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Abstract. The analysis of dynamic of chemical reaction networks by
computing Hopf bifurcation is a method to understand the qualitative
behavior of the network due to its relation to the existence of oscil-
lations. For low dimensional reaction systems without additional con-
straints Hopf bifurcation can be computed by reducing the question of
its occurrence to quantifier elimination problems on real closed fields.
However deciding its occurrence in high dimensional system has proven
to be difficult in practice. In this paper we present a fully algorithmic
technique to compute Hopf bifurcation fixed point for reaction systems
with linear conservation laws using reaction coordinates instead of con-
centration coordinates, a technique that extends the range of networks,
which can be analyzed in practice, considerably.

1 Introduction

In chemical and biochemical systems, reactions networks can be represented as
a set of reactions. If it is assumed they follow mass action kinetics then the
dynamics of these reactions can be represented by ordinary differential equa-
tions(ODE) for systems without additional constraints or algebraic differential
equations (DAE) for systems with constraints. Particularly, in complex systems
it is sometimes difficult to estimate the values of the parameters of these equa-
tions, hence the simulation studies involving the kinetics is a daunting task.
Nevertheless, quite a few things about the dynamics can be concluded from the
structure of the reaction network itself. In this context there has been a surge
of algebraic methods, which are based on the structure of network and the as-
sociated Stoichiometry of the chemical species. These methods provide a way to
understand the qualitative behaviour (e.g. steady states, stability, bifurcations,
oscillations, etc) of the network. The analysis of chemical reaction networks by
detecting of the Occurrence of Hopf bifurcation attracts especially more and
more interests in chemical and biological field due to its linkage to the oscil-
latory behaviour. During the last decade many theoretical advances have been
made for computing Hopf bifurcation in low dimensional systems [?]. However



the detection of Hopf bifurcation in high dimensional systems and in systems
with constraints as the case in chemical and biochemical systems has proven to
be difficult. A central method to overcome this difficulty is called stoichiometric
network analysis (SNA). This method has been introduced by Clark in 1980 []
and based on the analysis of the system dynamic in the flux space instead in the
concentration space and expand the steady states into a combination of subnet-
works using convex geometry. For the steady state loci new coordinates that are
called reaction coordinates can be introduced These methods have been used in
several “hand computations” in a semi-algorithmic way for parametric systems,
the most elaborate being described in [1].

A fully algebraic method for the computation of Hopf bifurcation for systems
with polynomial vector field has been introduced by El Kahoui and Weber [2]
using the powerful technique of quantifier elimination on real closed fields [?].
This technique has already been applied to mass action kinetics of small dimen-
sion [3]. Although the method is complete in theory it fails for systems of higher
dimensions in practice.

Our algorithmic method presented in this paper uses and combines the ideas
of these methods and extends them to a new approach for computing Hopf
bifurcation in complex systems using reaction coordinates also allowing systems
with linear constraints.

2 Chemical Reaction Networks

2.1 Flux Cone and Reaction Coordinates

2.2 Constraints in Chemical Reaction Networks

some words on constraints in reaction systems
As the situation found in chemical reaction networks can easily be general-

ized, we will analyze the situation for the case of pseudolinear ordinary differ-
ential equations, which will contain all cases of constraints for chemical reaction
systems discussed in this paper, as an instance.

3 Pseudolinear Ordinary Differential Equations

Definition 1. We call an autonomous system of ordinary differential equations
ẋ = φ(x) for an unknown function x : R → R

n pseudolinear, if its right hand
side can be written in the form φ(x) = Nψ(x) with a constant matrix N ∈ Rn×m

and some vector valued function ψ : Rn → R
m.

Obviously, any polynomially nonlinear system can be written in such a form,
if we take for ψ(x) the vector of all terms appearing on the right hand side of
the system. As one can see from the following two lemmata, the pseudolinear
structure is of interest only in the case that the matrix N does not possess full
row rank and hence the range of N is not the full space Rn. In the sequel, we
will always assume that the function ψ satisfies m ≥ n, as this is usually the
case in applications like reaction kinetics.



Lemma 1. For a pseudolinear system ẋ = Nψ(x) any affine subspace of the
form Ay = y + imN ⊆ Rn for an arbitrary constant vector y ∈ Rn defines an
invariant manifold.

