Prof. Werner M. Seiler, Ph.D. FB 10 Mathematik und Naturwissenschaften Institut für Mathematik

14 November 2018

Differential Algebra 2. Exercise Sheet

Exercise 1

In this exercise we want to correct the treatment of Example 3.3 in the lecture where the second step was not completely sound. We consider in $\mathbb{K}\{u\}$, where (\mathbb{K}, δ) is a differential field containing the rational numbers \mathbb{Q} , the ascending chain of differential ideals $\mathcal{I}_n = [u^2, (u')^2, \dots, (u^{(n-1)})^2]$. Our goal is to show that we always have a proper inclusion $\mathcal{I}_n \subset \mathcal{I}_{n+1}$. For this purpose, we introduce the following linear subspaces of $\mathbb{K}\{u\}$: $\mathcal{V}_n = \langle u^{(i)}u^{(j)} | i+j=n \rangle_{\mathbb{K}}$.

- (i) Show that $\dim_{\mathbb{K}} \mathcal{V}_{2n} = \dim_{\mathbb{K}} \mathcal{V}_{2n+1} = n+1$.
- (ii) Show that $\mathcal{V}_{2n} = \langle \delta^2(\mathcal{V}_{2n-2}), (u^{(n)})^2 \rangle_{\mathbb{K}}$. *Hint:* Express any element $\delta^2(u^{(i)}u^{(j)}) \in \delta^2(\mathcal{V}_{2n-2})$ and $(u^{(n)})^2$ as a linear combination of the generators of \mathcal{V}_{2n} . Then show that these relations define an invertible change of bases.
- (iii) Show that $\mathcal{I}_n \cap \mathcal{V}_{2n} = \left\langle \delta^2(\mathcal{V}_{2n-2}) \right\rangle_{\mathbb{K}}$ and conclude that $\mathcal{I}_n \subset \mathcal{I}_{n+1}$.
- (iv) Does this proof also work, if \mathbb{K} is the finite field \mathbb{F}_2 ?

Exercise 2

Let $f_1, \ldots, f_r \in \mathbb{K}\{U\}$ be *linear* differential polynomials (i. e. deg $f_i = 1$ for all *i*) and consider the differential ideal $\mathcal{P} = [f_1, \ldots, f_r]$ generated by them. Show that \mathcal{P} is either the whole ring or a prime differential ideal.

Exercise 3

Let $F, H \subset \mathbb{K}\{U\}$ be finite subsets, $v \in \Theta U$ a differential variable and \prec a ranking. Assume that $f \in \langle \Theta F_{\prec v} \rangle : H^{\infty}$. Show that for any derivative operator $\theta \in \Theta$ we have $\theta f \in \langle \Theta F_{\prec \theta v} \rangle : H^{\infty}$.

Exercise 4

- (i) (Pseudo)-divide the polynomials $f = 5x^3y^2 10xy^3$ and $g = 2x^2y + x^2 + xy^3$ once over the rational numbers \mathbb{Q} and once over the integers \mathbb{Z} using the lexicographic order with x > y.
- (ii) Let R be an integral domain, $f, g \in R[x] \setminus R$ and c = lc(g). A pseudo-division algorithm yields $d \in \{c\}^{\infty}$, $q, r \in R[x]$ such that df = qg + r with $\deg r < \deg g$. Assume that a different algorithm yields $\hat{d} \in \{c\}^{\infty}$, $\hat{q}, \hat{r} \in R[x]$ such that $\hat{d}f = \hat{q}g + \hat{r}$ with $\deg \hat{r} < \deg g$. Discuss the relation between d, q, r and $\hat{d}, \hat{q}, \hat{r}$.