

17 Januar 2019

Differential Algebra 7. Exercise Sheet

Exercise 1

Let R be a commutative ring and $I \triangleleft R$ an ideal. We denote the set of all prime ideals in R containing I by $Var(I) = \{P \triangleleft R \mid P \text{ prime } \land I \subseteq P\}.$

- (i) Show that Var(I) is not empty and contains at least one minimal element with respect to inclusion (thus every ideal has minimal associated primes).
- (ii) Show that for any $P \in Var(I)$ there exists a minimal associated prime $P' \in minAss(I)$ such that $I \subseteq P' \subseteq P$.

Exercise 2

Let *R* be a commutative ring and $I \triangleleft R$ an ideal. Prove the following statements:

- (i) If R is noetherian, then there exists an $\ell \in \mathbb{N}$ such $\sqrt{I}^{\ell} \subseteq I$.
- (ii) I is primary, if and only if every zero divisor in the factor ring R/I is nilpotent.
- (iii) Let $P, Q \triangleleft R$ be ideals which contain *I*. Then *Q* is *P*-primary, if and only if Q/I is P/I-primary in the factor ring R/I.
- (iv) Let $\phi : S \to R$ be a homomorphism of commutative rings and assume that I is primary. Then $\phi^{-1}(I) \lhd S$ is also primary.

Exercise 3

Let $P \lhd R$ be a prime.

- (i) Let Q_1, \ldots, Q_n be *P*-primary ideals. Then $\bigcap_{i=1}^n Q_i$ is *P*-primary, too.
- (ii) Let Q be a P-primary ideal. Show that for any $r \in R \setminus Q$ the ideal Q : r is again P-primary and for any $r \in R \setminus P$ we have Q : r = Q.