

28 November 2018

Differential Algebra 4. Exercise Sheet

Exercise 1

Let (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) be two topological spaces. A map $f : X \to Y$ is *continuous*, if for an open set $O_Y \in \mathcal{O}_Y$ its preimage $f^{-1}(O_Y) = \{x \in X \mid f(x) \in O_Y\}$ is an open set, too (i. e. if $f^{-1}(O_Y) \in \mathcal{O}_X$).

- (i) Prove that for $X = Y = \mathbb{R}$ with its standard topology this definition of continuity is equivalent to the δ - ϵ one.
- (ii) Provide a concrete example of a continuous function $f : \mathbb{R} \to \mathbb{R}$ and an open set $O \subseteq \mathbb{R}$ such that f(O) is *not* an open set.
- (iii) Show that if \mathcal{O}_X is the discrete topology or \mathcal{O}_Y the indiscrete topology, then every map $f: X \to Y$ is continuous. If conversely \mathcal{O}_X is the indiscrete topology and \mathcal{O}_Y the discrete topology, then no map $f: X \to Y$ is continuous.
- (iv) Prove that a map $f : X \to Y$ is continuous, if and only if the preimage of any closed set $C_Y \subseteq Y$ is a closed set in X.
- (v) Consider for some differential field (\mathbb{K}, Δ) the spaces \mathbb{K}^n , \mathbb{K}^m equipped with the Kolchin topology. Let $\mathbf{f} : \mathbb{K}^n \to \mathbb{K}^m$ be a differential polynomial map, i. e. $\mathbf{f}(\mathbf{u}) = (f_1(\mathbf{u}), \dots, f_m(\mathbf{u}))$ with some differential polynomials $f_1, \dots, f_m \in \mathbb{K}\{u_1, \dots, u_n\}$. Show that \mathbf{f} is continuous.
- (vi) A bijective map $f: X \to Y$ is a homeomorphism, if both f and f^{-1} are continuous.
 - (a) Take $X = [0, 2\pi) \subset \mathbb{R}$ and $Y = \{(x, y) \mid x^2 + y^2 = 1\} \subset \mathbb{R}^2$ both with the trace topology. Is the map $f : X \to Y$ with $f(t) = (\cos t, \sin t)$ a homeomorphism?
 - (b) Show that a bijective map $f : X \to Y$ is a homeomorphism, if and only if f is continuous and closed (i. e. for any closed set $C_X \subseteq X$ we have that $f(C_X)$ is again a closed set). Does this statement remain true, if we everywhere replace *closed* by *open*?