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Abstract. We introduce the notion of a relative marked basis over quasi-stable

ideals, together with constructive methods and a functorial interpretation, devel-

oping computational methods for the study of Hilbert schemes over quotients of

polynomial rings. Then we focus on two applications.

The first has a theoretical flavour and produces an explicit open cover of the

Hilbert scheme when the quotient ring is Cohen-Macaulay on quasi-stable ideals.

Together with relative marked bases, we use suitable general changes of variables

which preserve the structure of the quasi-stable ideal, against the expectations.

The second application has a computational flavour. When the quotient rings

are Macaulay-Lex on quasi-stable ideals, we investigate the lex-point of the Hilbert

schemes and find examples of both smooth and singular lex-points.

Introduction

Let R = K[x0, . . . , xn] be the polynomial ring over a field K in n + 1 variables,

endowed with the order x0 < · · · < xn, and I be an ideal of R.

We provide a way to analyse Hilbert schemes over a quotient ring R/I using a

computer algebra system. The tools that we develop are based on the theory of

marked bases over quasi-stable ideals, together with their properties and functorial

features [6, 4, 3]. However, the different setting that is considered in this paper

presents new problems to solve.

We apply our tools to achieve two different tasks under the hypothesis that I

is a monomial quasi-stable ideal. The first one concerns the study of a suitable

open cover of such a Hilbert scheme when R/I is Cohen-Macaulay. The second

one regards the study of lex-points when R/I is a Macaulay-Lex ring, i.e. a ring in

which an analogue of Macaulay’s Theorem characterizing the Hilbert functions of

homogeneous ideals in a polynomial ring holds.
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We start giving a first non-obvious insight in the application of marked bases to

quotient polynomial rings (Section 2). Then we push forward our investigation and

look for results analogous to those for relative Gröbner bases and relative involutive

bases of ideals in quotient rings that have been recently developed in [13]. Hence,

we define relative marked bases, which turn out to be suitable to work in R/I, in

particular when I is a quasi-stable ideal, and study their functorial interpretation

(Sections 3 and 4).

An immediate consequence of this study is that we can construct some open

subschemes of the Hilbert scheme over R/I by means of relative marked bases, too

(see Proposition 2.6 and Theorem 4.2).

When the field K is infinite and the quotient ring on a quasi-stable ideal is Cohen-

Macaulay, we develop this feature to describe an open cover of Hilbert schemes over

such a quotient ring, which we obtain thanks to suitable changes of variables applied

on open subsets which parameterise relative marked bases (see Theorem 5.11). This

result is achieved generalising the method which is described in [3] and which is

based on deterministically computable suitable linear changes of variables.

The novelty of this approach consists in the fact that we show that there are

computable general linear changes of variables of the quotient ring that by definition

preserve the complete structure of the ideal on which the quotient is performed,

instead of destroying it, as it could be expected (e.g., see [21, Introduction]). Hence,

this result is not obvious and, together with the underlying idea, is new in the

context of the present paper.

Even when K is not infinite or the quotient ring is not Cohen-Macaulay, the

availability of open subschemes described by means of the relative marked bases

encourages the study of local properties. For example, when the quotient ring is

Macaulay-Lex, the explicit computation of relative marked schemes can be useful

in the investigation of the properties of the lex-point of Hilbert schemes over such

quotient rings.

It is indeed very well-known that every non-empty Hilbert scheme over a poly-

nomial ring on a field has a unique point, called the lex-point, that is defined by

a lex-ideal, and which is smooth (see [24]) and characterized by the property that

its defining saturated lex-ideal has the minimal possible Hilbert function among the

points of the same Hilbert scheme.

It is even true that every non-empty Hilbert scheme over a Macaulay-Lex ring

on a quasi-stable ideal has the lex-point, which moreover has the minimal Hilbert
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function (Theorem 6.6). However, in Section 6 we give classes of examples both of

smooth and singular lex-points in Macaulay-Lex rings over quasi-stable ideals.

The problem of the smoothness of the lex-point is studied also in other Hilbert

schemes, see for instance [23]. In fact, it is not possible to extend the proof for the

smoothness of the lex-point of the Hilbert scheme Hilb
p(z)
Pn given in [24] to other

cases because the Zariski tangent space is not the same (see [10, Section 1.7] and

[22, Proposition 2.1]).

To the best of our knowledge, analogous examples are not yet available in the

literature. Moreover, the benefits obtained by the use of relative marked bases are

evident when we count the number of parameters involved in the computations (see

Remark 4.4), as we highlight throughout the descriptions of some of our examples.

1. Preliminaries

Let K be a field and A any Noetherian K-algebra with 1A = 1K. Take the

polynomial ring R = K[x0, . . . , xn] endowed with the order x0 < · · · < xn, and

RA := R ⊗A A = A[x0, . . . , xn], so that R = RK. A term is a power product

xα = xα0
0 · · · xαn

n . We denote by T the set of terms. For every xα ∈ T, we denote

by min(xα) the smallest variable dividing xα and by X (xα) the set of the variables

smaller than or equal to min(xα) which is called the set of multiplicative variables of

xα. If N is a finite set of polynomials, we denote by ⟨N⟩A the A-module generated

by N , and by (N) the ideal generated by N in RA.