Proof. Obviously, we have ẋ(t) ∈ imN for all times t and TxAy = imN for all
points x ∈ Ay by definition of an affine space. Thus, if x(0) ∈ Ay, then the
whole trajectory will stay in Ay. ut

Remark 1. For the application in reaction kinetics, the following minor strength-
ening of Lemma 1 is of interest. Assume that the function ψ satisfies additionally
ψ(x) ∈ Rm

≥0 for all x ∈ Rn
≥0 which is for example trivially the case when each

component of ψ is a polynomial with positive coefficients. If we solve our differ-
ential equation for non-negative initial data x(0) = x0 ∈ Rn

≥0, then the solution

always stays in the convex polyhedral cone x0 +
{∑m

i=1 λini | ∀ i : λi ≥ 0
}

where the vectors ni are the columns of the matrix N . Indeed, in this case the
tangent vector ẋ(t) along the trajectory is trivially always a non-negative linear
combination of the columns of N .

Lemma 2. Let vT ·x = Const for some vector v ∈ Rn be a linear conservation
law of a pseudolinear system ẋ = Nψ(x) with a surjective ψ. Then v ∈ kerNT .
Conversely, any vector v ∈ kerNT induces a linear conservation law.

Proof. Let us first assume that v ∈ kerNT . Then

d

dt

(
vT · x

)
= vTNψ(x) =

(
NTv

)T
ψ(x) = 0 .

If vT ·x = Const is a conservation law, then differentiation with respect to time

yields
(
NTv

)T
ψ(x) = 0. Since we assume that the function ψ is surjective, this

implies that NTv = 0. ut

By a classical result in linear algebra (the four “fundamental spaces” of a
matrix), we have the direct sum decomposition Rn = imN ⊕ kerNT which is
even an orthogonal decomposition with respect to the standard scalar product.
Hence we may consider Lemma 1 as a corollary to Lemma 2, as the above
described invariant manifolds are simply defined by all the linear conservation
laws produced by Lemma 2.4

Remark 2. According to the paper by Gatermann and Huber, on speaks in chem-
istry of a conservation law only in the case that vi ≥ 0 for all components vi
of the vector v. In mathematics, we are not aware of such a restriction and we
cannot see any physical reason to impose it.

4 Note that the condition of surjectivity is always satisfied, if ψ consists of m ≥ n
different monomials.



3.1 Reduction to Invariant Manifolds

If a dynamical system admits invariant manifolds, we may consider a system
of lower dimension by reducing to such a manifold. However, in general it may
not be possible to derive explicitly the reduced system. Nevertheless, for many
purposes like stability or bifurcation analysis one can easily reduce to smaller
matrices. The following result describes such a reduction process in the linear
case. It represents an elementary exercise in basic linear algebra. In order to
avoid the inversion of matrices, we consider here Rn as a Euclidean space with
respect to the standard scalar product.

Lemma 3. Let A be the matrix of a linear mapping Rn → R
n for the standard

basis and U ⊆ Rn a k-dimensional A-invariant subspace. If the columns of the
matrix W ∈ Rn×k define an orthonormal basis of U , then the restriction of the
mapping to the subspace U with respect to the basis defined by W is given by the
matrix WTAW ∈ Rk×k.

Proof. Considered as a linear map R
k → U ⊆ R

n, the matrix W defines a
parametrization of U with inverse WT : U → R

k. Indeed, WTW = 1k, since
the columns of W are orthonormal. If v ∈ U , then v = Ww for some vector
w ∈ Rk and thus WTv = (WTW )w = w implying that (WWT )v = Ww = v,
i. e. the matrix WWT ∈ Rn×n describes idU . By standard linear algebra, the
matrix WTAW describes therefore the restriction of A to U . ut

As a simple application, we note that in the case of a pseudolinear system
ẋ = Nψ(x) the stability properties of an equilibrium xe of the pseudolinear
system ẋ = Nψ(x) are determined by the eigenstructure of the reduced Jacobian

J = WTNJac
(
ψ(xe)

)
W ∈ Rk×k

where the columns of W form an orthonormal basis of imN . If parameters are
present, then also for a bifurcation analysis the eigenstructure of this matrix and
not of the full Jacobian (which is an n-dimensional matrix) are relevant.

3.2 Stability and Bifurcations for Semi-Explicit DAEs

The considerations indicated in the last section can be easily extended to more
general situations, as they appear in the theory of DAEs. For simplicity (and as
it suffices for our purposes), we assume that we are dealing with an autonomous
system in the semi-explicit form

ẋ = f(x) , 0 = g(x) (1)

where f : Rn → R
n and g : Rn → R

n−k. Furthermore, we assume that the above
system of ordinary differential equations is involutive, i. e. that it contains already
all its integrability conditions. This assumption is equivalent to the existence of
a matrix valued function M(x) such that

Jac
(
g(x)

)
· f(x) = M(x) · g(x) . (2)



Thus one may say that the components of g are weak conservation laws, as their
time derivatives vanish modulo the constraint equations g(x) = 0.

