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Clairaut Equation

This is a classical example of a differential equation possessing besides its general solution a so-called
singular solution. The plot shows that here the singular solution (plotted in red) is an envelope of the 
one-parameter family of solutions making up the general solution. The Maple solver for differential 
equations is able to find this singular solution, as it uses internally functionality of the 
DifferentialAlgebra package; more precisely, it uses the Rosenfeld-Gröbner algorithm. Applied to this 
simple system, it returns two components corresponding to the general and the singular solution, 
respectively. The general solution is here defined by equations and inequations and the inequation is 
simply given by the non-vanishing of the separant.
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There are also PDEs of Clairaut type. Here the built-in solver of Maple is not yet clever enough to 
detect the presence of singular solutions. And it also does not find all members of the general solution, 
but returns only a two-parameter family of solutions. But the output of the Rosenfeld-Gröbner 
algorithm easily provides us with the one singular solution existing here. 
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An Equation due to Chazy

The following equation came up in Chazy's work on the Painleve analysis of third-order equations 
(note that this is not the Chazy equation!). In this kind of analysis, one is concerned with the 
singularities appearing in solutions, in particular with the existence of so-called movable singularities 
where the location of singularity depends on the initial data. This example is rather special, as the (two-
parameter) general solution has no movable pole, but one of the two (one-parameter) singular solutions.

Solving Systems by Elimination

Sometimes the Rosenfeld-Gröbner algorithm is useful, even if an explicit system has to be solved. Like
Gröbner bases, it can be used to compute elimination ideals which corresponds here to a partial 
decoupling of the system. The key here is to set up the right differential ring corresponding to an 
elimination ranking.
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Detection of Integrability Conditions

A classical application - corresponding to the determination of a Gröbner basis in commutative algebra 
- is the detection of "hidden" integrability conditions which in particular allows for deciding whether or 
not the given system is consistent. We consider here the incompressible Navier-Stokes equations from 
fluid dynamics. The dependent variables u,v,w describe the 3D velocity vector of the fluid, the 
dependent variable p the pressure in the fluid. The independent variables are space (x,y,z) and time t. 
The system returned contains one equation more (number 4 in the output). It can be considered as a 
Poisson equation for the pressure and it is crucial for the development of numerical schemes to 
integrate the equations in the form stated. Without this equation, the schemes would not be closed, i.e. 
one would have more unknowns than equation. For computations like this, it is important to use orderly
rankings. Hence again one must carefully set up the differential ring in which the computations take 
place (in fact, for an elimination ranking the computation blows up!). From a mathematical point of 
view, this is not
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Solving Overdetermined Systems of PDEs

The Lie symmetry analysis of PDEs leads to large overdetermined systems of linear PDEs. Here the 
Rosenfeld-Gröbner algorithm reduces to a kind of differential Buchberger algorithms. The produced 
additional equations often drastically simplify the system and make it possible to solve it automatically.
We consider here as a small example the determination of the symmetries of the Burgers equation. Here
the effect is not so pronounced, but one can still see that the system produced by the Rosenfeld-Gröbner
algorithm is easier to solve than the original one. Nevertheless, the output shows in our example that 
the symmetry group is five-dimensional
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The Pendulum as a "Differential Algebraic Equation"

The modeling of mechanical systems (either in physics or mechanical engineering) often leads to so-
called systems with constraints, i.e. systems which mix algebraic and differential equations. 
Unfortunately, it has become costumary to call such systems differential algebraic equations (DAE), 
although they have a priori nothing to do with differential algebra and simply correspond to 
overdetermined systems of ODE. If, however, all equations in such a DAE are polynomial, then 
differential algebra represents a useful tool for analysing such systems.

We consider here the equations of motion of a pendulum which is described by three parameters: 
length l, mass m and gravitational acceleration g. Besides the two coordinates of the pendulum bob, we 
also need as a further unknown the Lagrange multiplier lambda representing the force inside the 
pendulum string. We first compute with respect to an orderly ranking. We obtain two regular 
differential systems. The second one describes the equilibria of the pendulum where no motion takes 
place. The first one describes the dynamics outside of the equilibria (interestingly in form of an implicit
equation for y of degree 2).
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Now we perform the same computation with respect to a different ranking which tries to eliminate 
lambda.  We obtain again two regular differential systems with the second one (describing the 
equilibria) unchanged. In the first system, we obtain now an algebraic equation determining the 
multiplier lambda in terms of x,y and their derivatives.

In the theory of DAEs the notion of the index of the system is important (actually, many different 
notions of an index have been developed). One way to interpret the index consists in studying how 
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many derivatives we need of our equations to obtain the output of the Rosenfeld-Gröbner algorithm. 
The simplest way to get this value is to add as a "bookkeeping" device some undetermined right hand 
side  to each equation so that we can simply check in the result which derivatives appear of this right 
hand side. In our case we obtain then actually many different regular systems. The first one is the most 
relevant one, as it describes the actual dynamics, and one can see that it contains a third derivative of 
the "perturbation" . Hence we are dealing with a DAE of index 3.
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This approach to define an index has the drawback that it depends on the chosen ranking. If we try as 
above to obtain as fast as possible an equation of lambda, then we obtain a different value for the index,
namely only 2. The difference is easy to explain. This time we obtain an algebraic equation for lambda, 
above it was a differential equation and thus required one differentiation more.



