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Abstract. We briefly recall the basic ideas of the Vessiot theory, a geometric

approach to differential equations based on vector fields. Then we show that it
allows to extend naturally some results on singularities for ordinary differential

equations to maximally overdetermined partial differential equations.

1. Geometric Theory of Differential Equations. The geometric modelling of
differential equations is based on the jet bundle formalism [7, 9, 11]. We formulate
it here for sections of a fibred manifold π : E → X . For simplicity, we will work
in local coordinates, although we will use a “global notation” in order to avoid the
tedious introduction of many neighbourhoods. We call coordinates x = (x1, . . . , xn)
on the base space X independent variables and fibre coordinates u = (u1, . . . , um)
in the total space E dependent variables. Derivatives are written in the form uαµ =
∂|µ|uα/∂xµ1

1 · · · ∂xµnn with a multi index µ = [µ1, . . . , µn]. Adding all derivatives uαµ
up to order q (collectively denoted by u(q)) defines a coordinate system for the q-th
order jet bundle Jqπ which may be considered as the space of Taylor polynomials
of maximal degree q. The hierarchy of jet bundles (Jqπ)q≥0 admits many natural
fibrations. Important for us are πqq−1 : Jqπ → Jq−1π and πq : Jqπ → X .

Sections σ : X → E of π correspond to functions u = s(x), as locally they
can always be written in the form σ(x) =

(
x, s(x)

)
. To such a section σ, we

associate its prolongation jqσ : X → Jqπ, a section of the fibration πq given by
jqσ(x) =

(
x, s(x), ∂xs(x), ∂xxs(x), . . .

)
.

The geometry of Jqπ is to a large extent determined by its contact structure
describing intrinsically the relationship between the different types of coordinates.
One way to realise it consists of considering the smallest distribution1 Cq ⊂ T (Jqπ)
that contains the tangent spaces T (im jqσ) of all prolonged sections. Cq is called
the contact distribution and any vector field in it a contact vector field. In local
coordinates, Cq is generated by the following two families of fields2

C
(q)
i = ∂i + uαµ+1i∂uαµ , 1 ≤ i ≤ n , (1a)

Cµα = ∂uαµ , |µ| = q . (1b)
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An alternative approach to the contact structure, the contact map, was intro-
duced in [8]. It is the unique map Γq : Jqπ×XTX → T (Jq−1π) such that

Jqπ×XTX
Γq // T (Jq−1π)

TX
((jqσ)◦τX )×idTX

ddJJJJJJJJJ T (jq−1σ)

::ttttttttt

(2)

is a commutative diagram for any section σ : X → E . Because of its linearity over
πqq−1, we may also consider it as a map Γq : Jqπ → T ∗X⊗Jq−1πT (Jq−1π) with the
local coordinate form:

Γq : (x,u(q)) 7→
(
x,u(q−1); dxi ⊗ (∂xi + uαµ+1i∂uαµ )

)
. (3)

In this form one sees that im Γq = Cq−1 and hence Cq = (Tπqq−1)−1(im Γq). The
following result is classical and explains how the contact structures characterises
those sections of the fibration πq which are prolongations of sections of π.

Proposition 1.1. A section γ : X → Jqπ is of the form γ = jqσ for a section
σ : X → E, if and only if im Γq

(
γ(x)

)
= Tγ(x)π

q
q−1

(
Tγ(x)(im γ)

)
for all points

x ∈ X where γ is defined.

A differential equation of order q is a fibred submanifold Rq ⊆ Jqπ locally de-
scribed as the zero set of some smooth functions on Jqπ:

Rq :
{

Φτ (x,u(q)) = 0 , τ = 1, . . . , t . (4)

Note that this definition does not distinguish between scalar equations and systems.
Indeed, when we speak of a differential equation in the sequel, we will always mean
a system, if not explicitly stated otherwise.

