FB 10 Mathematik und Naturwissenschaften Institut für Mathematik

21. April 2016

Gröbner-Basen

1. Übungsblatt

Aufgabe 1

(i) Mit \prec_{revlex} bezeichnen wir die reverslexikographische Ordnung, die wie folgt definiert ist:

 $\mathbf{x}^{\mu} \prec_{\text{revlex}} \mathbf{x}^{\nu} \iff$ der letzte von Null verschiedene Eintrag von $\mu - \nu$ ist positiv.

Begründen Sie, warum \prec_{revlex} keine Termordnung definiert.

(ii) Seien $s \neq t$ zwei verschiedene Terme mit $s \mid t$. Zeigen Sie, daß für beliebige Termordnungen \prec dann gilt $s \prec t$.

Aufgabe 2

Sei $f \in \mathcal{P} = \mathbb{k}[x_1, \dots, x_n]$ ein Polynom vom Grad $\deg(f) = d$ und x_0 eine weitere Variable. Dann ist

$$f^{(h)} = x_0^d f(\frac{x_1}{x_0}, \dots, \frac{x_n}{x_0}) \in \mathcal{P}^{(h)} = \mathbb{k}[x_0, x_1, \dots, x_n]$$

die *Homogenisierung* von f. Das so definierte Polynom $f^{(h)}$ ist offensichtlich homogen, d.h. alle seine Terme besitzen denselben Grad. Sei nun \prec eine beliebige Termordnung auf \mathcal{P} . Wir setzen \prec wie folgt auf den erweiterten Polynomring $\mathcal{P}^{(h)}$ fort:

$$x_0^k \mathbf{x}^\mu \prec_h x_0^\ell \mathbf{x}^\nu \iff (\mathbf{x}^\mu \prec \mathbf{x}^\nu) \lor (\mathbf{x}^\mu = \mathbf{x}^\nu \land k < \ell).$$

Beweisen Sie die folgenden Aussagen:

- (i) \prec_h definiert eine Termordnung auf $\mathcal{P}^{(h)}$.