We use the standard grading on RA, that is deg(xj) = 1 for all j ∈ {0, . . . , n} and

deg(a) = 0 for all a ∈ A. Hence we have deg(xα) = |α| =
∑

αi. We assume that

the polynomials, the ideals and A-modules involved in our definitions, statements

and arguments are homogeneous with respect to this standard grading on RA.

For an ideal I, we denote by It the vector space of the homogeneous polynomial

of I of a given degree t and set I≥t :=
⊕

s≥t Is.

When we write an equality of the kind I = B1 ⊕ B2, where I is an ideal and

B1, B2 are A-modules or ideals, we also mean Is = (B1)s ⊕ (B2)s for every s ≥ 0. In

such situations, we will say that the equality is graded.

An ideal Ĩ is monomial if it is generated by a set of terms. A monomial ideal Ĩ has

a unique minimal set of generators consisting of terms and we call it the monomial

basis of Ĩ, denoted by BĨ . We define N (Ĩ) ⊆ T as the set of terms in T not belonging

to Ĩ. For every polynomial f ∈ RA, supp(f) is the set of terms appearing in f with

a non-zero coefficient. For every polynomial f ∈ RA, an x-coefficient of f is the

coefficient in A of a term in T ∩ supp(f).
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Definition 1.1. For every xα in T, we define the Pommaret cone of xα as

CP(xα) := {xδxα | δi = 0, ∀xi /∈ X (xα)} ⊂ T.

A finite set U of terms generating an ideal Ĩ is called a Pommaret basis of Ĩ if

(1.1) Ĩ ∩ T =
⊔

xα∈U

CP(xα).

A quasi-stable ideal is a monomial ideal having a Pommaret basis. If Ĩ is a quasi-

stable ideal, we denote by PĨ its Pommaret basis.

Proposition 1.2 ([26, Theorem 9.2], [27, Theorem 5.5.15]). If Ĩ is a quasi-stable

ideal, then BĨ ⊆ PĨ holds and the regularity reg(Ĩ) coincides with the maximum

degree of a term in PĨ .

2. Marked bases and marked functors

2.1. Marked bases. A marked polynomial is a polynomial f ∈ RA together with

a fixed term xα ∈ supp(f) whose coefficient is equal to 1A (see [25]). This term is

called head term of f and denoted by Ht(f).

From now, let Ĩ denote a quasi-stable ideal.

Definition 2.1. [6, Definition 5.1] A PĨ-marked set is a finite set F ⊂ RA of

exactly |PĨ | marked homogeneous polynomials fα with pairwise distinct head terms

Ht(fα) = xα ∈ PĨ and supp(fα−xα) ⊂ ⟨N (Ĩ)⟩A. A PĨ-marked set F is a PĨ-marked

basis of the ideal (F ) if the graded decomposition (RA) = (F )⊕ ⟨N (Ĩ)⟩A holds.

Definition 2.2. [6, Definition 5.3] Given a PĨ-marked set F = {fα}xα∈PĨ
, the set

F ∗ := {xηfα | xηxα ∈ CP(xα)} ⊆ (F ) is made of homogeneous polynomials which

are marked on the terms of Ĩ in the natural way Ht(xηfα) = xηHt(fα).

We denote by −→F ∗ the reflexive and transitive closure of the following reduction

relation on RA: f is in relation with f ′ if f ′ = f − λxηfα, where xηfα ∈ F ∗ and

λ ̸= 0A is the coefficient of the term xη+α in f .

We will write f −→+
F ∗ f0 if f ∈ RA, f −→F ∗ f0 and f0 ∈ ⟨N (Ĩ)⟩A. In this case

we say that “f is reduced to f0 by F ∗”, and that “f0 is reduced with respect to F ∗”.

It is noteworthy that the reduction relation −→F ∗ is Noetherian and confluent

(see [7, Theorem 5.9 and and Corollary 5.11]).

Lemma 2.3. Let E be any subset of a PĨ-marked set F . Then, letting E∗ =

{xηpβ | xηxβ ∈ CP(xβ), pβ ∈ E}, the subreduction relation −→E∗ is Noetherian and

confluent.
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Proof. The reduction relation −→E∗ is obviously defined as a subreduction of −→F ∗ ,

like it is suggested in [7, Definition 3.4]. Then, the reduction relation −→E∗ is

Noetherian because it is a subreduction of −→F ∗ , which is Noetherian. Moreover,

−→E∗ is confluent because it is Noetherian and has disjoint cones (see also [7,

Remark 7.2]). □

Remark 2.4. Observe that, in the hypotheses of Lemma 2.3, we write p −→+
E∗ h

when supp(h) is included in T \
(
∪xβ∈{Ht(p)|p∈E}CP(xβ)

)
, according to Definition 2.2.

2.2. Marked functors. It is possible to parameterise the set of ideals I having a

PĨ-marked basis by means of a functor from the category of Noetherian K-Algebras

to that of Sets, which turns out to be represented by an affine scheme. We briefly

recall the definition of this functor and the construction of this affine scheme.

The marked functor from the category of Noetherian K-algebras to the category

of sets

Mf Ĩ : Noeth K−Alg −→ Sets

associates to any Noetherian K-algebra A the set

Mf Ĩ(A) := {(G) ⊂ RA | G is a PĨ-marked basis}

and to any morphism of K-algebras σ : A → A′ the map

Mf Ĩ(σ) : Mf Ĩ(A) −→ Mf Ĩ(A
′)

(G) 7−→ (σ(G)) .