Differentiating every equation in (4) yields the prolonged equation Rq+1 ⊆ Jq+1π
defined by all equations Φτ = 0 and DiΦτ = 0 with the formal derivative

DiΦτ = C
(q)
i (Φτ ) + uαµ+1iC

µ
α(Φτ ) . (5)

Iteration of this process gives the higher prolongations Rq+r ⊆ Jq+rπ. A subse-
quent projection leads to the differential equation R(1)

q = πq+1
q (Rq+1) ⊆ Rq which

will be a proper submanifold, if integrability conditions are hidden. Rq is formally
integrable, if at any prolongation order r > 0 the equality R(1)

q+r = Rq+r holds. An
involutive differential equation satisfies in addition some further algebraic conditions
which we do not specify here (see [11] for more details). By the Cartan-Kuranishi
theorem, every consistent differential equation can be completed to an equivalent
involutive one by a finite number of prolongations and projections (extracting hid-
den integrability conditions). Therefore, without loss of generality, we will always
assume in the sequel that we are dealing with an involutive equation.

Definition 1.2. A classical solution of the differential equation Rq ⊆ Jqπ is a
(local) section σ : X → E such that its prolongation satisfies im jqσ ⊆ Rq.

In local coordinates, this definition obviously coincides with the usual notion of a
solution. For involutive equations, it is straightforward to construct order by order
formal power series solutions; if the equation is furthermore analytic, then one can
show that the series converges and one obtains the Cartan-Kähler theorem as a
generalisation of the familiar Cauchy-Kovalevskaya theorem.
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2. The Vessiot Distribution. A key insight of Cartan was to introduce infini-
tesimal solutions or integral elements at a point ρ ∈ Rq as subspaces Uρ ⊆ TρRq
which are potentially part of the tangent space of a prolonged solution. We follow
an approach pioneered by Vessiot [13] which is based on vector fields and dual to the
more familiar Cartan-Kähler theory. Therefore our definition of an integral element
is not the standard one, but one can easily prove the equivalence [11].

Definition 2.1. Let Rq ⊆ Jqπ be a differential equation of order q. A linear
subspace Uρ ⊆ TρRq is an integral element at the point ρ ∈ Rq, if a point ρ̂ ∈ Rq+1

exists such that πq+1
q (ρ̂) = ρ and Uρ ⊆ im Γq+1(ρ̂).

According to Proposition 1.1, the tangent spaces Tρ(im jqσ) of prolonged solu-
tions of Rq are always integral elements. However, the converse is not true: integral
elements are only candidates for such tangent spaces. In particular, one should note
that integral elements are defined at single points ρ ∈ Rq, hence the construction of
a classical solution defined in some neighbourhood U ⊆ X of a point x ∈ X requires
integral elements over all points y ∈ U . Thus for obtaining classical solutions from
infinitesimal ones distributions of integral elements must be considered.

By Proposition 1.1, the tangent spaces Tρ(im jqσ) of prolonged sections at points
ρ ∈ Jqπ are always subspaces of the contact distribution Cq|ρ. If the section σ is
a solution of Rq, it furthermore satisfies by definition im jqσ ⊆ Rq and hence
T (im jqσ) ⊆ TRq. These considerations motivate the following construction.

Definition 2.2. The Vessiot distribution of a differential equation Rq ⊆ Jqπ is the
distribution V[Rq] ⊆ TRq defined by

V[Rq] = TRq ∩ Cq|Rq . (6)

Computing the Vessiot distribution is straightforward and requires only some
linear algebra. It follows from Definition 2.2 that any vector field X contained in
V[Rq] is a contact field and thus can be written as a linear combination of the basic
fields (1): X = aiC

(q)
i + bαµC

µ
α . On the other hand, X must be tangent to the

differential equation Rq. Hence, if Rq is locally described by the system (4), then
X must satisfy the equations dΦτ (X) = X(Φτ ) = 0. Evaluation of this condition
yields the following linear system of equations for the coefficients ai, bαµ :

C
(q)
i (Φτ )ai + Cµα(Φτ )bαµ = 0 , τ = 1, . . . , t . (7)

Note that X is vertical with respect to πq, if and only if all coefficients ai vanish.
Determining the Vessiot distribution of Rq requires essentially the same compu-

tations as prolonging it. Indeed, the prolongation Rq+1 is locally described by the
original equations Φτ = 0 together with the prolonged equations

Cµα(Φτ )uαµ+1i + C
(q)
i (Φτ ) = 0 , τ = 1, . . . , t , i = 1, . . . , n . (8)

For an ordinary differential equation, where n = 1, these coincide with (7), if we
set a1 = 1 and bαµ = uαµ+11

, i. e. if we consider only transversal solutions of (7).

