

31 October 2018

Differential Algebra

1. Exercise Sheet

Exercise 1

- (i) Prove that the following rules are valid for any derivation δ on a ring R:
 - $\delta(r^m) = mr^{m-1}\delta(r);$
 - δ^m(rs) = Σ^m_{i=0} (^m_i)δⁱ(r)δ^{m-i}(s);
 δ(r/s) = δ(r)s-rδ(s)/s² (assuming that s is a unit in R).
- (ii) Prove that the only derivation on the ring \mathbb{Z} and on the field \mathbb{Q} , respectively, is the zero map mapping every element to zero.
- (iii) Prove that the constants form a subring in a differential ring (R, δ) and a subfield in a differential field (K, δ) .
- (iv) Let (K, δ) be a differential field and $K \subset L$ an algebraic field extension of K (i.e. for every element $a \in L$ there exists a polynomial $f \in K[x]$ such that f(a) = 0). Show that we can extend the derivation δ from K to L and that this extension is unique.

Exercise 2

Given a ring R, the *dual numbers over* R are defined as the ring $R[\epsilon]/\langle \epsilon^2 \rangle \cong R \oplus R\epsilon$. Elements of this ring can be represented in the form $r + s\epsilon$. Their addition and multiplication is done as for complex numbers, except that we have the rule $\epsilon^2 = 0$. Alternatively, one can represent elements as matrices of the form $\binom{r \ s}{0 \ r}$ and apply the usual matrix operations.

- (i) Show that a map $\delta : R \to R$ is a derivation, if and only if the map $\psi : R \to R \oplus R\epsilon$ defined by $\psi(r) = r + \delta(r)\epsilon$ is a ring homomorphism.
- (ii) Assume that (R, δ) is a differential ring which is also an integral domain so that we can define the quotient field Q = Quot(R). Use (i) to show that δ can be extended to Q so that Q becomes a differential field. (If you are familiar with localisations, consider more generally a multiplicatively closed subset $S \subset R$ and show that δ can be extended to $S^{-1}R$.)

Exercise 3

- (i) Let (R, δ) be a differential ring and $I \lhd R$ a differential ideal. Show that δ induces a derivation on the factor ring R/I.
- (ii) Let (R, δ) and (S, ∂) be two differential rings. A *differential ring homomorphism* is a ring homomorphism $\phi : R \to S$ such that $\partial(\phi(r)) = \phi(\delta(r))$. Show that the kernel of a differential ring homomorphism is a differential ideal and that its image is a differential subring.
- (iii) Let (R, δ) be a differential ring and consider the finitely generated (algebraic) ideal $I = \langle r_1, \ldots, r_n \rangle$. Show that I is a differential ideal, if and only if $\delta(r_i) \in I$ for all i.