

July 9th, 2013

Linear Systems Theory Exercise Sheet 9

Exercise 1

Consider two linear systems

 $\dot{\mathbf{x}}_i = A_i \mathbf{x}_i + B_i \mathbf{u}_i, \qquad \mathbf{y}_i = C_i \mathbf{x}_i + D_i \mathbf{u}_i$

with $A_i \in \mathbb{R}^{n_i \times n_i}$, $B_i \in \mathbb{R}^{n_i \times m_i}$, $C_i \in \mathbb{R}^{p_i \times n_i}$, $D_i \in \mathbb{R}^{p_i \times m_i}$ for i = 1, 2. In analogy to electrical circuits, we define the *series* and the *parallel connection* of the systems. For the series connection we must assume $p_1 = m_2$ and then simply set $\mathbf{u}_2 = \mathbf{y}_1$, i. e. the output of the first system becomes the input of the second one. The parallel connection requires $p_1 = p_2$ and $m_1 = m_2$. It is defined by giving both systems the same input $\mathbf{u}_1 = \mathbf{u}_2 = \mathbf{u}$ and adding their outputs $\mathbf{y} = \mathbf{y}_1 + \mathbf{y}_2$.

- (i) Derive the state space representations of the systems obtained by the two types of interconnection setting $\mathbf{x} = \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix}$.
- (ii) Show that if the series connection is observable, then both original systems are observable, too. Provide a concrete counter example for the converse statement.
- (iii) Assume that (A_1, C_1) and (A_2, C_2) are observable matrix pairs and that in addition the matrix

$$\begin{pmatrix} A_2 - \lambda I & B_2 \\ C_2 & D_2 \end{pmatrix}$$

has full column rank for all eigenvalues λ of A_1 . Prove that these assumptions are sufficient for the observability of the series connection.

- (iv) Show that if the parallel connection is observable, then both original systems are observable, too.
- (v) Prove that the converse of (iv) is true, if we assume additionally that A_1 and A_2 have no common eigenvalue.

Remark: Analogous statements hold for the *controllability* of the series and the parallel connection. Only in (iii) the additional condition must then be replaced by requiring that the matrix

$$\begin{pmatrix} A_1 - \lambda I & B_1 \\ C_1 & D_1 \end{pmatrix}$$

has full row rank for all $\lambda \in \operatorname{spec} A_2$.

Exercise 2

Let \mathcal{D} be a commutative ring with 1 and $R_i \in \mathcal{D}^{g_i \times q}$ for i = 1, 2 two matrices over \mathcal{D} with the same number of columns. A matrix $R \in \mathcal{D}^{g \times q}$ is a *common left multiple* of R_1 and R_2 , if there exist two further matrices T_1, T_2 over \mathcal{D} such that $R = T_1R_1 = T_2R_2$. It is even a *least common left multiple*, if for any other common left multiple \tilde{R} a matrix X exists such that $\tilde{R} = XR$.

(i) Show that for a Noetherian ring \mathcal{D} any two matrices with the same number q of columns possess a least common left multiple.

Hint: consider the left kernel of the matrix

$$S = \begin{pmatrix} R_1 & 0\\ 0 & R_2\\ I_q & I_q \end{pmatrix}$$

(which is finitely generated in the case of a Noetherian ring \mathcal{D}) and interpret its generators as the rows of a matrix (A B - C).

(ii) Prove that R is a least common left multiple of R_1 and R_2 , if and only if

$$\mathcal{D}^{1 \times g_1} R_1 \cap \mathcal{D}^{1 \times g_2} R_2 = \mathcal{D}^{1 \times g} R.$$

What does this characterisation imply for the uniqueness of least common left multiples?

Now we choose $\mathcal{D} = \mathbb{R}[s]$ and introduce the behaviours $\mathcal{B}_i = \{\mathbf{w} \in \mathcal{A}^q \mid R(\frac{d}{dt})\mathbf{w} = 0\}$ for some signal space \mathcal{A} in which the fundamental principle holds. Furthermore, we write $\mathcal{Q} = \mathbb{R}(s)$ for the quotient field of \mathcal{D} . The *rank* of a matrix R over the ring \mathcal{D} is defined as its rank over the field \mathcal{Q} .

(iii) Show that any least common left multiple of R_1 and R_2 represents the behaviour $\mathcal{B}_1 + \mathcal{B}_2$.

Hint: use first a representation of $\mathcal{B}_1 + \mathcal{B}_2$ with the matrix S defined above and then apply the fundamental principle.

- (iv) Show that the following statements are equivalent:
 - 1. rank R_1 + rank R_2 = rank $\binom{R_1}{R_2}$.
 - 2. $\mathcal{Q}^{1 \times g_1} R_1 \cap \mathcal{Q}^{1 \times g_2} R_2 = 0.$
 - 3. $\mathcal{D}^{1 \times g_1} R_1 \cap \mathcal{D}^{1 \times g_2} R_2 = 0.$
 - 4. Any common left multiple of R_1 and R_2 is zero.
 - 5. $\mathcal{B}_1 + \mathcal{B}_2 = \mathcal{A}^q$.

Hint: for proving the implication " $5 \Rightarrow$?" use the concept of an input dimension.