Remark 2.3. If a formally integrable differential equation Rq ⊂ Jqπ contains
equations of different orders, then only the equations of highest order are relevant
for the determination of the Vessiot distribution. Assume that locally the differential
equation Rq is described by the system

Φτ (x,u(q)) = 0 , 1 ≤ τ ≤ t , (9a)

Ψσ(x,u(q−1)) = 0 , 1 ≤ σ ≤ s . (9b)
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Here we assume that the Jacobian of Φτ with respect to all derivatives of order q
has maximal rank, i. e. that no lower-order equations can be extracted from (9a).
If we follow the above described ansatz for determining V[Rq], then the first sub-
system (9a) contributes the conditions (7) and the second subsystem (9b) yields
C

(q)
i (Ψσ)ai = 0. Since Ψσ does not depend on any derivatives of order q, (5) im-

plies that DiΨσ = C
(q)
i (Ψσ). By assumption, Rq is formally integrable and hence

DiΨσ vanishes on Rq, as otherwise an integrability condition would arise. Thus
(9b) does not provide additional conditions on the Vessiot distribution.

Example 2.4. Assume that we are given a first-order ordinary differential equation
R1 ⊂ J1π of the standard form ux = f(x,u). Then a straightforward computation
yields that the Vessiot distribution V[R1] is everywhere one-dimensional and gen-
erated by the vector field

X = ∂x + fα∂uα +
(
∂fα

∂x
+ fβ

∂fα

∂uβ

)
∂uαx (10)

(here we exploited that on R1 one can substitute uαx by fα). One recognises the
expression in the parentheses as the value of uαxx obtained by prolonging the equation.
X is projectable from R1 to E and the result Tπ1

0(X) = ∂x+fα∂uα is the evolution
vector field associated with the given differential equation. Hence we may consider
V[R1] as a “lift” of this evolution field to R1. Here this lift is not particularly
interesting, but it is useful for analysing singularities of implicit equations.

Geometrically, an ordinary differential equation in standard form defines an
Ehresmann connection on the underlying fibred manifold π : E → X . If the base
space X is higher-dimensional, then connections are defined by first-order partial
differential equations locally described by systems of the form

R1 :
{
uαi = φαi (x,u) , α = 1, . . . ,m , i = 1, . . . , n . (11)

Indeed, such a system induces a horizontal bundle H ⊂ TE generated by the vector
fields Yi = ∂xi +φαi ∂uα . The connection is flat, i. e. the distribution H involutive in
the sense that it is closed under Lie brackets, if and only if R1 is formally integrable.
The Vessiot distribution V[R1] is here n-dimensional and generated by the fields

Xi = ∂xi + φαi ∂uα +
(
∂φαj
∂xi

+ φβi
∂φαj
∂uβ

)
∂uαj , 1 ≤ i ≤ n . (12)

Again Tπ1
0(Xi) = Yi, so that we may consider V[R1] as a “lift” of the horizontal

bundle H, and in the parentheses one finds the value of the derivative uαij given by
the prolonged equation.

It should be stressed that we allow that the rank of a distribution varies from
point to point. In fact, this will be important for certain types of singularities. The
following, fairly elementary result is the basis of Vessiot’s approach to the existence
theory of solutions for the differential equation Rq. It relates solutions of Rq with
certain subdistributions of the Vessiot distribution V[Rq].

