Differential Algebra

2. Exercise Sheet

Exercise 1

In this exercise we want to correct the treatment of Example 3.3 in the lecture where the second step was not completely sound. We consider in $\mathbb{K}\{u\}$, where (\mathbb{K}, δ) is a differential field containing the rational numbers \mathbb{Q}, the ascending chain of differential ideals $\mathcal{I}_{n}=\left[u^{2},\left(u^{\prime}\right)^{2}, \ldots,\left(u^{(n-1)}\right)^{2}\right]$. Our goal is to show that we always have a proper inclusion $\mathcal{I}_{n} \subset \mathcal{I}_{n+1}$. For this purpose, we introduce the following linear subspaces of $\mathbb{K}\{u\}: \mathcal{V}_{n}=\left\langle u^{(i)} u^{(j)} \mid i+j=n\right\rangle_{\mathbb{K}}$.
(i) Show that $\operatorname{dim}_{\mathbb{K}} \mathcal{V}_{2 n}=\operatorname{dim}_{\mathbb{K}} \mathcal{V}_{2 n+1}=n+1$.
(ii) Show that $\mathcal{V}_{2 n}=\left\langle\delta^{2}\left(\mathcal{V}_{2 n-2}\right),\left(u^{(n)}\right)^{2}\right\rangle_{\mathbb{K}}$.

Hint: Express any element $\delta^{2}\left(u^{(i)} u^{(j)}\right) \in \delta^{2}\left(\mathcal{V}_{2 n-2}\right)$ and $\left(u^{(n)}\right)^{2}$ as a linear combination of the generators of $\mathcal{V}_{2 n}$. Then show that these relations define an invertible change of bases.
(iii) Show that $\mathcal{I}_{n} \cap \mathcal{V}_{2 n}=\left\langle\delta^{2}\left(\mathcal{V}_{2 n-2}\right)\right\rangle_{\mathbb{K}}$ and conclude that $\mathcal{I}_{n} \subset \mathcal{I}_{n+1}$.
(iv) Does this proof also work, if \mathbb{K} is the finite field \mathbb{F}_{2} ?

Exercise 2

Let $f_{1}, \ldots, f_{r} \in \mathbb{K}\{U\}$ be linear differential polynomials (i.e. $\operatorname{deg} f_{i}=1$ for all i) and consider the differential ideal $\mathcal{P}=\left[f_{1}, \ldots, f_{r}\right]$ generated by them. Show that \mathcal{P} is either the whole ring or a prime differential ideal.

Exercise 3

Let $F, H \subset \mathbb{K}\{U\}$ be finite subsets, $v \in \Theta U$ a differential variable and \prec a ranking. Assume that $f \in\left\langle\Theta F_{\prec v}\right\rangle: H^{\infty}$. Show that for any derivative operator $\theta \in \Theta$ we have $\theta f \in\left\langle\Theta F_{\prec \theta v}\right\rangle: H^{\infty}$.

Exercise 4

(i) (Pseudo)-divide the polynomials $f=5 x^{3} y^{2}-10 x y^{3}$ and $g=2 x^{2} y+x^{2}+x y^{3}$ once over the rational numbers \mathbb{Q} and once over the integers \mathbb{Z} using the lexicographic order with $x>y$.
(ii) Let R be an integral domain, $f, g \in R[x] \backslash R$ and $c=\operatorname{lc}(g)$. A pseudo-division algorithm yields $d \in\{c\}^{\infty}, q, r \in R[x]$ such that $d f=q g+r$ with $\operatorname{deg} r<\operatorname{deg} g$. Assume that a different algorithm yields $\hat{d} \in\{c\}^{\infty}, \hat{q}, \hat{r} \in R[x]$ such that $\hat{d} f=\hat{q} g+\hat{r}$ with $\operatorname{deg} \hat{r}<\operatorname{deg} g$. Discuss the relation between d, q, r and $\hat{d}, \hat{q}, \hat{r}$.