Let xe be an equilibrium of (1), i. e. we have f(xe) = 0 and g(xe) = 0. We
introduce the real matrices

A = Jac
(
f(xe)

)
∈ Rn×n , B = Jac

(
g(xe)

)
∈ R(n−k)×n .

For simplicity, we assume in the sequel that the matrix B has full rank (or,
in other words, that our algebraic constraints are independent) and thus that
kerB is a k-dimensional subspace. The proof of the next result demonstrates
clearly why the assumption that the system (1) is involutive is important, as the
relation (2) is crucial for it.

Lemma 4. The subspace kerB is A-invariant.

Proof. Set M̄ = M(xe). Differentiating (2) and evaluating the result at x = xe

yields the relation BA = M̄B. Hence, if v ∈ kerB, then also Av ∈ kerB since
B(Av) = M̄(Bv) = 0. ut

Remark 3. In the case that (1) is a linear system, i. e. by assuming that xe = 0
we may write f(x) = Ax and g(x) = Bx, we can easily revert the argument in
the proof of Lemma 4 and thus conclude that now (1) is involutive, if and only
if kerB is A-invariant.

Proposition 1. Let the columns of the matrix W ∈ Rn×k define an orthonor-
mal basis of kerB. The linear stability of the equilibrium xe is then decided by
the eigenstructure of the matrix WTAW .

Proof. Linearisation around the equilibrium xe yields the associated variational
system ż = Az, Bz = 0. We complete W to an orthogonal matrix Ŵ by adding
some further columns and perform the coordinate transformation z = Ŵy. This
yields the system ẏ = ŴTAŴy, BŴy = 0. Since by construction the columns
of W span kerB, the second equation implies that only the upper k components
of y may be different of zero. Furthermore, Lemma 4 implies that the matrix
ŴTAŴy is in block triangular form with the left upper k × k block given by
WTAW . If we denote the upper part of y by ỹ, we obtain thus the equivalent
reduced system ˙̃y = WTAW ỹ which implies our claim. ut

Remark 4. Let v ∈ R
k be a (generalized) eigenvector of the reduced matrix

WTAW , i. e. we have (WTAW − λ1k)`v = 0 for some ` > 0 and λ ∈ R. Since
WTW = 1k and WWT defines the identity map on kerB (see the proof of
Lemma 3), we obtain WT (A − λ1n)`Wv = 0 implying that Wv ∈ R

n is a
(generalized) eigenvector of A for the same eigenvalue λ, since the matrix WT

defines an injective map. Thus every eigenvalue of the reduced matrix WTAW
is also an eigenvalue of A.

Remark 5. It is also not difficult to interpret the remaining (generalized) eigen-
vectors of A. By construction, they are transversal to the constraint manifold



defined by g(x) = 0 and they describe whether this manifold is attractive or
repellent for the flow of the unconstrained system ẋ = f(x). While this is for
example of considerable importance for the numerical integration of (1), as it
describes the drift off the constraint manifold due to rounding and discretization
errors, it has no influence on the stability of the exact flow of (1).

The irrelevance of the remaining (generalized) eigenvectors of A becomes also
apparent from the following argument. Recall that the differential part of (1)
defines what is often called an underlying differential equation for the DAE, i. e.
an unconstrained differential equation which possesses for initial data satisfying
the constraints the same solution as the DAE. Consider now the modified system
obtained by adding to the right hand side of the differential part an arbitrary
linear combination of the algebraic part. It is easy to see that the arising DAE
(which simply has a different underlying equation)

ẋ = f(x) + L(x)g(x) , 0 = g(x) ,

where L(x) is a matrix valued function of appropriate dimensions, possesses
exactly the same solutions as (1); in particular xe is still an equilibrium. If we
proceed as above with the linear stability analysis of xe, the matrix B remains
unchanged, whereas A is transformed into the modified matrix Ã = A + L̄B
with L̄ = L(xe). Obviously, kerB is also Ã-invariant and furthermore WT ÃW =
WTAW , if the columns of W form a basis of kerB as in Proposition 1.

Thus all (generalized) eigenvectors lying in kerB are equal for A and Ã
and thus the stability of xe is not affected by this transformation. However,
the remaining (generalized) eigenvectors may change arbitrarily. One can for
example show that by a suitable choice of the matrix L one may always achieve
that the constraint manifold becomes attractive.