Lemma 2.5. If the section σ : X → E is a solution of the equation Rq, then the tan-
gent bundle T (im jqσ) is an n-dimensional involutive subdistribution of V[Rq]|im jqσ

transversal to the fibration πq. Conversely, if U ⊆ V[Rq] is an n-dimensional
transversal involutive subdistribution, then any integral manifold of U has locally
the form im jqσ for a solution σ of Rq.
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Because of this simple observation, Vessiot proposed to search for n-dimensional,
transversal involutive subdistributions of V[Rq] and presented a concrete proce-
dure consisting of an algebraic and a differential step for the actual construction
of all such subdistributions. Fesser [2] provided recently a rigorous analysis of this
procedure and showed that it succeeds, if and only if the differential equation Rq
is involutive (see also [3] or [11, Sects 9.5/6]). Here we only mention briefly how
(distributions of) integral elements can be characterised algebraically.

Proposition 2.6 ([2, 3]). Let U ⊆ V[Rq] be a subdistribution of the Vessiot distri-
bution of constant rank k not containing vertical vectors. Then the spaces Uρ are
k-dimensional integral elements for all points ρ ∈ Rq, if and only if [U ,U ] ⊆ V[Rq].
Definition 2.7. A generalised solution of the differential equation Rq ⊆ Jqπ is an
n-dimensional integral manifold N ⊆ Rq of the Vessiot distribution V[Rq].

Note that a generalised solution lives in the jet bundle Jqπ and not in E . If
σ : X → E is a classical solution, then the image of its prolongation jqσ : X → Jqπ
is a generalised solution. However, not every generalised solution N projects on
a classical one: this will be the case, if and only if the tangent bundle TN is
everywhere transversal to the fibration πq : Jqπ → X . It follows from the discussion
in Example 2.4 that a partial differential equation of the form considered there
possesses generalised solutions, if and only if it is formally integrable. Generalised
solutions permit in particular the treatment of multivalued solutions, as they often
appear in wave equations [6, 14].

3. Maximally Overdetermined Systems. We call a first-order partial differ-
ential equation R1 ⊂ J1π in n independent and m dependent variables locally
described by the system Φτ (x,u(1)) = 0 maximally overdetermined (or holonomic),
if dimR1 ≤ n+m. Obviously, this requires that the system comprises at least mn
equations. The partial differential equations considered in Example 2.4 obviously
belong to this class, as for them dimR1 = n+m.

Definition 3.1. Let R1 be a maximally overdetermined, involutive differential
equation in n independent variables locally described by the system Φτ (x,u(1)) = 0.
A point ρ ∈ R1 is called

(i): regular, if Vρ[R1] is n-dimensional and transversal to the fibration π1,
(ii): regular singular, if Vρ[R1] is n-dimensional, but not transversal to π1,
(iii): irregular singular or s-singular, if dimVρ[R1] = n+ s with s > 0.

Regular singularities are also called impasse points.

This definition extends a terminology introduced by Arnold [1] for ordinary dif-
ferential equations. Rabier [10] objects that it may be confused with similar notions
in the Fuchs–Frobenius theory of linear ordinary differential equations in the com-
plex plane. While this is certainly true, it is equally true that from a geometric
point of view this terminology appears very natural, as the classification is based
on whether the Vessiot distribution behaves regularly or singularly at ρ in the sense
that its dimension jumps.

Proposition 3.2. Let the maximally overdetermined, involutive differential equa-
tion R1 ⊂ J1π in n independent and m dependent variables be locally described by
the system Φτ (x,u(1)) = 0. The point ρ = (x̄, ū(1)) ∈ R1 is regular, if and only if

rank
(
∂Φτ

∂uαi

)
ρ

= mn . (13)
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The point ρ is regular singular, if and only if it is not regular and

rank
(
∂Φτ

∂uαi

∂Φτ

∂xj
+ uβj

∂Φτ

∂uβ

)
ρ

= mn . (14)

Proof. This claim is a simple consequence of the local computation of the Vessiot
distribution V[R1]. The usual ansatz X = aiC

(1)
i + bαi C

i
α yields a linear system of

t ≥ mn equations for the (m+ 1)n coefficients ai, bαi :

Ciα(Φτ )bαi + C
(1)
i (Φτ )ai = 0 , 1 ≤ τ ≤ t . (15)

Obviously, we obtain an n-dimensional distribution, if and only if (14) is satisfied.
V[R1] is in addition transversal to π1, if and only if no solution exists for which all
coefficients ai vanish, which is the case if already (13) is satisfied.

