FB 10, AG Computational Mathematics Prof. Dr. Werner M. Seiler Matthias Seiß

Differentialtopologie

Übungsblatt 1

Aufgabe 1

- a) Zeigen Sie, dass jeder k-dimensionale Untervektorraum $V \subset \mathbb{R}^n$ diffeomorph zu \mathbb{R}^k ist, und dass alle linearen Abbildungen auf V glatt sind.
- b) Die stereographische Projektion ist die Abbildung π von der punktierten Sphäre $S^2 \setminus \{N\}$ auf \mathbb{R}^2 , wobei N der Nordpol (0,0,1) ist, und für jeden Punkt $p \in S^2 \setminus \{N\}$ gilt: $\pi(p)$ ist der Schnittpunkt der Geraden durch p und N mit der xy-Ebene. Zeigen Sie, dass π ein Diffeomorphismus ist.

Aufgabe 2

a) Zeigen Sie, dass die Funktion $f: \mathbb{R} \to \mathbb{R}$ definiert durch

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & x > 0\\ 0 & x < 0 \end{cases}$$
 (1)

glatt ist.

- b) Zeigen Sie, dass die Funktion g(x) = f(x a)f(b x) glatt ist, positiv auf (a, b) und die Nullfunktion auf $\mathbb{R} \setminus (a, b)$ ist (Es sei a < b).
- c) Betrachten Sie nun die Funktion

$$h(x) = \frac{\int_{-\infty}^{x} g dx}{\int_{-\infty}^{\infty} g dx}.$$
 (2)

Zeigen Sie, dass h(x) eine glatte Funktion ist mit der Eigenschaft h(x) = 0 für x < a, h(x) = 1 für x > b und 0 < h(x) < 1 für $x \in (a, b)$.

d) Geben Sie eine Funktion h auf \mathbb{R}^k mit der folgenden Eigenschaft an: h(x) = 1 für |x| < a, h(x) = 0 für |x| > b und 0 < h(x) < 1 für a < |x| < b (Es sei 0 < a < b).

Aufgabe 3

- a) Sei $f: M \to N$ ein Diffeomorphismus. Zeigen Sie, dass df_x ein Isomorphismus von Tangentialräumen für jedes $x \in M$ ist.
- b) Zeigen Sie, dass \mathbb{R}^k und \mathbb{R}^l nicht diffeomorph sind, wenn $k \neq l$ gilt.

Aufgabe 4

Der Graph einer Abbildung $f: M \to N$ ist die Teilmenge von $M \times N$ definiert durch

$$graph(f) = \{(x, f(x)) \mid x \in M\}.$$
 (3)

- a) Sei $F: M \to \text{graph}(f)$ die Abbildung definiert durch F(x) = (x, f(x)). Zeigen Sie, dass F ein Diffeomorphismus ist, wenn f glatt ist.
- Dies besagt, dass graph(f) eine Mannigfaltigkeit ist, wenn M das ist.
- b) Sei f glatt. Zeigen Sie: $dF_x(v) = (v, df_x(v))$.
- c) Zeigen Sie, dass der Tangentialraum von graph(f) bei dem Punkt (x, f(x)) der Graph der Abbildung $df_x: T_x(M) \to T_{f(x)}(N)$ ist.