Linear Systems Theory
 Exercise Sheet 8

Exercise 1

We consider an observable system $\dot{\mathbf{x}}=A \mathbf{x}, \mathbf{y}=C \mathbf{x}$ with $A \in \mathbb{R}^{n \times n}, C \in \mathbb{R}^{p \times n}$ and a fixed time $\epsilon>0$. If we introduce the output space $\mathcal{Y}=L^{2}\left([0, \epsilon], \mathbb{R}^{p}\right)$ of square-integrable functions $\mathbf{f}:[0, \epsilon] \rightarrow \mathbb{R}^{p}$, then we can define the observability operator

$$
L:\left\{\begin{array}{lcc}
\mathbb{R}^{n} & \longrightarrow & \mathcal{Y} \\
\mathbf{x}_{0} & \longmapsto & \left(t \mapsto C e^{A t} \mathbf{x}_{0}\right)
\end{array}\right.
$$

mapping an initial condition $\mathbf{x}(0)=\mathbf{x}_{0}$ to the corresponding output function of the system.
(i) Show that L is a bounded linear operator and that the observability of the system is equivalent to the injectivity of L.
(ii) Construct the adjoint operator to L, i. e. find a linear operator $L^{*}: \mathcal{Y} \rightarrow \mathbb{R}^{n}$ such that the equation

$$
\left\langle L \mathbf{x}_{0}, \mathbf{y}(\cdot)\right\rangle_{\mathcal{Y}}=\left\langle\mathbf{x}_{0}, L^{*} \mathbf{y}(\cdot)\right\rangle_{\mathbb{R}^{n}}
$$

holds for all $\mathbf{x}_{0} \in \mathbb{R}^{n}, \mathbf{y}(\cdot) \in \mathcal{Y}$. Show that the observability Gramian $W(\epsilon)$ is then given by $W(\epsilon)=L^{*} L$. Conclude that $L \mathbf{x}_{0}=\mathbf{y}(\cdot)$ can be inverted to $\mathbf{x}_{0}=W(\epsilon)^{-1} L^{*} \mathbf{y}(\cdot)$.
(iii) Assume that due to perturbations we measure $\hat{\mathbf{y}}(\cdot)$ instead of the true output $\mathbf{y}(\cdot)$. Show that the corresponding vector $\hat{\mathbf{x}}_{0}=W(\epsilon)^{-1} L^{*} \hat{\mathbf{y}}(\cdot)$ satisfies for all vectors $\mathbf{x}_{0} \in \mathbb{R}^{n}$ the estimate

$$
\left\|L \hat{\mathbf{x}}_{0}-\hat{\mathbf{y}}(\cdot)\right\|_{\mathcal{Y}} \leq\left\|L \mathbf{x}_{0}-\hat{\mathbf{y}}(\cdot)\right\|_{\mathcal{Y}}
$$

with equality holding only for $\mathbf{x}_{0}=\hat{\mathbf{x}}_{0}$. Thus the output function corresponding to $\hat{\mathbf{x}}_{0}$ is the best possible approximation of the measured output $\hat{\mathbf{y}}(\cdot)$.

Exercise 2

We consider the controllable and observable system $\dot{\mathbf{x}}=A \mathbf{x}+B \mathbf{u}, \mathbf{y}=C \mathbf{x}+D \mathbf{u}$. Let $P=W_{c}(\epsilon)$ and $Q=W_{o}(\epsilon)$ be the controllability and the observability Gramian, respectively, for a fixed time $\epsilon>0$. Recall that $\mathbf{x}_{0}^{T} P^{-1} \mathbf{x}$ is the input energy required to steer the system from \mathbf{x}_{0} to the origin in time ϵ. We similarly define the output energy as $\mathbf{x}_{0}^{T} Q \mathbf{x}_{0}$. The state $\mathbf{x}_{0} \in \mathbb{R}^{n}$ is considered to be "good" with respect to controllability, if $\mathbf{x}_{0}^{T} P^{-1} \mathbf{x}_{0}$ is "small", as then not much energy is needed to steer it to the origin. The state \mathbf{x}_{0} is considered to be "bad" with respect to observability, if $\mathbf{x}_{0}^{T} Q \mathbf{x}_{0}$ is "small", as it is then hard to distinguish x_{0} from the origin.
It is desirable to find a system representation such that with respect to both criteria simultaneously any standard basis vector $\mathbf{e}_{i} \in \mathbb{R}^{n}$ is either "good" or "bad", so that we can decide about the "quality" of each state component. Thus we perform a coordinate transformation $\mathbf{x}=T \tilde{\mathbf{x}}$ with a non-singular matrix $T \in \mathbb{R}^{n \times n}$ to a new representation with matrices $(\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D})=\left(T^{-1} A T, T^{-1} B, C T, D\right)$. We achieve our goal, if the transformed Gramians \tilde{P}, \tilde{Q} are equal and diagonal. This process is called balancing.
(i) Show that the original and the transformed Gramians are related by the congruences

$$
\tilde{P}=T^{-1} P T^{-T}, \quad \tilde{Q}=T^{T} Q T .
$$

Conclude that the matrices $P Q$ and $\tilde{P} \tilde{Q}$ are similar.
(ii) Show that all eigenvalues of $P Q$ are real and positive.
(iii) Prove the existence of a non-singular transformation matrix T such that

$$
\tilde{P}=\tilde{Q}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)
$$

where the numbers $\sigma_{i}>0$ are the square roots of the eigenvalues of $P Q$ (they are called the Hankel singular values of the system at time ϵ). How would you use this result to define the "quality" of the state \mathbf{e}_{i} in the new representation?

Hint for (ii,iii): Decompose $P=R R^{T}$ and set $S=R^{T} Q R$; now $S>0$ and $\operatorname{Spec}(S)=\operatorname{Spec}(P Q)$; transform $U^{T} S U=\Lambda$ with Λ diagonal and U orthogonal; finally set $T=R U \Lambda^{-1 / 4}$.
Remark: Balancing is an important technique for model reduction, i. e. for finding a smaller model with essentially the same properties. Here the reduction is performed by discarding all state components with a small Hankel singular value.