Example 3.3. We consider the maximally overdetermined, involutive differential
equation R1 locally described by the fully nonlinear system

u2
x + u2 + (x2 − 1)e2y = 0 , (16a)

uy − u = 0 . (16b)

As usual, we make the ansatz X = a1C
(1)
1 + a2C

(1)
2 + b1C

1
1 + b2C

2
1 for a general

vector field in the Vessiot distribution V[R1]. Then we obtain modulo (16) for the
coefficients the following linear system:

(xe2y + uux)a1 + u2
xa

2 + uxb1 = 0 , (17a)

−uxa1 − ua2 + b2 = 0 . (17b)

Thus V[R1] is generically spanned by the two vector fields

X1 = uxC
(1)
1 − (xe2y + uux)C1

1 + u2
xC

2
1 , (18a)

X2 = C
(1)
2 − uxC1

1 + uC2
1 . (18b)

Obviously, for ux = 0 the field X1 becomes vertical. If in addition x = 0, then
the first equation in (17) vanishes identically and V[R1] becomes three-dimensional.
Hence all points ρ ∈ R1 with ux 6= 0 are regular, those with ux = 0 and x 6= 0 are
regular singular and those with ux = x = 0 are irregular singular.

Away from the irregular singularities, the Vessiot distribution is involutive and
through every point a unique generalised solution exists as a leaf of the corresponding
foliation. For ux 6= 0 this generalised solution projects onto a classical one. At the
irregular singularities the leaves of the foliation intersect and thus infinitely many
solutions go through these points (which may be considered as a generalised form
of the folded foci discussed in [1] for ordinary differential equations). This can
be seen as follows. The singular behaviour concerns only the x-dependency of the
solution and thus can be studied by analysing the integral curves of the vector field
X̂1 = ux(∂x+ux∂u)−(cx+uux)∂ux for a non-negative constant c on the hypersurface
u2
x + u2 + c(x2 − 1) = 0 in the three-dimensional space with coordinates (x, u, ux).

This field has a focus at the points with ux = x = 0 and thus infinitely many integral
curves meet there.

Another way to understand the properties of R1 consists of noting that the second
equation (16b) implies that any solution is of the form u(x, y) = v(x)ey. Entering
this ansatz into (16a) yields that v(x) must satisfy the ordinary differential equation
v2
x + v2 + x2 = 1 which will be studied in more details in the next section.
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Another type of singular behaviour is the classical notion of a singular integral
which occurs if a submanifold of irregular singularities can be considered as a dif-
ferential equation of its own. A famous example of an ordinary differential equation
possessing a singular integral is the Clairaut equation u = xux + f(ux) with a
function f such that f ′′ 6= 0. Izumiya [4] defined a square system of n first-order
partial differential equations Φτ (x, u(1)) = 0 for a single dependent variable u to be
of Clairaut type, if smooth functions Bij(x, u(1)), Dt

iσ(x, u(1)) exist such that

C
(1)
i (Φτ ) = BijC

j
1(Φτ ) +Dτ

iσΦσ (19)

and where the coefficients Bij satisfy in addition

Bij = Bji , (20a)

C
(1)
i (Bjk) +B`iC

`
1(Bjk) = C

(1)
k (Bji) +B`kC

`
1(Bji) . (20b)

Izumiya and Kurokawa [5] provided a classification of such systems.

Proposition 3.4. Let R1 be a maximally overdetermined equation of Clairaut type.
On the submanifold of all regular points the Vessiot distribution V[R1] is spanned
by the n vector fields

Xi = C
(1)
i −BijC

j
1 , 1 ≤ i ≤ n , (21)

and it is involutive. All other points are irregular singular.

Proof. Making our usual ansatzX = aiC
(1)
i +bjC

j
1 for a field in V[R1] and exploiting

the relation (19) defining equations of Clairaut type, we obtain the system

(aiBij + bj)C
j
1(Φτ ) = 0 , 1 ≤ τ ≤ n . (22)

At regular points the square matrix
(
Cj1(Φτ )

)
is invertible and we obtain as solution

(21). If this matrix is singular, the solution space is of higher dimension and thus
we are at an irregular singularity. One easily verifies by direct computation that
the fields (21) form an involutive distribution, if and only if (20) is satisfied.

