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Abstract. Investigating oscillations for parametric ordinary differential
equations (ODEs) has many applications in science and engineering but
is a very hard problem.
We review some recently developed criteria which give sufficient con-
ditions to exclude oscillations by reducing them to problems on semi-
algebraic sets—for polynomial vector fields. We will give some examples
and we will discuss possible future work in the form of problems to be
solved. Some of these problems might be rather immediate to be solved,
some others might pose major challenges.

1 Introduction

Investigating oscillations for parametric ordinary differential equations (ODEs)
has many applications in science and engineering but is a very hard problem. Al-
ready for two dimensional polynomial systems this question is related to Hilbert’s
16th problem, which is still unsolved [1].

Using the theory of Hopf-bifurcations some non-numeric algorithmic meth-
ods have been recently developed to determine ranges of parameters for which
some small stable limit cycle will occur in the system [2–8]. These algorithms
give exact conditions for the existence of fixed points undergoing a Poincaré-
Andronov-Hopf bifurcation that give birth to a small stable limit cycle under
some general conditions which can be made algorithmic, too. If these conditions
are not satisfied, one can be sure that there are no such fixed points, but unfor-
tunately one cannot conclude that there are no limit cycles—which could arise
by other means. Nevertheless, it is tempting to conjecture even in these cases
that there are no oscillations, as has been done e.g. in [5, 6].



However, the ultimate goal of finding exact algorithmic conditions for the
existence of oscillations, i. e. for determining for which parameter values there are
non-constant limit cycles for a given system of parametric ordinary differential
equations is a major challenge, so that considerable work has been spent—and
will be also be invested in the future—for investigating sub-problems.

In this paper we deal with computer algebra methods for some of these sub-
problems. Our techniques will be along the line of work reducing problems on the
qualitative analysis of ordinary differential equations to semi-algebraic problems.
This possibility might seem to be surprising on first sight, as even the description
of flows induced by the simplest linear ordinary differential equations involves
exponential functions. However, a significant part of the study of the qualitative
behavior of differential equations can be done in the realm of algebraic or semi-
algebraic sets: Starting from the rather trivial observation that for polynomial
vector fields the study of the equilibria of the vector field is purely algebraic, also
questions of the stability of the equilibria can in general be reduced to decidable
questions on semi-algebraic sets (for polynomial vector fields) via the well known
Routh-Hurwitz criterion [9]). Also the parametric question (for a parameterized
polynomial vector field) whether fixed points undergo a Hopf bifurcation is not
only known to be decidable but also lies within the realm of semi-algebraic sets
[8, 10, 3].

We review some recently developed criteria which give sufficient conditions
to exclude oscillations by reducing them to problems on semi-algebraic sets—for
polynomial vector fields. We will give some examples and we will discuss possible
future work in the form of problems to be solved. Some of these problems might
be rather immediate to be solved, some others might pose major challenges.

2 Preliminaries

2.1 The Bendixson-Dulac criterion for 2-dimensional vector fields

Consider an autonomous planar vector field

dx

dt
= F (x, y),

dy

dt
= G(x, y), (x, y) ∈ R2.

Bendixson in 1901 [11] was the first to give a criterion yielding sufficient
conditions for excluding oscillations. For a modern proof we refer to [12, Theo-
rem 1.8.2].

Theorem 1 (Bendixson’s criterion). If div(F,G) = ∂(F )
∂x + ∂(G)

∂y is not iden-
tically zero and does not change sign on a simply connected region D ⊆ R2, then
(F,G) has no closed orbits lying entirely in D.

Dulac in 1937 [13] was able to generalize the result of Bendixson as follows:

Theorem 2 (Dulac’s criterion). Let B(x, y) be a scalar continuously differ-
entiable function defined on a simply connected region D ⊂ R2 with no holes in
it. If ∂(BF )

∂x + ∂(BG)
∂y is not identically zero and does not change sign in D, then

there are no periodic orbits lying entirely in D.



Dulac’s criterion is a generalization of Bendixson’s criterion, which corre-
sponds to B(x, y) = 1.

2.2 Quantifier elimination and positive quantifier elimination over
the ordered field of the reals

In order to summarize the basic idea of real quantifier elimination, we introduce
first-order logic on top of polynomial equations and inequalities.

