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Exercise 1

(i) Let δ be the Dirac distribution and f ∈ C∞(R) a smooth function. Show that fδ = f(0)δ.

(ii) Let T ∈ D′(R) be a distribution and f ∈ C∞(R) a smooth function. Show that (fT )′ = f ′T+fT ′,
i. e. the usual Leibniz rule holds also for distributional derivatives.

(iii) Let h be the Heaviside function and consider the smooth function f(x) = sin (x)h(x). Compute
the second derivative f ′′ of f in the distributional sense.

Exercise 2

We consider a (mathematical) pendulum with a control. Its equations of motion are given by (for sim-
plicity, all physical constants are set to 1):

ẋ1(t) = x2(t) , ẋ2(t) = sin
(
x1(t)

)
+ u(t)

where x1 represents the angle of the pendulum and x2 its angular velocity. Our goal is to determine an
input u that steers this system from a given initial position ~x(0) = ~x0 ∈ R2 to the origin ~x(τ) = 0 within
a prescribed time τ > 0. This can be achieved with a simple, yet effective trick.

(i) Introduce the new “control” v = sin (x1) + u and compute the explicit solution of the initial value
problem ẋ1 = x2, ẋ2 = v, ~x(0) = ~x0 in dependence of v.

(ii) Make the linear ansatz v(t) = α + βt with constants α, β ∈ R and use the terminal condition
~x(τ) = 0 to express α, β in terms of the parameters ~x0 and τ .

(iii) Determine the arising input u and verify that it really solves our problem.

(iv) (Optional) Visualise your results numerically for the values τ = 1, ~x0 =
(
0.5
0

)
– using for example

MAPLE or MATLAB. It is instructive to note that naive discretisations like the explicit Euler
method will fail here due to instabilities. One needs either a good solver (like the built-in ones in
the above systems) or should use at least the implicit Euler method.
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Exercise 3

(i) Show that both solutions of the quadratic equation λ2 + pλ+ q = 0 with real coefficients p, q ∈ R
possess a negative real part, if and only if p > 0 and q > 0.

(ii) Linearisation of the pendulum equations from Exercise 2 about the upright position ~x = 0 yields
the linear differential system

ẋ1 = x2 , ẋ2 = x1 + u .

This time our goal consists of finding a choice of the control u such that the upright position ~x = 0
becomes asymptotically stable (i. e. all eigenvalues of the matrix of the linear system should have
negative real parts).

Recall that x1 denotes the angular position and x2 the angular velocity of the pendulum. A natural
approach is then the following one. If x1 > 0, then the pendulum is to the right of its desired
position and thus one should apply a torque u < 0 acting counter-clockwise and similarly one
should choose u > 0 for x1 < 0. Thus one is lead to the simple ansatz u = αx1 for some α < 0.
However, this ansatz will not solve our problem. The same holds true for the ansatz u = βx2.
Derive conditions on α, β ∈ R such that the combined ansatz u = αx1 + βx2 renders the upright
position asymptotically stable and explain why the simpler approaches cannot work.


