

FB 17, AG Computational Mathematics

Prof. Dr. Werner M. Seiler Dipl.-Inform. Marcus Hausdorf

Klausur zu Diskrete Strukturen II (WS 07/08)

06.03.2008

Name:									
Vorname:									
Geburtsdatum:									
Matrikelnummer:									
Bitte verwenden S das Sie die <i>Numm</i>						_			e ein neues Blatt, auf eiben.
Bitte geben Sie be	ei R	echr	unge	en all	e Zw	ische	enschi	ritte an.	
		1	2	3	4	5	Σ	Note	
				1	1				1

Aufgabe 1 (3 + 2 + 3 = 8 Punkte)

Gegeben sei die Menge $\mathbb{Z}_{14}^* := \{[m] \in \mathbb{Z}_{14} \mid \text{es existiert } [n] \in \mathbb{Z}_{14} \text{ mit } [m] \cdot [n] = [1]\}$ ("·" ist die übliche Multiplikation von Restklassen).

- a) Bestimmen Sie die Elemente von \mathbb{Z}_{14}^* und zeigen Sie, daß (\mathbb{Z}_{14}^* , ·) eine Gruppe ist. Stellen Sie die außerdem die zugehörige Multiplikationstafel auf.
- b) Finden Sie eine Menge $U \subseteq \mathbb{Z}_{14}^*$ mit genau drei Elementen, so daß (U, \cdot) eine Untergruppe von $(\mathbb{Z}_{14}^*, \cdot)$ ist.
- c) (G,*) sei nun eine beliebige Gruppe. Beweisen Sie: (G,*) ist genau dann abelsch, wenn die Abbildung $f: G \to G, \ x \mapsto x * x$, ein Homomorphismus ist.

Aufgabe 2 (4+3+5=12 Punkte)

- a) Es sei $p \geq 5$ eine Primzahl. Zeigen Sie: $p^2 \equiv 1 \mod 24$.
- b) Bestimmen Sie alle Lösungen (in Z) der linearen Kongruenz

$$145x \equiv 87 \mod 377$$
.

c) Bestimmen Sie alle Lösungen (in \mathbb{Z}) des linearen Kongruenzensystems

$$x \equiv 5 \mod 6,$$

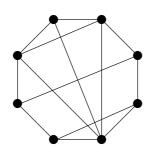
 $x \equiv 2 \mod 11,$
 $x \equiv 1 \mod 13.$

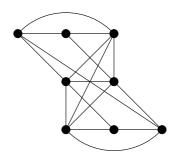
Aufgabe 3 (3+4=7 Punkte)

Gegeben sei der öffentliche Schlüssel K := (k = 73, n = 187) für das RSA-Kryptoverfahren.

- a) Verschlüsseln Sie die Nachricht N := 25 mit K. Benutzen Sie dabei modulares Potenzieren ("Repeated Squaring").
- b) Bestimmen Sie den zu K gehörigen privaten Schlüssel l.

Aufgabe 4 (1+1+1+1+1=5 Punkte)


G=(V,E)sei der Graph mit $V:=\{1,2,3,4,6,8,12,24\}$ und


$$E := \{ \{a, b\} \mid a, b \in V, \ a \neq b, \ (a \text{ teilt } b) \ \lor \ (b \text{ teilt } a) \}.$$

- a) Geben Sie die Kantenmenge E explizit an. Wie viele Kanten hat G?
- b) Bestimmen Sie $\deg(v)$ für alle $v \in V$.
- c) Ist G eulersch?
- d) Ist G hamiltonsch?
- e) Ist G plättbar?

Aufgabe 5 (4+4=8 Punkte)

- a) Gibt es Graphen G = (V, E) mit der Knotenmenge $V = \{1, 2, 3, 4, 5, 6\}$ und $\deg(v) = v$ für alle $v \in V \setminus \{6\}$? Falls ja, welche Werte kommen dann für $\deg(6)$ in Frage?
- b) Überprüfen Sie, ob die folgenden beiden Graphen plättbar sind:

