

May 21st, 2013

Linear Systems Theory Exercise Sheet 3

Exercise 1

Prove the following generalisation of the fundamental principle presented in the lecture to non-square matrices. Let $R \in \mathbb{R}[s]^{p \times q}$ be a polynomial matrix with full row rank, i. e. rank R = p, and $\mathcal{A} = \mathcal{D}'(\mathbb{R})$ or $\mathcal{C}^{\infty}(\mathbb{R})$. Then the inhomogeneous linear system $R(\frac{d}{dt})u = v$ possesses for arbitrary right hand sides $v \in \mathcal{A}^p$ a solution $w \in \mathcal{A}^q$.

Exercise 2

Consider the simple electric circuit from the first lecture. By eliminating the latent variables (i. e. the currents and voltages at the individual elements of the circuit), derive a differential equation relating the total voltage U and the total current I. Do this first by "clever" manipulations of the equations and then systematically using the technique presented in the lecture. *Note:* only for such small examples one is able to do this elimination by hand; for larger systems only the systematic approach is feasible (but may require the use of a computer algebra system).

Exercise 3

Let $\lambda \in \mathbb{C}$ be a complex number and $m \in \mathbb{N}$.

(i) Show that for all exponents $k \in \mathbb{N}$

$$\frac{d^m}{dt^m}(t^k e^{\lambda t}) = e^{\lambda t} \left(\frac{d}{dt} + \lambda\right)^m (t^k)$$

and conclude that for all polynomials $P \in \mathbb{C}[s]$ and $a \in \mathbb{C}[t]$

$$P\left(\frac{d}{dt}\right)\left(a(t)e^{\lambda t}\right) = e^{\lambda t}P\left(\frac{d}{dt} + \lambda\right)a(t).$$

- (ii) Choose $P = (s \lambda)^m$. Show that for a polynomial $a \in \mathbb{C}[t]$ the function $y(t) = a(t)e^{\lambda t}$ is a solution of $P(\frac{d}{dt})y = 0$, if and only if deg a < m.
- (iii) Let $\lambda_1 \neq \lambda_2$ be complex numbers and $m_1, m_2 \in \mathbb{N}$ integers. We set $P_i = (s \lambda_1)^{m_2} \in \mathbb{C}[s]$ for i = 1, 2. Show that $P_1 P_2 y = 0$, if and only if the function y can be decomposed $y = y_1 + y_2$ where y_i is a solution of $P_i y_i = 0$.
- (iv) Assume that $\lambda \notin \mathbb{R}$ and set $P = (s \lambda)^m (s \overline{\lambda})^m$. Show that the function $y(t) = a(t)e^{\lambda t} + b(t)e^{\overline{\lambda}t}$ is a real-valued solution of Py = 0, if and only if deg a < m and $b = \overline{a}$.