Differential Algebra

6. Exercise Sheet

Exercise 1

We consider in the differential ring $\mathbb{Q}(x, y)\{u\}$ with the obvious derivations the linear system A comprising $f_{1}=u_{z z}-y u_{x x}$ and $f_{2}=u_{y y}$ (a very classical example due to Janet).
(i) Complete A to a differentially coherent set using differential pseudo- S-polynomials (as we are dealing with a linear system this is analogous to a Gröbner basis computation and there is no need to use a pseudo-division as all initials are one).
(ii) Describe the set of all parametric derivatives of the system and construct an initial value problem leading to a unique power series solution around the point $(0,0,0)$. What is the size of the solution space?
(iii) Show that all solutions of this system are polynomial and derive the general solution of the system.

Exercise 2

Describe the set of all parametric derivatives of the "monomial" differential system $\left\{u_{z z z}, u_{y y z}, u_{x y z}\right\} \subset$ $\mathbb{Q}(x, y, z)\{u\}$ and construct an initial value problem leading to a unique power series solution around the point $(0,0,0)$. Express the solution of this initial value problem in terms of the initial data.

Exercise 3

(i) We consider the differential polynomial $f_{a}=\left(u^{\prime}\right)^{2}-u^{2}+a\left(x^{2}-x\right) \in \mathbb{R}(x)\{u\}$ depending on a parameter a together with the initial conditions $u(\bar{x})=b_{0}$ and $u^{\prime}(\bar{x})=b_{1}$. Discuss the existence and uniqueness of formal power series solutions depending on the parameters $a, b_{0}, b_{1}, \bar{x} \in \mathbb{R}$ (do not try to make a complete classification - stop after order 3). What is different for $b_{1}=0$?
(ii) We consider the differential polynomial $f_{2}=x u^{\prime \prime}-u u^{\prime} \in \mathbb{Q}(x)\{u\}$ together with the initial conditions $u(0)=b_{0}$ and $u^{\prime}(0)=0$. Show first that differentiating f_{2} yields the following differential polynomials f_{q} of order $q \geq 3$:

$$
f_{q}=x u^{(q)}-(u-q+2) u^{(q-1)}-\sum_{j=1}^{\lfloor(q-1) / 2\rfloor} a_{q, j} u^{(j)} u^{(q-j-1)}
$$

where the coefficients $a_{q, j}$ are defined recursively by

$$
\begin{gathered}
a_{q, 1}=\left\{\begin{array}{ll}
1 & \text { for } q=3, \\
q-1 & \text { for } q>3,
\end{array} \quad a_{q, j}=a_{q-1, j-1}+a_{q-1, j}\right. \\
a_{\lfloor(q-1) / 2\rfloor}= \begin{cases}a_{q-1,(q-3) / 2} & \text { for } 1<j<\lfloor(q-1) / 2\rfloor \\
a_{q-1,(q-4) / 2}+2 a_{q-1,(q-2) / 2} & \text { if } q \text { even. }\end{cases}
\end{gathered}
$$

Then use this result to determine all power series solutions of the given initial value problem.