Thus we conclude that the terminology “Clairaut type” is a bit misleading for this
class of equations, as the defining conditions only ensure that we are dealing with
an involutive differential equation. A truly Clairaut-like behaviour emerges only, if
almost all points on R1 are regular and the irregularity condition det

(
Cj1(Φτ )

)
= 0

is compatible with R1. In this case the differential equation R̂1 ⊂ R1 obtained
by adding the irregularity condition is also involutive. Since dim R̂1 = n, this
augmented equation has exactly one solution—the singular integral.

Example 3.5. Consider the following maximally overdetermined equation in two
independent variables x, y

R1 :
{
u2
x − u = 0 , uy = 0 . (23)

One easily verifies that it is of Clairaut type with the only non-vanishing coefficients
B11 = −1/2 and D1

22 = −1. Points with ux 6= 0 are regular and, according to
Proposition 3.4, the Vessiot distribution is there spanned by the two vector fields

X1 = C
(1)
1 +

1
2
C1

1 , X2 = C
(1)
2 . (24)

The general solution is here given by u(x, y) = 1
4 (x+a)2 and defines a one-parameter

family of parabolas.
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The singular integral is trivially given by u(x, y) = 0, as adding the irregularity
condition ux = 0 to (23) leads to the augmented equation R̂1 defined by the sys-
tem u = ux = uy = 0. It defines an envelope of the general solution (which is
typical for Clairaut equations). Compared with Example 3.3, we find here a very
different behaviour at an irregular singular point ρ, although in both cases VρR1

becomes three-dimensional. In Example 3.3 the singular points are folded foci where
a generalised solution exists for every two-dimensional subspace of Vρ[R1]. Here
two distinguished two-dimensional subspaces exists: one is defined by continuing
the fields (24) to ρ and corresponds to the unique member of the general solution
going through ρ; the other one is Vρ[R̂1] (generated by the vectors C(1)

1 |ρ and C(1)
2 |ρ)

and corresponds to the singular integral.

4. Ordinary Differential Equations. The Vessiot distribution has been used for
the analysis of singularities of ordinary differential equations for a long time (though
not the term “Vessiot distribution”). Much of the theory is devoted to scalar equa-
tions of first order [1]. We will extend some classical results to arbitrary formally
integrable systems. The following generalised existence and uniqueness theorem for
ordinary differential equations explains the terminology “impasse point.”

Theorem 4.1. Let R1 be a formally integrable first-order ordinary differential equa-
tion such that everywhere dimV[R1] = 1 (i. e. R1 contains no irregular singular
points). If ρ ∈ R1 is a regular point, then there exists a unique classical solution
σ with ρ ∈ im j1σ. This solution can be extended until im j1σ reaches either the
boundary of R1 or a regular singular point. If ρ ∈ R1 is a regular singular point,
then either two solutions σ1, σ2 with ρ ∈ im j1σi exist or only one solution whose
second derivative blows up.

Proof. As a one-dimensional distribution, V[R1] is trivially involutive and the Frobe-
nius theorem guarantees for each point ρ ∈ R1 the existence of a unique generalised
solution Nρ with ρ ∈ Nρ. This generalised solution is a smooth curve which can be
extended until it reaches the boundary of R1 and around each regular point ρ̄ ∈ Nρ
it projects onto the graph of a classical solution σ.

Assume that in an open, simply connected neighbourhood of ρ the Vessiot distri-
bution V[R1] is generated by the vector field X. If ρ is an impassse point, then Xρ

is vertical to π1, i. e. its ∂x-component vanishes. The behaviour of the projection
N̂ρ = π1

0(Nρ) depends on whether the ∂x-component changes its sign at ρ. If the
sign changes, then N̂ρ has two branches corresponding to two classical solutions
which both either end or begin at ρ̂ = π1

0(ρ) (see Figure 1 below for an example).
Otherwise N̂ρ is still the graph of a classical solution, but it follows immediately
from a comparison of (7) and (8) that the second derivative of this solution at ρ̂
must be infinite.