We consider multivariate polynomials f(u, x) with rational coefficients, where
u = (u1 . . . , um) and x = (x1, . . . , xn). We call u parameters and we call x vari-
ables. Equations will be expressions of the form f = 0, inequalities are of the
form f ≤ 0, f < 0, f ≥ 0, f > 0, or f 6= 0. Equations and inequalities are called
atomic formulae. Quantifier-free formulae are Boolean combinations of atomic
formulae by the logical operators “∧,” “∨,” and “¬.” Existential formulae are of
the form ∃x1 . . . ∃xnψ(u, x), where ψ is a quantifier-free formula. Similarly, uni-
versal formulae are of the form ∀x1 . . . ∀xnψ(u, x). A general (prenex) first-order
formula has several alternating blocks of existential and universal quantifiers in
front of a quantifier-free formula.

The real quantifier elimination problem can be phrased as follows: Given a
formula ϕ, find a quantifier-free formula ϕ′ such that both ϕ and ϕ′ are equivalent
in the domain of the real numbers. A procedure computing such a ϕ′ from ϕ is
called a real quantifier elimination procedure.

Although real quantifier elimination is known to be a computationally hard
problem [14, 15], there has been considerable and quite successful research on
efficient implementations during the past decades, which has resulted in three
major systems:

1. The commercial computer algebra system Mathematica includes an efficient
implementation of CAD-based real quantifier elimination by Strzebonski [16,
17], the development of which started around 2000.

2. Qepcad b [18], which implements partial cylindrical algebraic decomposi-
tion (CAD). The development of Qepcad b started with the early work of
Collins and his collaborators on CAD around 1973 and continues until today.
Qepcad b is supplemented by another software called Slfq for simplifying
quantifier-free formulas using CAD. Both Qepcad b and Slfq are freely
available.4

3. redlog5 [19, 20], which had been originally driven by the efficient imple-
mentation of quantifier elimination based on virtual substitution methods
[14, 21, 22]. Meanwhile redlog includes also CAD and Hermitian quantifier
elimination [23–25] for the reals as well as quantifier elimination for vari-
ous other domains [26] including the integers [27, 28]. The development of
redlog has been started in 1992 by one of the authors (T. Sturm) of this
paper and continues until today. redlog is included in the computer algebra
system reduce, which is open source.6

4 http://www.usna.edu/Users/cs/qepcad/B/QEPCAD.html
5 http://www.redlog.eu/
6 http://reduce-algebra.sourceforge.net/



Besides regular quantifier elimination methods for the reals, redlog includes
several variants of quantifier elimination. This includes in particular extended
quantifier elimination [29], which yields in addition sample solutions for existen-
tial quantifiers, and positive quantifier elimination [4, 2], which includes powerful
simplification techniques based on the knowledge that all considered variables
are restricted to positive values.

As in many applications the region of interest is the positive cone of the
state variables, and also the parameters of interest are known to be positive, the
positive quantifier elimination is of special importance and will be used for many
of the examples given below.

3 Some Algorithmic Global Criteria for Excluding
Oscillations

The algorithmic criteria discussed in the following can be seen as generalizations
of the Bendixson-Dulac criterion for 2-dimensional vector fields to arbitrary di-
mensions.

3.1 Muldowney’s Criteria

The following theorem was proved by Muldowney [30, Theorem 4.1]: Suppose
that one of the inequalities

µ

(
∂f [2]

∂x

)
< 0, µ

(
−∂f

[2]

∂x

)
< 0 (1)

holds for all x ∈ Rn. Then the autonomous system with vector field f : Rn −→
Rn has no nonconstant periodic solutions. Here µ is some Lozinskĭı norm and
f [2] is one of the “compound matrices” of the Jacobian of the vector field f
defined in [30]. As as also shown in [30] the criterion given in [30, Theorem 4.1]
also holds when x ∈ C, where C ⊆ Rn is open and convex.

Remark. When n = 2, ∂f [2]/∂x = Trace ∂f/∂x = divf , so that [30, Theo-
rem 4.1] gives the results of Bendixson, i.e. the criterion of Muldowney can be
seen as a generalization of the criterion of Bendixson from the planar case to
arbitrary dimensions.