Note that the image σ(G) under this map is indeed again a PĨ-marked basis, as we

are applying the functor − ⊗A A′ to the decomposition (RA)s = (G)s ⊕ ⟨N (Ĩ)s⟩A
for every degree s.

Remark 2.5. Generalising [16, Proposition 2.1] to quasi-stable ideals, we obtain

{(G) ⊂ RA | G is a PĨ-marked basis} = {I ⊂ RA ideal | RA = I ⊕ ⟨N (Ĩ)⟩A}.

The functor Mf Ĩ is represented by the affine scheme Mf Ĩ that can be explicitly

constructed by the following procedure. We consider the K-algebra K[C], where C

denotes the finite set of variables
{
Cαη | xα ∈ PĨ , x

η ∈ N (Ĩ), deg(xη) = deg(xα)
}
,

and construct the PĨ-marked set G ⊂ RK[C] consisting of the following marked

polynomials

(2.1) gα = xα −
∑

xη∈N (Ĩ)|α|

Cαηx
η
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with xα ∈ PĨ . According to Definition 2.2, we consider

G ∗ = {xδgα | gα ∈ G , xδxα ∈ CP(xα)}.

Then, by the Noetherian and the confluent reduction procedure given in Defini-

tion 2.2, for every term xα ∈ PĨ and every variable xi not belonging to X (xα), we

compute a polynomial pα,i ∈ ⟨N (I)|α|+1⟩A such that xigα − pα,i ∈ ⟨G ∗⟩A. We then

denote by U the ideal generated in K[C] by the x-coefficients of the polynomials pα,i.

Then, we have Mf Ĩ = Spec(K[C]/U ) ([6, Remark 6.3],[3, Theorem 5.1]).

From now we assume that Ĩ is in particular a saturated quasi-stable ideal. This

implies that x0 does not divide any term of BĨ and R/Ĩ has positive Krull dimension.

Then Ĩ≥t is quasi-stable too, for every integer t, so that we can consider Mf Ĩ≥t
. Let

p̃(z) be the Hilbert polynomial of R/Ĩ and Hilb
p̃(z)
Pn be the Hilbert scheme that

parameterises the closed subschemes of Pn having Hilbert polynomial p̃(z). Then,

Mf Ĩ≥t
embeds in Hilb

p̃(z)
Pn , for every integer t (see [4, Proposition 6.13]).

2.3. Parametrisation of saturated ideals in quotient rings. Let I now be a

saturated ideal with a PĨ-marked basis and take X := Proj(R/I) together with its

Hilbert polynomial pX(z), which is equal to p̃(z).

Let J̃ be a saturated quasi-stable ideal containing Ĩ and let p(z) be the Hilbert

polynomial of R/J̃ . Then, p(z) is smaller than pX(z), in the sense that p(t) ≤
pX(t), for t ≫ 0. Let Hilb

p(z)
X be the Hilbert scheme that parameterises the closed

subschemes of X = Proj(R/I) with Hilbert polynomial p(z) and represents the

Hilbert functor Hilb
p(z)
X .

If PJ̃ does not contain any term divisible by x1, we set ρJ̃ := 1. Otherwise, we

set ρJ̃ := max{deg(xα) | xα ∈ PJ̃ is divisible by x1}.

Proposition 2.6. With the above notations,

(1) for every t ≥ ρJ̃ − 1, Mf J̃≥t
∩Hilb

p(z)
X

∼= Mf J̃≥t+1
∩Hilb

p(z)
X ;

(2) for every t ≥ ρJ̃ − 1, Mf J̃≥t
∩Hilb

p(z)
X is an open subscheme of Hilb

p(z)
X .

Proof. We recall that Hilb
p(z)
X is a (closed) subscheme of Hilb

p(z)
Pn (e.g. [9, Exer-

cise VI-26]) and that Mf J̃≥t
is a (locally closed) subscheme of Hilb

p(z)
X , for every

integer t (see [4, Proposition 6.13(iii)]). Then, the first item is a consequence of [4,

Corollary 6.11] which states Mf J̃≥t

∼= Mf J̃≥t+1
, for every t ≥ ρJ̃ − 1. The second

item is a consequence of the fact that, for every t ≥ ρJ̃ − 1, Mf J̃≥t
is even an open

subscheme of the Hilbert scheme Hilb
p(z)
Pn . Indeed, Mf J̃≥t

is an open subfunctor of

Hilb
p(z)
X , like it is stated and proved in [4, Proposition 6.13(ii)]. □
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Example 2.7. If we consider the ideal J̃ := (x2
3, x3x2), then ρJ̃ = 1, hence J̃ =

J̃≥ρJ̃−1 and Mf J̃
∼= Mf J̃≥t

, for every t ≥ 0. Starting from the following two marked

polynomials:

x2x3 + x2
0c1 + x0x1c2 + x2

1c3 + x0x2c4 + x1x2c5 + x2
2c6 + x0x3c7 + x1x3c8,

x2
3 + x2

0c9 + x0x1c10 + x2
1c11 + x0x2c12 + x1x2c13 + x2

2c14 + x0x3c15 + x1x3c16,

the defining ideal U ⊂ Q[c1, . . . , c16] of Mf J̃ is computed obtaining

U = (c1c6c7− c1c4− c7c9+ c1c15, c2c6c7+ c1c6c8− c2c4− c1c5− c8c9− c7c10+ c2c15+

c1c16, c3c6c7 + c2c6c8 − c3c4 − c2c5 − c8c10− c7c11 + c3c15 + c2c16, c4c6c7 − c24 − c1c6 −
c7c12+c4c15−c9, c5c6c7+c4c6c8−2c4c5−c2c6−c8c12−c7c13+c5c15+c4c16−c10, c

