Linear Systems Theory

Exercise Sheet 7

Exercise 1

Let $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$ be such that (A, b) is a controllable matrix pair. Using the characteristic polynomial of A,

$$
\chi_{A}=\operatorname{det}(s I-A)=s^{n}+a_{n-1} s^{n-1}+\cdots+a_{1} s+a_{0},
$$

we define recursively vectors $v^{(n)}=b$ and $v^{(i)}=A v^{(i+1)}+a_{i} b$ for $i=0, \ldots, n-1$.
(i) Show that $\left\{v^{(1)}, \ldots, v^{(n)}\right\}$ is a basis of \mathbb{R}^{n} and that $v^{(0)}=0$.
(ii) Prove that $T=\left(v^{(1)}, \ldots, v^{(n)}\right)$ is a transformation matrix that puts (A, b) in controller form.
(iii) Apply this to

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right), \quad b=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

Exercise 2

Show that the matrix pair (A, B) is controllable, if and only if no eigenvector of the transposed matrix A^{T} lies in the orthogonal complement of im B (for the standard scalar product in \mathbb{R}^{n}).

Exercise 3

(i) Compute a Kalman decomposition of the system defined by

$$
A=\left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 1 & 1 \\
1 & 1 & 2
\end{array}\right), \quad b=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

What are the uncontrollable modes?
(ii) Consider again the "bipendulum" from the last sheet. Study directly (i.e. without introduction of a state space form) whether the system is controllable.