(7)(7)

(29)(29)

> > 

> > 

(33)(33)

(44)(44)

(42)(42)

(18)(18)

> > 

(24)(24)

Some Applications in Control Theory

In physics, one usual only observes the behaviour of a given system. Engineers want to influence and to
measure the behaviour of a system. Thus they distinguish three types of dependent variables: the vector
x represents some internal variables of the system called state, the vector u some controls with which 
the system can be influenced called input and the vector y of quantities which can be observed or 
measured called output. The independent variable is the time t. Typically, one has then a differential 
system of the form x'=f(x,u,p), y=g(x,u,p) where the vector p represents some parameters. A first 
important problem is now to obtain a so-called input-output representation of the system, i.e. a 
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differential system that describes the dependency of the output y on the input u without using the state
x. Obviously, this corresponds again to an elimination problem from a differential algebraic point of 
view. A second question is the problem of observability: is it possible to reconstruct the state x, if we 
know the input u and the output y. Finally, we take a look at the problem of parameter identifiability: 
does the knowledge of the input u and the output y suffice to determine the values of the parameters p?

We will now try to answer these three questions for a very simple control system with two state 
variables and one in- and output, respectively. Furthermore, the system depends on one parameter 
called . Again it is crucial to use the right ranking for this computation. Our output consists of three 
regular differential systems. The first one corresponds to the "generic" case. The fourth equation in it 
provides us with an input-output representation relating u and y without any reference to the state x. 
The third equation represents an algebraic equation for  in terms of y and u. Hence our parameter is 
algebraically identifiable (for given y and u only finitely many values are possible). The second 
equation allows us to determine  from u and y so that this state variable is algebraically observable. 
By contrast, the first equation is still a differential equation for  and hence this state variable is not 
observable. The second differential system tells us that in the special case u=0, the parameter  is no 
longer identifiable. The output is still obtainable via a differential equation, but not of the state variables
is observable.
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Analysis of a Biochemical Model

Biochemical reactions can be modelled by systems of ODEs which are obtained more or less 
automatically from the chemical reaction equations. While we will be playing here with a rather small 
model, these models can be very huge and model reduction is a big issue. A typical feature of 
biochemical reactions is the presence of multiple time scales, i.e. some reactions are much faster than 
others. This allows for certain types of reductions.

We study here a simple, but very classical model: a substrate S transforms into a product P under the 
influence of an enzyme E. At an intermediate step a complex C is formed. The reaction E+S -> C is 
reversible with reaction rate constants ,  for the two directions. The reaction C -> E+P is 
irreversible with a reaction rate constant . The principle of mass-action kinetics allows to derive 
automatically an ODE system from the stochiometric coefficients in the reactions. They are collected in
the stochiometric matrix N and V is a vector whose entries describe the reaction rates of the three 
involved reactions.

This is a final model which can be analysed using the theory of ODEs. From a differential algebraic 
point of view, there is nothing to do. Such an explicit system generates a prime differential ideal and all
initials and separants are 1. According to biochemists, the irreversible reaction C -> E+P is often much 
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faster than the reversible one E+S -> C, i.e. the value of  is much greater than those of  and . In

the so-called quasi-steady state approximation, one thus tries to set  in the hope to obtain a 

simpler (in particular, a smaller) model that can be analysed more easily. However, this is problematic 
from a mathematical point of view, as we will now show using differential algebra. To avoid 
unnecessary case distinctions, we treat the reaction rate constants as elements of the base field of our 
ring of differential polynomials. We obtain two regular differential systems which are indeed simpler - 
unfortunately, they are too simple, as they do not describe any dynamics any more.

We thus make a new attempt to exploit the different time scales. We essentially forget everything about
the irreversible reaction except that it exists and implies a conservation law under our quasi-steady state
assumption. Its effect is captured by assuming the the rate "constants" of the reversible reaction are no 
longer constant, but a yet unknown function . Thenwe choose our ranking in such a way that we 
can eliminate this unknown function.
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We are here only interested in the first returned differential ideal, as it describes the dynamics of the 

systems. The expression for  is almost the famous Michaelis-Menten formula. For really 

deriving it, we must do some games with the constants. We introduce as additional constants the initial 
values of our unknown functions and two new constants K and Vmax. These constants satisfy some 
relations: the first two are obvious from a chemical point of view, the latter two define the new 
constants. Furthermore, we take into account some conservation laws that can be easily derived from 
the stochiometric matrix of the given reaction. Again, we put the constants into the base field to reduce 
the number of cases to be considered.

This expression is almost the Michaelis-Menton formula. The exact formula is obtained by using one 



(7)(7)

> > 

(62)(62)

(29)(29)

> > 

> > 

> > 

> > 

(33)(33)

(44)(44)

(42)(42)

(18)(18)

> > 

(24)(24)

(56)(56)

more approximation, namely the assumption that S0 is much larger than E0 (one does not need much 
enzyme for the reaction). This assumption implies that the term E0*K can be neglected which allows 
for further simplifications.


