),$$

for u(x), $x \in (0,1)^2$, $t \in [0,0.002]$ with

$$\beta = -200 \begin{pmatrix} \sin \gamma \\ \cos \gamma \end{pmatrix},$$

 $\gamma = 0.35\pi$. As initial data, choose $u_0 = 2$ in $[0.2, 0.3]^2$ and $u_0 = 1$ everywhere else. At the boundary we set u = 1.

Discretize this in space using upwind for the convective term and a five-point-stencil with central differences for the second term with $\Delta x = 1/100$. Use boundary conditions appropriate for upwind and the time adaptive method of Cash in time.

Implement a Jacobian-Free Newton-GMRES method and use that to solve the resulting nonlinear equation systems. For the approximation of the matrix vector product \mathbf{Aq} , choose $\epsilon = \sqrt{\epsilon_{\text{machine}}/||\mathbf{q}||_2}$, where $\epsilon_{\text{machine}}$ is machine precision. Plot the solution.

To check your result, use the explicit Euler method with a tiny time step to obtain a reference solution and compare your error to that. (4 P)

Abgabe: Montag, 14.1.2012, in der Vorlesung