Our final result concerns irregular singularities of an involutive equation R1. If
R1 is not underdetermined, then it follows from Proposition 3.2 that these form a
submanifold of codimension at least 2. Thus, if ρ ∈ R1 is an irregular singularity,
then we can find an open, simply connected submanifold U ⊂ R1 such that ρ ∈ U
and that everywhere in U the Vessiot distribution V[R1] is one-dimensional. Then
V[R1] can be described within U as the span of a single vector field X.

Theorem 4.2. In the situation described above, any smooth extension of the vector
field X vanishes at the irregular singularity ρ.
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Proof. Following Remark 2.3, we may assume without loss of generality that R1

is described in U by a square system Φτ (x,u,u′) = 0 with as many equations as
unknown. We denote by A the Jacobian ∂Φτ/∂(u′)α and by v the vector with the
components vτ = C

(1)
1 (Φτ ). For determining the Vessiot distribution V[R1], we

make the usual ansatz X = aC
(1)
1 + bαC1

α. If we collect the coefficients bα in the
vector b, then the linear system Ab + av = 0 must be solved.

Let A∗ be the adjunct matrix of A, i. e. AA∗ = A∗A = det (A)1. Then at any
point within U all solutions are multiples of a = detA and b = −A∗v so that we
may assume without loss of generality that

X = det (A)C(1)
1 − (A∗v)αC1

α . (25)

At any singular point the determinant detA vanishes. By Proposition 3.2, we
must distinguish two cases for the irregular singularity ρ. If rankA < n − 1 at ρ,
then it follows immediately that A∗ = 0, too, and thus we find Xρ = 0, as claimed.
If rankA = n − 1 at ρ, then we must also have rank (A | v) = n − 1 there, as
otherwise ρ was regular singular. Thus at ρ the vector v is linearly dependent of
the columns of A. Since (by Cramer’s rule) the components of A∗v can be expressed
as determinants where one column of A is replaced by v, we see that in this case
A∗v = 0 at ρ and thus also Xρ = 0.

Example 4.3. We consider the fully nonlinear ordinary differential equation R1

given by u2
x + u2 + x2 = 1 which obviously is the unit sphere in J1π. One easily

verifies with the help of Proposition 3.2 that all points off the equator ux = 0 are
regular and that on the equator all points are regular singular except for the two 1-
singular points (0,±1, 0). Indeed, except for these two irregular singularities V[R1]
is globally spanned by the vector field X = ux∂x + u2

x∂u − (x + uux)∂ux . Figure 1
shows the direction defined by V[R1] at some points on R1. The singular points are
marked red; they are zeros (nodes) for the field X, as predicted by Theorem 4.2.

Figure 1. Two generalised solutions on R1

Figure 1 also shows two generalised solutions of R1. All generalised solutions are
smooth curves connecting the two irregular singular points. They cross repeatedly
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the equator and if one considers their projections to E (the red plane in the figure),
then one sees that these form then a cusp. The projection defines a classical solution
only in the segments between two cusps.

5. Conclusions. We showed that the geometric theory of differential equations
provides in form of the Vessiot distribution a very natural tool for singularity anal-
ysis. We exploited it for the generalisation of some results for scalar ordinary
differential equations to maximally overdetermined systems of partial differential
equations or to systems of differential algebraic equations. Since the Vessiot the-
ory yields for any involutive partial differential equation a “covering” by an infinite
family of maximally overdetermined systems [2, 3], our results can be seen as a step
towards the singularity analysis of arbitrary partial differential equations.

The full power of the geometric approach becomes apparent in the ease with
which we could prove Theorem 4.1. Rabier [10] presented a similar result with a
considerably longer analytic proof. The length of his proof is essentially due to the
fact that—in our geometric language—Rabier works in E and the simple geometry
behind an impasse point becomes visible only in J1π.

The Vessiot theory is also useful for the numerical integration around impasse
points [12]. Away from irregular singularities, it is trivial to determine the Vessiot
distribution numerically and then to integrate it with any standard method for
ordinary differential equations. In fact, Figure 1 was produced that way.
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