Differential Algebra

8. Exercise Sheet

Exercise 1

(i) Consider in the polynomial ring $R=K[x, y]$ the monomial ideal $I=\left\langle x^{2}, x y\right\rangle$ and give two different minimal primary decompositions of I.
(ii) Let I be an ideal in a noetherian ring R. Show that to $r \in R$ there exists an $s \in R \backslash I$ such that $r s \in I$, if and only if there is an associated prime ideal $P \in \operatorname{Ass}(I)$ with $r \in P$. Interpret the definition of a regular chain with the help of this result.

Exercise 2

We work in $\mathbb{Q}[x, y]$ with $x<y$.
(i) Consider the triangular set $A_{1}=x^{2}-1 \Delta(x+1) y-1$. Show first that A_{1} is a chain, but not a regular one. Verify then that $\mathcal{I}\left(A_{1}\right)=\left\langle x^{2}-1,2 y-1\right\rangle$. Finally compare minimal primary decompositions of $\mathcal{I}\left(A_{1}\right)$ and $\mathcal{I}\left(A_{1}\right)_{<y}$, respectively. Discuss the implications of your results for solving the given polynomial system.
(ii) Consider the triangular set $A_{2}=x \Delta y^{2}-1$. Show that it defines a regular chain. As in (i) compare minimal primary decompositions of $\mathcal{I}\left(A_{2}\right)$ and $\mathcal{I}\left(A_{2}\right)_{<y}$, respectively. What is different?

Exercise 3

Let $A=a_{1} \Delta \cdots \Delta a_{p}$ be a triangular set in the polynomial ring $K[X]$. We write $K[X]=R_{0}\left[L_{A}\right]$ where $R_{0}=K\left[X \backslash L_{A}\right]$. With $v_{i}=\operatorname{lead}\left(a_{i}\right)$ for $1 \leq i \leq p$, we define inductively $R_{i}=R_{0}\left[v_{1}, \ldots, v_{i}\right]$ (i.e. $R_{p}=K[X]$) and $S_{i}=K_{0}\left[v_{1}, \ldots, v_{i}\right]$ where $K_{0}=\operatorname{Quot}\left(R_{0}\right)$. Finally, we define $V_{A}=K_{p} /\langle A\rangle$ which is both a ring and a vector space over K_{0} and write π_{A} for the canonical projection $K_{p} \rightarrow V_{A}$.
(i) Prove that the following statements are equivalent for an arbitrary polynomial $f \in K[X]$:
(a) The homomorphism $\mu_{f}: V_{A} \rightarrow V_{A}, \pi_{A}(g) \mapsto \pi_{A}(f g)$ is surjective.
(b) $\pi_{A}(f)$ is a unit in V_{A}.
(c) $\exists 0 \neq h \in R_{0}, g \in R_{p}: f g \equiv h \bmod \langle A\rangle_{R_{p}}$.
(d) $\langle A, f\rangle_{R_{p}} \cap R_{0} \neq\{0\}$.

If any of these equivalent conditions is satisfied, we say that f is invertible with respect to A and v_{1}, \ldots, v_{p}. We also say that A has invertible initials, if $\operatorname{init}\left(a_{i}\right) \in R_{i-1}$ is invertible with respect to $a_{1} \Delta \cdots \Delta a_{i-1}$ and v_{1}, \ldots, v_{i-1} for all i.
(ii) We call $f \in K[X]$ regular with respect to A and v_{1}, \ldots, v_{p}, if $\left\langle\langle A\rangle_{S_{p}}: I_{A}^{\infty}, f\right\rangle_{S_{p}} \cap R_{0} \neq\{0\}$ and say that A has regular initials, if $\operatorname{init}\left(a_{i}\right) \in R_{i-1}$ is regular with respect to $a_{1} \Delta \cdots \Delta a_{i-1}$ and v_{1}, \ldots, v_{i-1} for all i. Now assume that A has invertible initials (as defined in (i)) and show that the following statements are equivalent for an arbitrary polynomial $f \in K[X]$:
(a) f is regular with respect to A and v_{1}, \ldots, v_{p}.
(b) f is invertible with respect to A and v_{1}, \ldots, v_{p}.
(c) $\pi_{A}(f) \neq 0$ and $\pi_{A}(f)$ is not a zero divisor in V_{A}.
(d) The map μ_{f} is injective.
(iii) Prove that A has regular initials, if and only if A is a regular chain.