2
6c7−

2c4c6 − c7c14 + c6c15 − c12, c6c
2
7 − c4c7 + c1, c3c6c8 − c3c5 − c8c11 + c3c16, c5c6c8 − c25 −

c3c6 − c8c13 + c5c16 − c11, c
2
6c8 − 2c5c6 − c8c14 + c6c16 − c13, 2c6c7c8 − c5c7 − c4c8 +

c2, c6c
2
8 − c5c8 + c3,−c26 − c14).

Although J̃ ̸= J̃≥3 and the defining ideal U ′ of Mf J̃≥3
is contained in the ring

Q[c1, . . . , c91] and so it is different from U , the ring Q[c1, . . . , c16]/U is isomorphic

to the ring Q[c1, . . . , c91]/U ′ by [4, Corollary 6.11]. If we consider instead the ideal

J̃ := (x3
2, x1) with Pommaret basis PJ̃ = {x3

2, x1, x1x2, x1x
2
2}, then ρJ̃ = 1 like before.

Also in this case we have J̃ = J̃≥ρJ̃−1 and Mf J̃
∼= Mf J̃≥t

, for every t ≥ ρJ̃ − 1 = 0.

Lemma 2.8. With the notation above, let F be any set of polynomials generating I.

If G is a PJ̃≥t
-marked basis for some t ≥ ρJ̃ − 1, then the following statements are

equivalent:

(i) (G)sat ⊇ I;

(ii) (G) ⊇ I≥t;

(iii) (G) ⊇ {xmax{0,t−deg(f)}
0 f |f ∈ F}.

Proof. By [4, Theorem 3,5 and Corollary 3.7] we have (G) = (G)sat≥t and (G)sat =

((G) : x∞
0 ). It is immediate that (i) implies (ii) and (ii) implies (iii).

We now prove that item (iii) implies item (i). By hypothesis, for every f ∈ F , we

have that either f belongs to (G) ⊆ (G)sat, if deg(f) ≥ t, or x
t−deg(f)
0 f belongs to

(G), if deg(f) < t. In this latter case, f ∈ ((G) : x∞
0 ) = (G)sat. □

Let Z be a set of polynomials generating I (like, for example, the marked basis F ).

For every f ∈ Z, we take an integer d in the following way: if deg(f) ≥ t, then d := 0,

otherwise d := t−deg(f). By a reduction relation like in Definition 2.2, we compute

a polynomial pf ∈ ⟨N (J̃≥t)d⟩A such that xd
0f − pf ∈ ⟨G ∗⟩A. We then denote by VZ

the ideal generated in K[C] by the x-coefficients of the polynomials pf .
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Theorem 2.9. With the above notations, Mf J̃≥t
∩ Hilb

p(z)
X is isomorphic to the

affine scheme Spec(K[C]/(U + VZ)), for every t ≥ ρJ̃ − 1.

Proof. Consider the PJ̃≥t
-marked set G ⊂ RK[C] made of the polynomials in (2.1).

For every K-algebra A, a PJ̃ -marked set in RA is uniquely and completely given

by a K-algebra morphism φ : K[C] → A defined by φ(Cαγ) = cαγ ∈ A, for every

xα ∈ PJ̃≥t
, xγ ∈ N (J̃≥t)|α|. We extend φ to a morphism from RK[C] to RA in the

obvious way.

It is sufficient to observe that φ(G ) ⊂ RA is a PJ̃≥t
-marked basis if and only if

the generators of U vanish at cαγ ∈ A. Furthermore, by Lemma 2.8, the saturation

of the ideal generated by φ(G ) in RA contains I if and only if the generators of VZ

vanish at cαγ ∈ A.

Hence, φ(G ) is a PJ̃≥t
-marked basis in RA and the saturation of the ideal it

generates in RA contains I if only if ker(φ) ⊇ U + VZ . In this case, φ factors

through K[C]/(U + VZ). The induced K-algebra morphism from K[C]/(U + VZ)

to A defines a scheme morphism Spec(A) → Spec(K[C]/(U + VZ)). Therefore, the

scheme Spec(K[C]/(U + VZ)) is isomorphic to Mf J̃≥t
∩Hilb

p(z)
X . □

Remark 2.10. Observe that the ideal VZ ⊆ K[C] depends on the chosen generating

set Z of I. However, if Z ′ ⊆ K[C] is another set of polynomials generating I, by

Yoneda’s Lemma we have that Spec(K[C]/(U + VZ)) ≃ Spec(K[C]/(U + VZ′)).

In the following sections we will give an alternative construction of the affine

scheme Mf J̃≥t
∩Hilb

p(z)
X , for some ideals I.

3. Relative marked bases and reduction relations

Let J̃ ⊇ Ĩ be quasi-stable ideals in R. With an abuse of notation, we keep on

writing J̃ (resp. Ĩ) for J̃ ·RA (resp. Ĩ ·RA).

