Differential Algebra

3. Exercise Sheet

Exercise 1

(i) Design an algorithm to compute for a given polynomial $f \in \mathbb{K}[X]$ and a given triangular set $A \subset \mathbb{K}[x]$ a reduction $\operatorname{red}(f, A)$. Discuss variants of your algorithm leading to different results.
(ii) Assume that $A=a_{1} \Delta \cdots \Delta a_{m}$ and $v_{i}=\operatorname{lead}\left(a_{i}\right)$ for all i. Show that we may take

$$
\operatorname{red}(f, A)=\operatorname{prem}\left(\cdots \operatorname{prem}\left(\operatorname{prem}\left(f, a_{m}, v_{m}\right), a_{m-1}, v_{m-1}\right), \ldots, a_{1}, v_{1}\right)
$$

(iii) Prove the correctness and the termination of Algorithm 4.17 for differential reduction.

Exercise 2

Prove Proposition 4.20.

Exercise 3

We work in the ring $\mathbb{Q}[x, y, z]$ with the ranking $x<y<z$.
(i) Consider the triangular set $A=x^{2} \Delta x y-1 \Delta x z+y$. Show that $\operatorname{red}\left(\operatorname{init}\left(A_{z}\right), A_{<z}\right) \neq 0$, but that nevertheless $\operatorname{red}\left(A_{z}, A_{<z}\right)=1$.
(ii) Consider the triangular set $A=x^{2}-x \Delta x y-1 \Delta(x-1) z+x y$. Show that the question whether A is a chain (i. e. whether $\operatorname{rank}\left(\operatorname{red}\left(A_{v}, A_{<v}\right)\right)=\operatorname{rank}\left(A_{v}\right)$ for all $\left.v \in L_{A}\right)$ depends on the used algorithm for pseudo-division. Find one algorithm for which A is a chain and another one for which it is not.

Exercise 4

Consider in the ring $\mathbb{Q}[x, y]$ with the ranking $x>y$ the polynomials $f=5 x^{3} y^{2}-10 x y^{3}, g_{1}=2 x^{2} y+$ $x^{2}+x y^{3}$ and $g_{2}=2 x^{2} y+x^{2}+y^{3}$. Compute a characteristic set for the ideals $\left\langle f, g_{1}\right\rangle$ and $\left\langle f, g_{2}\right\rangle$, respectively. Hint: Compute first an autoreduced set by repeated pseudo-division; then argue why it is of lowest rank and thus a characteristic set.