According to [30, (2.2)], any of the following expressions may be used as
µ
(
∂f [2]/∂x

)
in [30, Theorem 4.1].

max
{
∂fr

∂xr
+
∂fs

∂xs
+
∑

q 6=r,s

∣∣∣∣ ∂fq

∂xr

∣∣∣∣+
∣∣∣∣∂fq

∂xs

∣∣∣∣ : r, s = 1, . . . , n, r 6= s

}
, (2)

max
{
∂fr

∂xr
+
∂fs

∂xs
+
∑

q 6=r,s

∣∣∣∣ ∂fr

∂xq

∣∣∣∣+
∣∣∣∣ ∂fs

∂xq

∣∣∣∣ : r, s = 1, . . . , n, r 6= s

}
. (3)



Thus for a formula γ over the reals defining an open convex subset C of Rn

and an autonomous polynomial vector field f : Rn → Rn the following first-
order formula over the real closed field defines a sufficient condition such that
the vector field defined by f has no non-constant periodic solution on C:

ϕ ≡ ∀x1∀x2 · · · ∀xn

(
γ =⇒ (4)

max
{
∂fr

∂xr
+
∂fs

∂xs
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q 6=r,s
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∂xr
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∂xs
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}
< 0
)

∨ ∀x1∀x2 · · · ∀xn

(
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(
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{
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}
< 0
)
.

The maximum and absolute value functions are included in the language of
ordered rings as it is commonly used for real quantifier elimination. They are,
however, definable.

In [31] the problem of efficient automatic resolution of maxima and absolute
values is addressed and computation examples are given.

3.2 An Algorithmic Global Criterion Excluding Oscillations Based
on Algebraic First-Integrals

Computing algebraic first-integrals Another algorithmic method to para-
metrically investigate the absence of oscillations relies on the possibility to com-
pute algebraic first integrals of polynomial vector fields. Those do not necessarily
exist, but if there exists such first integrals up to a certain degree these can be
computed by the following method described in the book by Goriely [32].

Consider an n-dimensional polynomial vector field G of degree d. In general,
this vector field may depend on a certain number of parameters, say (ν1, . . . , νp).
The problem consists of finding the values of (ν1, . . . , νp) such that the vector
field admits a time-independent polynomial first integral of a given degree D.

1. Start with D = 1.



2. Consider the most general form of a polynomial first integral of degree D

I(x) =
|i|=D∑
i,|i|=1

cixi. (5)

3. Compute the time derivative of I(x).

δGI =
|i|=D+d−1∑

i,|i|=0

Qix
i. (6)

4. Since we are looking for I such that δGI = 0, we have Qi = 0. This system
of equations is a linear system for the coefficients ci of dimension at most(
n+ d+D − 1

n

)
. So, if there exist values of the parameter (ν1, . . . , νp) and

a set of constants ci that are not all zero, such that Qi = 0 for all i, then
I(x) is a first integral. Otherwise increase D by 1 and return to Step 2.

Notice that the linear system of equations constructed above are under deter-
mined in general, so that several different first integrals might arise when solving
these systems.

A generalization of the Bendixson-Dulac criterion involving first-
integrals For our algorithmic criteria we use the following generalization of the
Bendixson-Dulac criterion for 2d-vector-fields to arbitrary dimensions proved by
Tóth [33, Theorem 3.1]:

Theorem 3. Let M ∈ {2, 3, 4, . . .} and let T ⊂ R × RM−1 be a domain such
that for all x̄ ∈ R the set

=(x̄) := {y ∈ RM−1 | (x̄, y) ∈ T}

is convex. Let J : T −→ RM be continuous and suppose that there exists a
sufficiently smooth function P = (P1, , ..., PM−1) : T −→ RM−1 such that its
coordinate functions are (global) first integrals of the equation

ẋ = J ◦ x, (7)

and let us suppose that for all x̄ ∈ R and y1, ..., yM−1 ∈ =(x̄)∣∣∣∣∣∣∣
∂2P1(x̄, y1)

...
∂2PM−1(x̄, yM−1)

∣∣∣∣∣∣∣ 6= 0 (8)

Then the differential equation (7) has no periodic solution.

If the convex set =(x̄) is semi-algebraic and one can compute sufficiently
many algebraic first-integrals then Theorem 3 yields a quantifier elimination
problems over the ordered field of the reals.