Definition 3.1. A subset H of a PJ̃ -marked set is called a PJ̃-marked set relative

to Ĩ if the head terms of the marked polynomials in H are the terms in PJ̃ \ PĨ .

Let I be an ideal belonging to Mf Ĩ(K), i.e. I is generated by a PĨ-marked basis

F ⊆ R and, equivalently, the graded decomposition RA = I ⊕ ⟨N (Ĩ)⟩A holds (with

an abuse of notation, we keep on writing I for I ·RA).

For every polynomial p ∈ RA, we denote by NfI(p) the normal form of p modulo

I, which is the unique polynomial in ⟨N (Ĩ)⟩A such that p−NfI(p) ∈ I. Recall that

NfI(p) is explicitely computed by the reduction relation of Definition 2.2.
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Lemma 3.2. With the notation above, let J ⊆ RA be an ideal containing I.

(i) For every polynomial p ∈ J , NfI(p) belongs to ⟨N (Ĩ)⟩A ∩ J . In particular,

NfI(p) belongs to J \ I, unless it is null.
(ii) The graded decomposition J = I ⊕ (⟨N (Ĩ)⟩A ∩ J) holds.

Proof. The proof follows from standard arguments. □

Definition 3.3. With the notation above, a PJ̃ -marked set H relative to Ĩ is called

a PJ̃-marked basis relative to I if the following graded decomposition holds, where

J ⊆ RA is the ideal generated by F ∪H:

(3.1) RA = I ⊕ (⟨N (Ĩ)⟩A ∩ J)⊕ ⟨N (J̃)⟩A.

Theorem 3.4. With the notation above, let H ⊂ RA be a PJ̃-marked set relative to

Ĩ and J be the ideal generated by F ∪H. Then, H is a PJ̃-marked basis relative to

I if and only if J is generated by a PJ̃-marked basis containing H.

Proof. If J is generated by a PJ̃ -marked basis G containing H then RA = J ⊕
⟨N (J̃)⟩A. Since J contains I by construction, by Lemma 3.2(ii) we have that J =

I ⊕ (⟨N (Ĩ)⟩A ∩ J), and so H is a PJ̃ -marked basis relative to I.

If H is a PJ̃ -marked basis relative to I, the decomposition (3.1) holds. Since

J = I ⊕ (⟨N (Ĩ)⟩A ∩ J) by Lemma 3.2(ii), from decomposition (3.1) we obtain

RA = J ⊕ ⟨N (J̃)⟩A, which means that J is generated by a PJ̃ -marked basis G (see

Remark 2.5). It remains to show that H ⊆ G. By the hypotheses, for every h ∈ H

there is g ∈ G with Ht(h) = Ht(g). Hence, by construction, the polynomial h − g

belongs to J ∩ ⟨N (J̃)⟩A = {0} and then h = g. □

If H is a PJ̃ -marked set relative to Ĩ, hence contained in a PJ̃ -marked set G, we

have the reduction relation −→H∗ thanks to Lemma 2.3.

Despite the nice properties which the reduction relation −→H∗ inherits from

−→G∗ , the following example shows that it is not always true that, for a given

polynomial p, p −→+
G∗ 0 is equivalent either to p −→+

H∗ pH∗ with pH∗ ∈ ⟨F ∗⟩A, or to
p −→+

F ∗ pF ∗ with pF ∗ ∈ ⟨H∗⟩A, for a given PĨ-marked set F .

Hence, in general (pH∗)F ∗ and (pF ∗)H∗ are not the same polynomial. Moreover, the

following example also shows that we might have p = (pF ∗)H∗ (resp. p = (pH∗)F ∗).

This means that, although −→F ∗ and −→H∗ are both Noetherian, the reduction

process obtained by first computing the complete reduction of a polynomial by

−→F ∗ (resp. by −→H∗) and successively the complete reduction by −→H∗ (resp. by

−→F ∗) is not Noetherian.
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Example 3.5. In the polynomial ring K[x0, x1, x2, x3], consider the quasi-stable

ideal Ĩ = (x2
3, x

3
2), with Pommaret basis PĨ = {x2

3, x3x
3
2, x

3
2}, and the PĨ-marked

basis F = {x2
3, x3x

3
2, x

3
2 − 3x3x

2
2}. Let I be the ideal generated by F . Then take

the quasi-stable ideal J̃ = (x2
3, x3x2, x

3
2), which contains Ĩ and has Pommaret basis

PJ̃ = {x2
3, x3x2, x

3
2}. Moreover, take the PJ̃ -marked set H = {x3x2 − 4x2

2} relative

to Ĩ. In particular, H is a PJ̃-marked basis relative to I because it is contained in

the PJ̃ -marked basis G = {x2
3, x3x2 − 4x2

2, x
3
2} and J = (G) = (H ∪ F ).

Let h = x3x2 − 4x2
2 be the unique polynomial of H. Then x3h −→+

H∗ f := x2
3x2 −

16x3
2, where f does not belong to I = ⟨F ∗⟩A. Moreover, x3h −→+

F ∗ g := −4x2
2x3

where g does not belong to ⟨H∗⟩A.
Let us now consider x3

2, which is reduced with respect to −→H∗ . If we rewrite

x3
2 first by −→F ∗ and then by −→H∗ we find 12x3

2, obtaining a loop, unless the

characteristic of the field is 2 or 3.

