Übungen zur Linearen Algebra I – Blatt7

Dr. M. Dettweiler (INF 368, Zi. 513, Tel. 548870) e-mail: michael.dettweiler@iwr.uni-heidelberg.de

Abgabe: Bis Mittwoch (14:00) in den jeweiligen Briefkästen im Mathematischen Institut.

Es seien V,W jeweils Vektorräume über einem Körper K und V^*,W^* ihre Dualräume.

1. Aufgabe: (4 Punkte) Man zeige, daß die Abbildung

$$\operatorname{Hom}_K(V, W) \to \operatorname{Hom}_K(W^*, V^*), f \mapsto f^*$$

linear ist $(f^*: W^* \to V^*$ sei hierbei die duale Abbildung zu f).

2. Aufgabe: (4 Punkte) Es sei V endlichdimensional. Für einen Unterraum $U \subseteq V$ setze man

$$U^{\circ} := \{ \phi \in V^* \mid \phi(U) = 0 \}.$$

Man zeige, daß für Unterräume $U, U' \subseteq V$ das folgende gilt:

- (a) $(U + U')^{\circ} = U^{\circ} \cap (U')^{\circ}$,
- (b) $(U^{\circ})^{\circ} = U$,
- (c) $(U \cap U')^{\circ} = U^{\circ} + (U')^{\circ}$,
- (d) $\dim U + \dim U^{\circ} = \dim V$.
- **3. Aufgabe:** (4 Punkte) Es sei U ein Unterraum von V und $\pi: V \to V/U, v \mapsto v + U$ die natürliche Projektion. Zeigen Sie, das für jeden Homomorphismus $\phi: V \to W$, dessen Kern den Raum U enthält, ein Homomorphismus $\psi: V/U \to W$ existiert mit $\phi = \psi \circ \pi$.
- **4. Aufgabe:** (4 Punkte) Es seien V,W endlichdimensional. Sei $f:V\to W$ ein Homomorphismus. Der Kokern von f ist definiert als der Faktorraum $\operatorname{coker}(f):=W/\operatorname{im}(f)$. Zeigen Sie, daß

$$\operatorname{coker}(f^*) \simeq (\ker(f))^*$$

gilt.