Linear Systems Theory

Exercise Sheet 1

Exercise 1

(i) Let δ be the Dirac distribution and $f \in \mathcal{C}^{\infty}(\mathbb{R})$ a smooth function. Show that $f \delta=f(0) \delta$.
(ii) Let $T \in \mathcal{D}^{\prime}(\mathbb{R})$ be a distribution and $f \in \mathcal{C}^{\infty}(\mathbb{R})$ a smooth function. Show that $(f T)^{\prime}=f^{\prime} T+f T^{\prime}$, i. e. the usual Leibniz rule holds also for distributional derivatives.
(iii) Let h be the Heaviside function and consider the smooth function $f(x)=\sin (x) h(x)$. Compute the second derivative $f^{\prime \prime}$ of f in the distributional sense.

Exercise 2

We consider a (mathematical) pendulum with a control. Its equations of motion are given by (for simplicity, all physical constants are set to 1):

$$
\dot{x}_{1}(t)=x_{2}(t), \quad \dot{x}_{2}(t)=\sin \left(x_{1}(t)\right)+u(t)
$$

where x_{1} represents the angle of the pendulum and x_{2} its angular velocity. Our goal is to determine an input u that steers this system from a given initial position $\vec{x}(0)=\vec{x}_{0} \in \mathbb{R}^{2}$ to the origin $\vec{x}(\tau)=0$ within a prescribed time $\tau>0$. This can be achieved with a simple, yet effective trick.
(i) Introduce the new "control" $v=\sin \left(x_{1}\right)+u$ and compute the explicit solution of the initial value problem $\dot{x}_{1}=x_{2}, \dot{x}_{2}=v, \vec{x}(0)=\vec{x}_{0}$ in dependence of v.
(ii) Make the linear ansatz $v(t)=\alpha+\beta t$ with constants $\alpha, \beta \in \mathbb{R}$ and use the terminal condition $\vec{x}(\tau)=0$ to express α, β in terms of the parameters \vec{x}_{0} and τ.
(iii) Determine the arising input u and verify that it really solves our problem.
(iv) (Optional) Visualise your results numerically for the values $\tau=1, \vec{x}_{0}=\binom{0.5}{0}$ - using for example Maple or Matlab. It is instructive to note that naive discretisations like the explicit Euler method will fail here due to instabilities. One needs either a good solver (like the built-in ones in the above systems) or should use at least the implicit Euler method.

Exercise 3

(i) Show that both solutions of the quadratic equation $\lambda^{2}+p \lambda+q=0$ with real coefficients $p, q \in \mathbb{R}$ possess a negative real part, if and only if $p>0$ and $q>0$.
(ii) Linearisation of the pendulum equations from Exercise 2 about the upright position $\vec{x}=0$ yields the linear differential system

$$
\dot{x}_{1}=x_{2}, \quad \dot{x}_{2}=x_{1}+u .
$$

This time our goal consists of finding a choice of the control u such that the upright position $\vec{x}=0$ becomes asymptotically stable (i.e. all eigenvalues of the matrix of the linear system should have negative real parts).
Recall that x_{1} denotes the angular position and x_{2} the angular velocity of the pendulum. A natural approach is then the following one. If $x_{1}>0$, then the pendulum is to the right of its desired position and thus one should apply a torque $u<0$ acting counter-clockwise and similarly one should choose $u>0$ for $x_{1}<0$. Thus one is lead to the simple ansatz $u=\alpha x_{1}$ for some $\alpha<0$. However, this ansatz will not solve our problem. The same holds true for the ansatz $u=\beta x_{2}$. Derive conditions on $\alpha, \beta \in \mathbb{R}$ such that the combined ansatz $u=\alpha x_{1}+\beta x_{2}$ renders the upright position asymptotically stable and explain why the simpler approaches cannot work.