If we consider x2
2x3 and rewrite it first by −→H∗ and then by −→F ∗ we find 12x2

2x3,

obtaining a loop again, unless the characteristic of the field is 2 or 3.

The problems that Example 3.5 highlights are new with respect to both the theory

of marked bases and the theory of relative Gröbner bases and involutive bases.

However, there is a relevant case in which the successive application of the rela-

tions −→H∗ and −→F ∗ has a good behaviour.

Proposition 3.6. With the notation above, let H be a PJ̃-marked set relative to Ĩ

and F ′ := {f ∈ F | Ht(f) ∈ PĨ ∩ PJ̃}. If G := H ∪ F ′ is a PJ̃-marked set, then

(i) For every p ∈ RA, p −→+
G∗ 0 is equivalent to p −→+

H∗ r with r ∈ ⟨F ′∗⟩.
(ii) H is a PJ̃-marked basis relative to I if and only if H ∪ F ′ is the PJ̃-marked

basis of J = (H ∪ F ).

Proof. For item (i), assume that p reduces to 0 by G∗. Since G is equal to H ∪ F ′,

this means that we have the following expression:

p =
∑
H∗

cβηx
ηhβ +

∑
F ′∗

cαγx
γfα.

The above equality gives us that p −→+
H∗

∑
F ′∗ cαγx

γfα, and the latter is obviously

an element in ⟨F ′∗⟩A. Vice versa, if p reduces to an element r ∈ ⟨F ′∗⟩A by H∗, then

r −→+
G∗ 0, being F ′ ⊂ G. Item (ii) now follows from Theorem 3.4. □

If I = Ĩ, the hypotheses of Proposition 3.6 are satisfied because F ′ = PĨ ∩ PJ̃ .
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Corollary 3.7. Let J̃ ⊇ Ĩ be quasi-stable ideals, H a PJ̃-marked set relative to Ĩ,

and J the ideal generated by PĨ ∪H. Then H is a PJ̃-marked basis relative to Ĩ if

and only if:

(i) ∀hβ ∈ H, ∀xi > min(Ht(hβ)), xihβ −→+
H∗ rβ,i ∈ Ĩ

(ii) ∀xα ∈ PĨ ∩ PJ̃ , ∀xi > min(xα), xix
α −→+

H∗ rα,i ∈ Ĩ

(iii) ∀xγ ∈ BĨ \ PJ̃ , x
γ −→+

H∗ rγ ∈ Ĩ.

Proof. Denote by TĨ,J̃ the set PĨ ∩ PJ̃ . Observe that if p −→+
H∗ r ∈ Ĩ, then r

belongs to ⟨T ∗
Ĩ,J̃

⟩ ⊆ Ĩ, as pointed out in Remark 2.4. Thanks to Proposition 3.6, H

is a PJ̃ -marked basis relative to Ĩ if and only if H ∪ TĨ,J̃ is the PJ̃ -marked basis of

J = (H ∪ BĨ). So now it is sufficient to apply [6, Theorem 5.13] to obtain items (i)

and (ii) and observe that item (iii) guarantees that Ĩ is contained in J . □

4. Relative marked functor

We continue to use the same notation of Section 3, in particular J̃ ⊇ Ĩ are quasi-

stable ideals in R and the ideal I ⊆ RA is generated by a PĨ-marked basis F .

Definition 4.1. The marked functor on J̃ relative to I, or, when J̃ and I are

well-understood, simply the relative marked functor, is the functor

Mf I,J̃ : Noeth K−Alg −→ Sets

such that

Mf I,J̃(A) := {(H ∪ F ) ⊆ RA | H ⊆ RA is a PJ̃ -marked basis relative to I}

and, if ϕ : A → B is a morphism of Noetherian K-algebras (with ϕ(1K) = 1K ∈ B),

then the map Mf I,J̃(ϕ) associates to every H ∈ Mf I,J̃(A) the PJ̃ -marked basis

H ⊗A B ∈ Mf I,J̃(B) ⊂ RB relative to I.

As the reader might expect, Mf I,J̃ is strictly related to Mf J̃ and to Hilb
p(z)
X , with

X = Proj(R/I), when the hypotheses of Proposition 3.6 hold.

Theorem 4.2. With the notation above and under the hypotheses of Proposition 3.6,

the following statements hold:

(i) the relative marked functor Mf I,J̃ is a closed subfunctor of Mf J̃ ;

(ii) if the ideals Ĩ and J̃ are both saturated, then for every integer t ≥ ρJ̃ − 1 the

relative marked functor Mf I≥t,J̃≥t
is an open subfunctor of Hilb

p(z)
X and it is

represented by Mf J̃≥t
∩Hilb

p(z)
X .
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Proof. For what concerns item (i), thanks to Theorem 3.4, for every Noetherian

K-algebra A there is a bijection between the set Mf I,J̃(A) and the set

Mf J̃(A) ∩ {J ⊆ RA : J is a homogeneous ideal containing I}.

As we already showed in Section 2, the condition “J contains I” can be imposed

on the ideals in Mf J̃(A) by further closed conditions on the polynomials generating

the ideal that defines the scheme which represents the functor Mf J̃ . So, we obtain

item (i).

