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Exercise 1

(i) Let d be the Dirac distribution and f € C*°(R) a smooth function. Show that f§ = f(0)d.

(ii)) LetT € D'(R) be a distribution and f € C*°(IR) a smooth function. Show that (f71")" = f'T+ f1’,
1. e. the usual Leibniz rule holds also for distributional derivatives.

(iii) Let h be the Heaviside function and consider the smooth function f(z) = sin (z)h(z). Compute
the second derivative f” of f in the distributional sense.

Exercise 2

We consider a (mathematical) pendulum with a control. Its equations of motion are given by (for sim-
plicity, all physical constants are set to 1):

B1(t) = zo(t),  do(t) = sin (21(t)) + u(t)

where z, represents the angle of the pendulum and x5 its angular velocity. Our goal is to determine an
input u that steers this system from a given initial position Z(0) = 7, € R? to the origin Z(7) = 0 within
a prescribed time 7 > 0. This can be achieved with a simple, yet effective trick.

(i) Introduce the new “control” v = sin (z1) + v and compute the explicit solution of the initial value
problem iy = xq, @3 = v, ¥(0) = &, in dependence of v.

(ii) Make the linear ansatz v(t) = « + [t with constants a,, 5 € R and use the terminal condition
(1) = 0 to express «, ( in terms of the parameters Z and 7.

(ii1)) Determine the arising input v and verify that it really solves our problem.

(iv) (Optional) Visualise your results numerically for the values 7 = 1, 7y = (0(')5) — using for example
MAPLE or MATLAB. It is instructive to note that naive discretisations like the explicit Euler
method will fail here due to instabilities. One needs either a good solver (like the built-in ones in
the above systems) or should use at least the implicit Euler method.

please turn over



Exercise 3

(i) Show that both solutions of the quadratic equation A\? 4 p\ 4 ¢ = 0 with real coefficients p, ¢ € R
possess a negative real part, if and only if p > 0 and ¢ > 0.

(i1) Linearisation of the pendulum equations from Exercise 2 about the upright position ¥ = 0 yields
the linear differential system
i‘lzl‘g, i2:x1+u.

This time our goal consists of finding a choice of the control « such that the upright position ¥ = 0
becomes asymptotically stable (i. e. all eigenvalues of the matrix of the linear system should have
negative real parts).

Recall that z; denotes the angular position and x5, the angular velocity of the pendulum. A natural
approach is then the following one. If z; > 0, then the pendulum is to the right of its desired
position and thus one should apply a torque v < 0 acting counter-clockwise and similarly one
should choose u > 0 for 1 < 0. Thus one is lead to the simple ansatz © = ax; for some o < 0.
However, this ansatz will not solve our problem. The same holds true for the ansatz u = (x.
Derive conditions on «, 3 € R such that the combined ansatz u = ax; + [Sx, renders the upright
position asymptotically stable and explain why the simpler approaches cannot work.



