

13. November 2013

Gröbner-Basen

4. Übungsblatt

Aufgabe 1

- (i) Implementieren Sie den Divisionsalgorithmus 2.8 in CoCoA.
- (ii) Wählen Sie eine Termordnung \prec und überprüfen Sie mit Hilfe Ihrer Implementierung, welche der folgenden Polynome g_i in dem Ideal $\mathcal{I} = \langle x y^2, y z^3, z^2 1 \rangle \subseteq \mathbb{Q}[x, y, z]$ liegen:

•
$$q_1 = x^2 - 2xy^2 + y^4 + y^3 - y^2z^3 + yz - z^4 + z^3 - z^2 - z + 1$$

•
$$g_2 = x^2 - 2xy^2 + xy - xz^3 - xz^2 + x + y^4 + y^3 - y^2z^3 + z^3 - z$$

$$g_3 = xy^2z^2 + xy - yz$$

Aufgabe 2

Auf dem ersten Übungsblatt wurde die Homogenisierung $f^{(h)} \in \mathcal{P}^{(h)} = \mathbbm{k}[x_0, x_1, \dots, x_n]$ eines Polynoms $f \in \mathcal{P} = \mathbbm{k}[x_1, \dots, x_n]$ eingeführt. Umgekehrt kann man jedes homogene Polynom $\tilde{f} \in \mathcal{P}^{(h)}$ dehomogenisieren, indem man $x_0 = 1$ einsetzt. Wir schreiben dann kurz $\tilde{f}_{(h)} = \tilde{f}|_{x_0 = 1}$. Sei nun $\mathcal{I} \unlhd \mathcal{P}$ ein Ideal. Dann definieren wir seine Homogenisierung als $\mathcal{I}^{(h)} = \langle f^{(h)} \mid f \in \mathcal{I} \rangle \unlhd \mathcal{P}^{(h)}$.

- (i) Zeigen Sie, daß für jedes homogene Idealelement $\tilde{f} \in \mathcal{I}^{(h)}$ gilt $\tilde{f}_{(h)} \in \mathcal{I}$ und daß es einen Exponenten k gibt, so daß $\tilde{f} = x_0^k(\tilde{f}_{(h)})^{(h)}$. Daher folgt aus $\mathcal{I} = \langle f_1, \dots, f_r \rangle$ im allgemeinen nicht, daß $\mathcal{I}^{(h)} = \langle f_1^{(h)}, \dots, f_r^{(h)} \rangle$. Geben Sie ein konkretes Gegenbeispiel an.
- (ii) Sei nun $\mathcal{G} = \{g_1, \dots, g_r\}$ eine Gröbner-Basis des Ideals \mathcal{I} für eine Totalgradordnung \prec . Zeigen Sie, daß die Homogenisierung $\mathcal{G}^{(h)} = \{g_1^{(h)}, \dots, g_r^{(h)}\}$ eine Gröbner-Basis des homogenisierten Ideals $\mathcal{I}^{(h)}$ für die Termordnung \prec_h (siehe Blatt 1) ist. *Hinweis*: Es reicht, wenn Sie die homogenen Elemente von $\mathcal{I}^{(h)}$ betrachten (das dürfen Sie ohne Beweis benützen).
- (iii) Berechnen Sie ein Erzeugendensystem von $\mathcal{I}^{(h)}$ für $\mathcal{I} = \langle xy-x, y^2-x \rangle \lhd \mathbb{k}[x,y]$. Hinweis: Zeigen Sie, daß das Hinzufügen von x^2-x eine Gröbner-Basis \mathcal{G} von \mathcal{I} für jede Totalgradordnung liefert. Überlegen Sie sich dazu zuerst, daß jedes Idealelement $f \in \mathcal{I}$, das bezüglich \mathcal{G} reduziert ist, von der Form f = a + bx + cy mit Konstanten $a, b, c \in \mathbb{k}$ sein muß. Andererseits läßt sich jedes Idealelement in der Form $f = h_1(xy-x) + h_2(y^2-x) + h_3(x^2-x)$ mit Polynomen $h_i \in \mathbb{k}[x,y]$ schreiben. Setzen Sie nun geschickte Werte für x bzw. für y ein.