Thanks to [4, Theorem 3.5 and Corollary 3.7], item (i), and Lemma 2.8(ii), for

every integer t, Mf I≥t,J̃≥t
is a closed subfunctor of Mf J̃≥t

. Moreover, if t ≥ ρJ̃ − 1,

we have Mf I≥t,J̃≥t
(A) = Mf J̃≥t

(A) ∩ Hilb
p(z)
X (A), and item (ii) holds thanks to

Proposition 2.6. □

4.1. Case I = Ĩ. In the particular case I = Ĩ, we now give a construction of the

scheme representing Mf Ĩ,J̃ which is alternative to the construction that is described

in Section 2 for Mf J̃≥t
∩ Hilb

p(z)
X . We use the computational method that arises

from Corollary 3.7 in order to characterize relative marked bases.

Let C ′ denote the finite set of variables{
Cβη | xβ ∈ PJ̃ \ PĨ , x

η ∈ N (J̃), deg(xη) = deg(xβ)
}

and consider the K-algebra K[C ′]. Then, we construct the set H ⊂ RK[C′] consisting

of the following marked polynomials

(4.1) hβ = xβ −
∑

xη∈N (J̃)|β|

Cβηx
η

with xβ ∈ PJ̃ \ PĨ . Moreover, we consider

H ∗ := {xδhβ | hβ ∈ H , xδ ∈ X (hβ)}.

We highlight that the set C ′ can be identified to a subset of the set C given in

Section 2, and up to this identification we can consider H as a subset of G .

Then, we explicitly compute the following polynomials in RK[C′] by −→H ∗ :

• ∀hβ ∈ H , ∀xi > min(Ht(hβ)), let rβ,i be such that xihβ −→+
H ∗ rβ,i;

• ∀xα ∈ TĨ,J̃ , ∀xi > min(xα), let rα,i be such that xix
α −→+

H ∗ rα,i;

• ∀xγ ∈ BĨ \ PJ̃ , let rγ be such that f −→+
H ∗ rγ.

For every hβ ∈ H , and for every xi > min(Ht(hβ)), we collect the coefficients

in K[C ′] of the terms in supp(rβ,i) not belonging to Ĩ, and the same for all the

polynomials rα,i and rγ. Let R ⊂ K[C ′] be the ideal generated by these coefficients.
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Theorem 4.3. The functor Mf Ĩ,J̃ is the functor of points of Spec(K[C ′]/R), which

we denote by Mf Ĩ,J̃ .

Proof. Let H ⊆ RA be a PJ̃ -marked basis relative to Ĩ and denote by ϕH the

evaluation morphism ϕH : K[C ′] → A that associates to every variable in C ′ the

corresponding coefficient in the polynomials of H. It is sufficient to observe that H

is a PJ̃ -marked basis relative to Ĩ if and only if ϕH factors through K[C ′]/R, or in

other words if and only if the following diagram commutes

K[C ′]
ϕH //

%%

A

K[C ′]/R

;; .

Equivalently, H is a PJ̃ -marked basis relative to Ĩ if and only if R is contained in

ker(ϕH), which is true thanks to Corollary 3.7. □

The scheme Mf Ĩ,J̃ which has been introduced in the statement of Theorem 4.3 is

called a relative marked scheme.

Remark 4.4. The scheme Spec(K[C ′]/R) is computationally more advantageous

compared with Spec(K[C]/(U + VF )) considered in Theorem 2.9. Indeed, if PĨ ∩
PJ̃ ̸= ∅, then |C ′| < |C| and the reduction −→H ∗ involves the relative marked set

H , which contains less polynomials than G . Actually, in principle we perform less

reduction steps using −→H ∗ .

If the ideals Ĩ and J̃ are both saturated and we consider Mf Ĩ≥t,J̃≥t
for some t, we

give a further different presentation of the scheme representing it. Take the following

polynomials in K[C ′]:

(⋆) ∀xγ ∈ PĨ \ PJ̃ , let rγ be such that x
max{0,t−deg(xγ)}
0 xγ −→+

H ∗ rγ

Observe that if t is strictly bigger than the initial degree of Ĩ, then |PĨ \ PJ̃ | is
strictly smaller than |PĨ≥t

∩ PJ̃≥t
|.

Let R ′ ⊂ K[C ′] be the ideal generated by the coefficients in K[C ′] of the terms not

belonging to Ĩ of the polynomials rβ,i, rα,i considered for R, and by the coefficients

in K[C ′] of the terms not belonging to Ĩ of the polynomials rγ in (⋆).

Theorem 4.5. The functor Mf Ĩ≥t,J̃≥t
is the functor of points of Spec(K[C ′]/R ′).

