Determination of the Kronecker-Weierstraß normal form of a regular matrix pencil

We simplify the use of linear algebra commands by preloading the LinearAlgebra package.
> with(LinearAlgebra):
We first define the two given matrices.
$>K:=\langle\langle 0| 0| 0|0\rangle,\langle 0| 0|0| 0\rangle,\langle 0| 0|1| 0\rangle,\langle 1| 0|0| 0\rangle\rangle$;
$L:=\langle\langle 0| 1| 1|1\rangle,\langle 2|-1|0| 0\rangle,\langle 1| 0|0| 0\rangle,\langle 0| 0|0| 1\rangle\rangle ;$

$$
\begin{align*}
& K:=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] \\
& L:=\left[\begin{array}{rrrr}
0 & 1 & 1 & 1 \\
2 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \tag{1}
\end{align*}
$$

Then we must guess a value of s such that $s K-L$ is non-singular. As it is not difficult to see that L is already non-singular, we simply choose $s=0$. This also has the advantage that $\operatorname{det}(\mathrm{sK}-\mathrm{L})=1$ which simplifies subsequent matrices, as no fractions appear. Different choices of s will lead to different results, as one can verify experimentally. Not permitted is e.g. $\mathrm{s}=-1$, as then a singular matrix is obtained.
> $s:=0$:
$K L:=s \cdot K-L$:
$\operatorname{det}(K L)$;
Next we define some auxiliary matrices and compute a Jordan normal form J plus the corresponding transformation matrix T.
> $K L I:=K L^{(-1)}$:
KK := KLI.K:
$L L:=$ KLI.L:
$>J J:=\operatorname{JordanForm}(K K$, output $=[' J, ' Q '])$:
$J:=J J[1] ; T:=J J[2] ;$

$$
J:=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$$
T:=\left[\begin{array}{rrrr}
0 & -1 & 1 & 0 \tag{3}\\
-2 & -2 & 2 & 0 \\
0 & 1 & 0 & 0 \\
3 & 1 & -2 & 1
\end{array}\right]
$$

A rather annoying "feature" of Maple is here that the Jordan blocks are not properly sorted. Thus the above matrix J is not in the right form to continue with our algorithm. We must first perform a permutation of J and T. We subsequently check that we did this correctly.

$$
\begin{aligned}
> & P:=\langle\langle 0| 0| 1|0\rangle,\langle 1| 0|0| 0\rangle,\langle 0| 1|0| 0\rangle,\langle 0| 0|0| 1\rangle\rangle ; \mathrm{PI}:=P^{(-1)}: \\
& J:=\text { PI.J.P, } T:=T . P \\
& T^{(-1)} . \text { KK. } T-J
\end{aligned}
$$

$$
\begin{gathered}
P:=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
J:=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
T:=\left[\begin{array}{rrrr}
-1 & 1 & 0 & 0 \\
-2 & 2 & -2 & 0 \\
1 & 0 & 0 & 0 \\
1 & -2 & 3 & 1
\end{array}\right]
\end{gathered}
$$

$$
\left[\begin{array}{llll}
0 & 0 & 0 & 0 \tag{4}\\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Finally, we extract the relevant submatrices from the properly sorted Jordan normal form and assemble the transformation matrices U and V according to our algorithm.
$>E 1:=\operatorname{SubMatrix}(J, 1$..2, 1..2);
$E 2:=\operatorname{SubMatrix}(J, 3 . .4,3$..4);

$$
E 1:=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

$$
\begin{align*}
& E 2:=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \tag{5}\\
& \boxed{\boxed{ }}>E 1 I:=E 1^{(-1)}: E 2 I:=(s \cdot E 2-\operatorname{Matrix}(2, \text { shape }=\text { identity }))^{(-1)}: \\
& \rangle U:=\langle\langle E 1 I[1,1]| E 1 I[1,2]| 0|0\rangle,\langle E 1 I[2,1]| E 1 I[2,2]|0| 0\rangle,\langle 0| 0|E 2 I[1,1]| E 2 I[1,2]\rangle, \\
& \langle 0| 0|E 2 I[2,1]| E 2 I[2,2]\rangle\rangle . T^{(-1)} . K L I ; \\
& V:=T \text {; } \\
& U:=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
-1 & -1 & 1 & 1 \\
0 & \frac{1}{2} & 0 & 0 \\
1 & -\frac{1}{2} & 0 & 0
\end{array}\right] \\
& V:=\left[\begin{array}{rrrr}
-1 & 1 & 0 & 0 \\
-2 & 2 & -2 & 0 \\
1 & 0 & 0 & 0 \\
1 & -2 & 3 & 1
\end{array}\right] \tag{6}
\end{align*}
$$

Now we can admire the constructed Kronecker-Weierstraß normal form. The nilpotent submatrix N is in this case just the zero matrix (and thus automatically in Jordan normal form). The submatrix A is already in Jordan normal form. This last fact is due to the "clever" choice of $s=0$. For other values of s, A will look differently (as the matrices U and V).
$>$ U.K.V; U.L.V;

$$
\begin{gather*}
{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
{\left[\begin{array}{rrrr}
-1 & 1 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]} \tag{7}
\end{gather*}
$$

