Prof. Werner M. Seiler, Ph.D. FB 10 Mathematik und Naturwissenschaften Institut für Mathematik

25 Januar 2019

Differential Algebra 8. Exercise Sheet

Exercise 1

- (i) Consider in the polynomial ring R = K[x, y] the monomial ideal $I = \langle x^2, xy \rangle$ and give two different minimal primary decompositions of I.
- (ii) Let I be an ideal in a noetherian ring R. Show that to $r \in R$ there exists an $s \in R \setminus I$ such that $rs \in I$, if and only if there is an associated prime ideal $P \in Ass(I)$ with $r \in P$. Interpret the definition of a regular chain with the help of this result.

Exercise 2

We work in $\mathbb{Q}[x, y]$ with x < y.

- (i) Consider the triangular set A₁ = x² 1 △ (x + 1)y 1. Show first that A₁ is a chain, but not a regular one. Verify then that I(A₁) = ⟨x² 1, 2y 1⟩. Finally compare minimal primary decompositions of I(A₁) and I(A₁)_{<y}, respectively. Discuss the implications of your results for solving the given polynomial system.
- (ii) Consider the triangular set $A_2 = x \bigtriangleup y^2 1$. Show that it defines a regular chain. As in (i) compare minimal primary decompositions of $\mathcal{I}(A_2)$ and $\mathcal{I}(A_2)_{< y}$, respectively. What is different?

Exercise 3

Let $A = a_1 \Delta \cdots \Delta a_p$ be a triangular set in the polynomial ring K[X]. We write $K[X] = R_0[L_A]$ where $R_0 = K[X \setminus L_A]$. With $v_i = \text{lead}(a_i)$ for $1 \leq i \leq p$, we define inductively $R_i = R_0[v_1, \ldots, v_i]$ (i. e. $R_p = K[X]$) and $S_i = K_0[v_1, \ldots, v_i]$ where $K_0 = \text{Quot}(R_0)$. Finally, we define $V_A = K_p/\langle A \rangle$ which is both a ring and a vector space over K_0 and write π_A for the canonical projection $K_p \to V_A$.

- (i) Prove that the following statements are equivalent for an arbitrary polynomial $f \in K[X]$:
 - (a) The homomorphism $\mu_f : V_A \to V_A$, $\pi_A(g) \mapsto \pi_A(fg)$ is surjective.
 - (b) $\pi_A(f)$ is a unit in V_A .
 - (c) $\exists 0 \neq h \in R_0, g \in R_p : fg \equiv h \mod \langle A \rangle_{R_p}$.
 - (d) $\langle A, f \rangle_{R_n} \cap R_0 \neq \{0\}.$

If any of these equivalent conditions is satisfied, we say that f is *invertible with respect to* A and v_1, \ldots, v_p . We also say that A has invertible initials, if $init(a_i) \in R_{i-1}$ is invertible with respect to $a_1 \Delta \cdots \Delta a_{i-1}$ and v_1, \ldots, v_{i-1} for all i.

- (ii) We call $f \in K[X]$ regular with respect to A and v_1, \ldots, v_p , if $\langle \langle A \rangle_{S_p} : I_A^{\infty}, f \rangle_{S_p} \cap R_0 \neq \{0\}$ and say that A has regular initials, if $init(a_i) \in R_{i-1}$ is regular with respect to $a_1 \vartriangle \cdots \trianglerighteq a_{i-1}$ and v_1, \ldots, v_{i-1} for all i. Now assume that A has invertible initials (as defined in (i)) and show that the following statements are equivalent for an arbitrary polynomial $f \in K[X]$:
 - (a) f is regular with respect to A and v_1, \ldots, v_p .
 - (b) f is invertible with respect to A and v_1, \ldots, v_p .
 - (c) $\pi_A(f) \neq 0$ and $\pi_A(f)$ is not a zero divisor in V_A .
 - (d) The map μ_f is injective.
- (iii) Prove that A has regular initials, if and only if A is a regular chain.