Linear Systems Theory

Exercise Sheet 2

Exercise 1

Let R be a commutative ring, $S=R[t]$ the ring of univariate polynomials with coefficients in R and $m, n \in \mathbb{N}$ fixed integers.
(i) Let $A \in R^{n \times n}, B \in R^{n \times m}, C \in R^{m \times n}, D \in R^{m \times m}$ be given matrices over R. Show that if the matrix A is non-singular, then

$$
\operatorname{det}\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=\operatorname{det}(A) \operatorname{det}\left(D-C A^{-1} B\right)
$$

(The matrix $L=D-C A^{-1} B$ is sometimes called the Schur complement of the block A in the block matrix $M=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$ and has many applications. In particular, if L is also non-singular, then the inversion of M can be reduced to inverting A and L which is computationally much cheaper.)
(ii) Let $P_{0}, P_{1}, \ldots, P_{n} \in S^{n \times n}$ be square polynomial matrices. Introduce the $m n \times m n$ matrices

$$
K=\left(\begin{array}{cccc}
I_{n} & & & 0 \\
& \ddots & & \\
& & I_{n} & \\
0 & & & P_{n}
\end{array}\right), \quad L=\left(\begin{array}{cccc}
0 & I_{n} & & 0 \\
\vdots & & \ddots & \\
0 & & & I_{n} \\
-P_{0} & -P_{1} & \cdots & -P_{n-1}
\end{array}\right)
$$

Show that

$$
\operatorname{det}(K-t L)=\operatorname{det}\left(P_{0} t^{n}+P_{1} t^{n-1}+\cdots+P_{n-1} t+P_{n}\right) .
$$

(Note that here the matrices P_{i} also depend on t and thus the determinant lives in the polynomial ring S.) Conclude that in the special case that the matrices P_{i} are constant

$$
\operatorname{det}(s K-L)=\operatorname{det}\left(P_{0}+P_{1} s+\cdots+P_{n-1} s^{n-1}+P_{n} s^{n}\right)
$$

for any value $s \in R$.

Exercise 2

We consider the inhomogeneous linear differential equation $\dot{x}=a x+b$ where we assume that the coefficient functions $a \in \mathcal{C}^{0}(\mathbb{R})$ and $b \in L_{\mathrm{loc}}^{1}(\mathbb{R})$ are continuous and locally integrable, respectively.
(i) Show that the equation has no classical solution $x \in \mathcal{C}^{1}(\mathbb{R})$, if b is not continuous.
(ii) Show that if $x \in L_{\mathrm{loc}}^{1}(\mathbb{R})$, then also $a x+b \in L_{\mathrm{loc}}^{1}(\mathbb{R})$.
(iii) $x \in L_{\text {loc }}^{1}(\mathbb{R})$ is called a weak solution of the differential equation, if for all test functions $\phi \in \mathcal{D}(\mathbb{R})$

$$
\int_{-\infty}^{\infty}[x(t) \dot{\phi}(t)+a(t) x(t) \phi(t)+b(t) \phi(t)] d t=0
$$

Explain in what sense one may consider such an x as a "solution" and show that x is a weak solution, if and only if the regular distribution T_{x} satisfies the equation $\dot{T}_{x}=T_{a x+b}$. (If $a \in \mathcal{C}^{\infty}$, then we may even write the right hand side as $a T_{x}+T_{b}$ and consider this as distributional version of our given differential equation).
(iv) Let the function $a=c$ be a constant $c \in \mathbb{R}$ and $b=h$ the Heaviside function. Solve the differential equation $\dot{x}=c x+h$ first on the intervals $(-\infty, 0)$ and $(0, \infty)$ and combine the results into a globally defined function $x \in \mathcal{C}^{0}(\mathbb{R})$. Prove that this x is a weak solution.

Exercise 3

(i) Let $M \in \mathbb{R}^{n \times n}$ be a square matrix. Show that M is nilpotent, if and only if 0 is its only eigenvalue.
(ii) Compute the Kronecker-Weierstraß normal form for the matrix pencil defined by

$$
K=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right), \quad L=\left(\begin{array}{cccc}
0 & 1 & 1 & 1 \\
2 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

(Preferably with the help of some computer algebra system!)