4 Algorithms for Computing Hopf Bifurcations
in Chemical Reaction Networks Using Reaction
Coordinates

In this section we present an algorithmic approach for computing the Hopf bifur-
cation in chemical systems. We consider here systems with at least three species
(dimension ≥ 3) and with or without conservation laws. Two and various three
dimensional systems can be analyzed in the concentration space without carrying
out the coordinate transformation. The approach based mainly on three meth-
ods already presented in this paper: stochiometric network analysis, method for
reduction of manifold for systems with conservation lawsand technique of quan-
tifier elimination on real closed field. The following pseudo code (figure 1) and
subsections outline the mainly steps of our algorithm:

4.1 Pre-processing: step 1

For starting the analysis of a chemical network we need two significant pieces of
information to describe all reaction laws. The first information describes the oc-
currence of the species in each reaction. This can be presented by a stochiometric



Input: a chemical reaction network N with dim(N ) ≥ 3.

Output: statement about the existence of Hopf-bifurcation.

Begin
1: Generate the stochiometric matrix S and kinetic matrix K from the reaction

network.

2: Compute the minimal set E of the vectors generating the flux cone.

3: If size(E) > 2 compute all two faces and all three faces of the flux cone
(subsystems).
Else consider the linear combination of the resulting vectors as the only
subsystem.

For each subsystem Ni do

4: Compute the transformed jacobian Ji of Ni using K, S and flux cone
coordinates

5: If Ji is singular compute the reduced manifold of Ji calling the result also Ji

6: Compute the characteristic polynomial of Ji

7: Compute the Hurwitz determinant of Ji

8: Compute the Hopf-existence condition for Ni

9: Generate first-order existentially quantified formula Fi using Hopf-existence
condition, the constraints on concentrations and the constraints on the cone
coordinates

10: Reduce and simplify the generated formulae

If exists a formula Fi = true return ”There is Hopf bifurcation”.

End

Fig. 1. Algorithms for Computing Hopf Bifurcations in Chemical Reaction Networks
Using flux Coordinates



matrix S, where the species build the rows and the reactions build the columns.
Each entry of the matrix present the difference of the number of produced and
consumed molecules of the corresponding specie in the corresponding reaction.
The second information describes the velocities of the reactions. This can be
presented by flux vector v(x, k) or by kinetic matrix K. The entries of this ma-
trix present the information whether specie is a reactant(entry = stochiometric
coefficient of specie) and effects consequently the velocity of the reaction or not
(entry = 0). To enable the computational analysis of a chemical Networks the re-
actions should be presented in a format that enables its accurate representation
and allows the computational extraction of needed data. For our computations
we use the XML based and in biological research widely used format SBML [?].
As Pre-processing step we parse the SBML file presenting the chemical network
using Java library JSBML [?] to generate the stochiometric matrix and kinetic
matrix.

4.2 Geometrical Computations: step 2 and 3

To analyse a chemical system one is interested in the stationary reaction be-
haviour, which is observable in experiments, i.e one investigates the solution set
of

S.v(x, k) = 0. (3)

The set of stationary solutions is usually considered in the concentration space
R

n
+ , i.e in the variables x. Instead of the variables x ∈ Rn

+ we will consider the
variables z representing v(x,k) which are called reaction coordinates or reaction
rate coordinates and thus we consider the set of stationary solutions in the
space of reaction rates Rl

+. A first advantage ist that the Jacobian in the space
of reaction rates is of the form [1, ?]:

Jac(x) = Ĵac(z).diag(1/x1, ..., 1/xm). (4)

As long as we split each reversible reaction into two irreversible reactions (for-
ward and backward directions) the flux through this reactions must be greater
or equal to zero, i.e

v(x, k) ≥ 0 (5)

The set of all possible stationary solutions over the network N that fulfil the
equation (3)and the constraint (5)defines the convex polyhedral cone flux cone
[?,?] and determine a minimal generating vectors E called extreme rays or ex-
treme currents. Each vector z can then as linear combination of the vector set E
with nonnegative coefficients. To compute the extreme currents we need to inte-
grate that allows to deal with Polyhedral Computations. Thus we use polymake
in the step 2 of our algorithm to compute the extreme currents E for a gener-
ating stochiometric matrix S. polymake is an open source software tool written
in Perl and C++ and designed for the algorithmic treatment of polytopes and
polyhedra [?].



4.3 Transformation of Jacobian: step 4

4.4 Jacobian of Reduced Manifold : step 5

4.5 Generating Quantified Formula : step 6-9

4.6 Reducing Quantified Formula : step 10

5 Computation Examples

5.1

xxxxxxx
xxxx
This problem has already been investigated using its formulation in reac-

tion coordinates in [3]. Using currently available quantifier elimination packages
the problem could not be solved in its parametric form. Only when using the
existential closure on the parameters it could be shown by successful quanti-
fier eliminations performed in redlog that there exist positive parameters for
which there exists a Hopf bifurcations fixed point in the positive orthant. When
redoing the experiments we found that the situation described in [3] still applies.

5.2

Jacobian matrix is singular
hence in classical sense no Hopf bifurcations
but in reduced system following result
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