4 Computation Examples

We have extended the Maple library Qehopflib7 implementing the methods in
[8] by the following algorithmic methods:

1. Algorithms to produce from a system of ordinary differential equations es-
sentially a formula corresponding to ϕMuldowney as described by Equation
(4). The formula can be generated for arbitrary vector fields, its symbolic
analysis by quantifier elimination over the reals is only possible for systems
of differential equations with a vector field described by parameterized mul-
tivariate rational functions.

2. Algorithms trying to compute algebraic first integrals up to a degree bound
and to produce from a system of ordinary differential equations essentially a
formula corresponding to the universally quantified condition in Theorem 3.
Let us call this formula ϕToth. The formula can be generated only for vector
fields of dimension n which have at least n− 1 algebraic first integrals up to
the used degree bound d. Notice that the vector field can be described by
parameterized multivariate rational functions.

In the examples discussed below we use the positive cone of the real n-space
as convex subset, or the entire real n-space.

Actually, we produce the logical negation ¬ϕ of ϕ rather than ϕ itself (for
ϕMuldowney as well as for ϕToth), since the implementation of positive quantifier
elimination in the current stable branch of redlog is restricted to existential
formulas. It is, however, not hard to see that applying positive quantifier elimi-
nation to ¬ϕ yielding, say, ψ and then positively simplifying ¬ψ, which involves
re-adding the positivity conditions on all variables, yields exactly the desired
result of applying to ϕ quantifier elimination subject to positivity assumptions
on all variables. We are usually going to refer to this final result as ϕ′.

4.1 A non-parametric example

As a first simple example we take the following simple reaction that was already
studied in [33]:

Simple reaction system: It is the induced kinetic differential equation (cf.
[34]) of the reaction

3 OH 1−→ H2O + HO2, H2O + HO2
1−→ 3 OH (9)

i.e.
ẋ = −3x3 + 3yz, ẏ = x3 − yz, ż = x3 − yz (10)

where the concentrations of the components are denoted by x, y and z with
x := [OH], y := [H2O], z := [HO2].

This model does not seem to have oscillatory behavior. Although it does
not depend on parameters the question of a proof that there are no oscillations
7 http://cg.cs.uni-bonn.de/project-pages/symbolicanalysis/



for any values of the concentrations of the reactants, i.e. the state variables, is
already beyond the scope of pure numerical computations.

Using the undetermined coefficients method one find two first-integrals of
degree one algorithmically. The generated first-order formula ϕToth describing
the negation of the criterion of Tóth can be reduced by redlog to false within
some milliseconds on a current standard PC. Thus this example can be solved
fully algorithmically by the method computing first integrals.

Using the criterion of Muldowney [30, Theorem 4.1] (for the L1 norm and
L∞ norm) one can also come up easily with a first order-formula (describing the
negation of the Muldowney criterion for excluding oscillations). This formula
ϕMuldowney can be reduced by redlog to true within a few milliseconds, which
unfortunately is the non-conclusive answer: one cannot prove the absence of
oscillations in this way—a result not contradicting the result stated above, as
the Muldowney criterion is a sufficient but not a necessary condition for the
absence of oscillations.

4.2 Parametric examples

The question whether there are oscillations or not is a parametric question in gen-
eral. As the generated formula ϕ′ can be parametric and the result of the quanti-
fier elimination procedure will be a condition on the parameters in general—i.e.
a first-order formula involving the parameters only.

Models of Genetic Circuits For the family of examples arising out of a simple
quasi-steady state approximation of a model of genetic circuits investigated in
[5] the Muldowney criteria in its realization of the framework of [31] can proof
the absence of oscillations for several relevant values of parameters. We refer to
[5, 31] for an exposition of the models and to [31] for the results.

Using the first-integral based method described in this paper we could not
come up with any conclusive result for any of the examples from [5].

A model of viral dynamics The following example is also discussed in more
depth in [31]. It consists of a simple mathematical model for the populations
dynamics of the human immunodefficiency type 1 virus (HIV-1) investigated in
[35]. There a three-component model is described involving uninfected CD4 +
T-cells, infected such cells and free virus, whose densities at time t are denoted
by x(t), y(t), v(t).

In [35] a simplified two-component model employed by Bonhoeffer et al. [36]
is investigated analytically.

