Linear Systems Theory

Exercise Sheet 5

Exercise 1

For two arbitrary matrices $A \in \mathbb{R}^{k \times \ell}$ and $B \in \mathbb{R}^{m \times n}$, the Kronecker product (sometimes also called tensor product) is defined as the block matrix

$$
A \otimes B=\left(\begin{array}{cccc}
a_{11} B & a_{12} B & \cdots & a_{1 \ell} B \\
\vdots & \vdots & & \vdots \\
a_{k 1} B & a_{k 2} B & \cdots & a_{k l} B
\end{array}\right) \in \mathbb{R}^{k m \times \ell n} .
$$

For any matrix $A \in \mathbb{R}^{k \times \ell}$, we denote by $\operatorname{vec}(A) \in \mathbb{R}^{k \ell}$ the vector obtained by stacking all the columns of A above each other:

$$
\operatorname{vec}(A)=\left(a_{11}, \ldots, a_{k 1}, a_{12}, \ldots, a_{k 2}, \ldots, a_{1 \ell}, \ldots, a_{k \ell}\right)^{T}
$$

(i) Show that we obtain for any matrices X, Y such that $A X$ and $B Y$ are defined

$$
(A \otimes B)(X \otimes Y)=(A X) \otimes(B Y) .
$$

(ii) Use (i) to show that for square matrices A, B the spectrum of $A \otimes B$ (i. e. the set of all eigenvalues of this matrix) is given by

$$
\operatorname{spec}(A \otimes B)=\{\lambda \mu \mid \lambda \in \operatorname{spec}(A), \mu \in \operatorname{spec}(B)\}
$$

Hint: Show first that the matrix $A \otimes B$ is similar to the Kronecker product of the Jordan normal forms of A and B.
(iii) Show that for any three matrices A, B, X such that the product $A X B$ is defined

$$
\operatorname{vec}(A X B)=\left(B^{T} \otimes A\right) \operatorname{vec}(X)
$$

(iv) Show that the Sylvester equation

$$
A X+X B=C
$$

has for given matrices $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{m \times m}, C \in \mathbb{R}^{n \times m}$ a unique solution $X \in \mathbb{R}^{n \times m}$, if and only if $\lambda+\mu \neq 0$ for all $\lambda \in \operatorname{spec}(A)$ and $\mu \in \operatorname{spec}(B)$.

Exercise 2

For the computations required by this exercise, it is recommended to use some computer algebra system like Maple.
(i) Is the system given in Exercise 2 of last week asymptotically stable?
(ii) Compute the matrix exponential $e^{A t}$ for the matrix

$$
A=\left(\begin{array}{cc}
-1 & 2 \\
2 & -4
\end{array}\right)
$$

Is the system $\dot{\mathbf{x}}=A \mathbf{x}$ (asymptotically) stable? Compute the unique solution for the initial data $\mathbf{x}(0)=\binom{1}{3}$.
(iii) Consider the state space system $\dot{\mathbf{x}}=A \mathbf{x}+B u, y=C \mathbf{x}$ with

$$
A=\left(\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right), \quad B=\binom{1}{0}, \quad C=\binom{1}{-2} .
$$

Show that it is not asymptotically stable, but that the associated input/output system obtained after eliminating the state x is asymptotically stable. Do you have any explanation for this observation?