For the two-component model the equilibria are computed analytically for
biologically relevant non-negative parameter values and their local stability
properties are parametrically investigated in [35]. Moreover, using the general
Bendixson-Dulac criteria for 2D-vector fields with an ad hoc Dulac function
B(x, y) = 1/y it is shown that there are no periodic solutions for the system



eq1 := diff(x(t),t) = s - mu*x(t) - beta*x(t)*v(t);

eq2 := diff(y(t),t) = beta*x(t)*v(t) - alpha*y(t);

eq3 := diff(v(t),t) = c*y(t)-gamma1*v(t);

fcns:={x(t),y(t),v(t)};

params:={s,mu,beta,alpha,c,gamma1};

paramcondlist:={s>0,mu>0,beta>0,alpha>0,c>0,gamma1>0};

DELimitCycleMuldowney({eq1,eq2,eq3},

fcns,params,{},paramcondlist);

od;

Fig. 1. A Maple script for generating the first-order formulas ¬ϕ for the three-
component model of viral dynamics from [35].

for positive parameter values and positive values of the state variables, i.e. the
biologically relevant ones.

Using our algorithms, we can easily construct the formula for the Muldowney
criteria even for the three-component model, cf. Figure 1—but we could not com-
pute first-integrals for this system. Using redlog quantifier elimination and for-
mula simplification of the obtained first-order formula can be performed within
some milliseconds. Unfortunately, the obtained result for the negated Muldowney
criteria is a non-parametric true, i. e. the non-conclusive answer, as they give suf-
ficient conditions for excluding oscillations, but no indication about a necessary
condition.

Also when applying our framework to the two-component model, we obtain
the non-conclusive true within some milliseconds of computation time.

In our framework we can easily use Dulac functions for 2D-cases, too. When
using the Dulac function B(x, y) = 1/y for the two-component model, we obtain
the conclusive false as an answer, i.e. we can prove that there are no oscillations
for the two-component model (for any values of the parameters).

So the hand computations using Dulac functions can be widely simplified by
our framework—however,one has to specify the Dulac function in addition to
the vector field.

5 Some Possible Future Directions

In the examples given above sometimes one of the given criteria was successful,
sometimes the other one, and very often none of them. So a first problem is the
following.

Problem 1. What is the relative strength of the Muldowney criteria for different
norms? What are their combined strengths compared to the criteria involving
first integrals?

In one of our computation examples (cf. Sect. 4.2) it was necessary to use
an appropriate Dulac function in order to come up with a criterion proving the
absence of oscillations.



An inspection of the proof of [30, Theorem 4.1] seems to indicate that the
answer to the following problem is “yes”.

Problem 2. Are there generalizations of the criterion of Muldowney involving
Dulac functions?

In the positive case one might ask how to find appropriate Dulac functions.
For polynomial functions (or rational functions) one could use the approach to
specify those with undetermined coefficients up to a certain degree—and then
use these in the quantifier-elimination step. However, in its naive realization
the computational complexity does not only seem to be prohibitive under worst
case considerations, but also for most but the most trivial cases. So the following
problem occurs:

Problem 3. Are there constructive and efficient ways for generating appropriate
Dulac functions for the criterion of Muldowney?

The Bendixson-Dulac criteria are not only generalizable using first-integrals
as has been done in [33] or also e.g. in [37], but also to systems with invariant
hypersurfaces.

Problem 4. Specify algorithmic methods for excluding oscillations using alge-
braic invariant hypersurfaces.

A standard technique for excluding oscillations in hand computations is to
find Lyapunov functions, which also prohibit the existence of oscillations. As the
existence of Lyapunov functions of certain form can also be proven by quantifier
elimination techniques [38] the following problem shall be formulated:

Problem 5. Are there constructive and efficient ways for generating appropri-
ate Lyapunov functions? Can these be defined semi-algebraically for polynomial
vector fields?

Finally the following problems, which are presumably much more challenging,
shall be posed:

Problem 6. For autonomous polynomial vector fields are there algorithmic cri-
teria that are sufficient and necessary for excluding oscillations?

All of the questions also generalize to differential algebraic equations [39, 40].
Although having an additional “algebraic part” seems to be compatible with
the semi-algebraic context, which the qualitative investigations of the ODEs
have been reduced to, many new definitional and theoretical problems arise. Of
particular interest is here the possibility of various forms of singularities [41]
leading for example to singularity induced bifurcations.

Problem 7. Generalize the problems to differential algebraic equations (possibly
with singularities).

Acknowledgement. We are grateful to Vladimir Gerdt for several helpful dis-
cussions.
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