Proof. The proof is analogous to that of Theorem 4.3 thanks to Lemma 2.8. □
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Algorithm 1 Algorithm for computing the defining ideal R ′ representing the
relative marked functor Mf Ĩ≥t,J̃≥t

1: MarkedFunctor(J̃ , Ĩ , t)
Input: saturated quasi-stable ideals J̃ ⊇ Ĩ and a non-negative integer t
Output: generators of the ideal R ′ representing the relative functor Mf Ĩ≥t,J̃≥t

2: let H ⊆ K[C ′] be the set of the polynomials defined in (4.1) with respect to the
quasi-stable ideals J̃≥t and Ĩ≥t

3: R ′ := (0)
4: for hβ ∈ H do
5: for xi > min(Ht(hβ)) do
6: compute rβ,i such that xihβ −→+

H ∗ rβ,i
7: R ′ := R ′ + (coefficients in rβ,i of the terms not belonging to Ĩ)
8: end for
9: end for
10: for xα ∈ PJ̃≥t

∩ PĨ≥t
do

11: for xi > min(xα) do
12: compute rα,i such that xix

α −→+
H ∗ rα,i

13: R ′ := R ′ + (coefficients in rα,i of the terms not belonging to Ĩ)
14: end for
15: end for
16: for xγ ∈ BĨ \ PJ̃ do

17: compute rγ such that x
max{0,t−deg(xγ)}
0 xγ −→+

H ∗ rγ
18: R ′ := R ′ + (coefficients in rγ of the terms not belonging to Ĩ)
19: end for
20: return R ′

Algorithm 1 collects the instructions to compute the ideal R ′.

In the following examples we take into account the fact that, thanks to Theo-

rem 4.2(ii), the relative marked scheme Mf Ĩ≥t,J̃≥t
defined by the ideal R ′ that has

just introduced is an open subscheme of Hilb
p(z)
X . Hence, the Zariski tangent space

to this open subscheme at one of its points is equal to the Zariski tangent space to

Hilb
p(z)
X at the same point (see also [5, Corollary 1.9]).

Example 4.6. This is an example of scheme Mf Ĩ≥t,J̃≥t
which is neither irreducible

nor reduced. Take the quasi-stable ideals Ĩ = (x2
3, x

5
2) ⊂ J̃ = (x2

3, x3x2, x3x
2
1, x

5
2) ⊂

R := K[x0, . . . , x3], with PJ̃ = {x2
3, x3x2, x3x

2
1, x

5
2} and PĨ = {x2

3, x3x
5
2, x

5
2}. Fol-

lowing Algorithm 1 and using CoCoA [1], we compute the ideal R ′ defining the

relative marked scheme Mf Ĩ≥t,J̃≥t
for t = ρJ̃ − 1 = 2. In this case we have

J̃≥t = J̃ and Ĩ≥t = Ĩ. The set H is made of the following polynomials in the

ring Q[c1, . . . , c20][x0, . . . , x3]:
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h1 = c1x
2
0 + c2x0x1 + c3x

2
1 + c4x0x2 + c5x1x2 + c6x

2
2 + c7x0x3 + c8x1x3 + x2x3,

h2 = c9x
3
0 + c10x

2
0x1 + c11x0x

2
1 + c12x

3
1 + c13x

2
0x2 + c14x0x1x2 + c15x

2
1x2 + c16x0x

2
2+

c17x1x
2
2 + c18x

3
2 + c19x

2
0x3 + c20x0x1x3 + x2

1x3.

By −→H ∗ we reduce the polynomials x3h1, x3h2, x2h2, x3x
5
2 and then apply the re-

duction modulo Ĩ, obtaining the ideal R ′ ⊆ Q[c1, . . . , c20]. The ringQ[c1, . . . , c20]/R ′

has Krull dimension 2, so Mf Ĩ≥t,J̃≥t
has dimension 2. Moreover, the Zariski tangent

space to Mf Ĩ≥t,J̃≥t
at Y has dimension 7 and the point Y defined by J̃ is singular in

Hilb
p(z)
X , where p(z) = 5z−3 is the Hilbert polynomial of R/J̃ and X = Proj(R/Ĩ).

Using Macaulay 2 [12] we compute the irreducible components of R ′, obtaining

that the associated primes have both dimension 2 and are

P0 = (c18, c17, c16, c15, c14, c13, c12, c11, c10, c9, c8, c7, c6, c5, c4, c3, c2, c1) ,

P1 = (c18, c17, c16, c15, c14, c13, c12, c11, c10, c9, c6, c5, c4, c3, c2, c1 c
2
20 − 4c19,

c8c20 − 2 c7, 2 c8c19 − c7c20).

The defining ideals of both the two irreducible components are not prime and contain

the point Y as a singular point, because the Zariski tangent spaces at Y to these

components have dimensions 7, too. Some ancillary material related to this example

is available at http://www.dma.unina.it/~cioffi/RedirectRelative.html.

If we compute the generators for the ideal U + VZ of Theorem 2.9, then we have

to deal with 50 parameters instead of 20.

Example 4.7. This is an example of scheme Mf Ĩ≥t,J̃≥t
which is irreducible but not

reduced. Assume char(K) ̸= 2. Given an integer p > 2, take the quasi-stable ideals

Ĩ = (x2
n, x

p
n−1) ⊂ J̃ = (xn, x

p
n−1) ⊆ R := K[x0, . . . , xn], with PJ̃ = {xn, x

p
n−1} and

PĨ = {x2
n, xnx

p
n−1, x

p
n−1}. The ideal J̃ defines the only point Y of the Hilbert scheme

Hilb
p(z)
X , where p(z) is the Hilbert polynomial of R/J̃ and X = Proj(R/Ĩ) (see [11],

for instance). Following Algorithm 1, by hand we compute the ideal R ′ defining

Mf Ĩ≥t,J̃≥t
for t = ρJ̃ −1 = 0, hence J̃≥t = J̃ and Ĩ≥t = Ĩ. The set H is made only of

the polynomial h = c1x0+ c2x1+ c3x2+ · · ·+ cnxn−1+xn. By −→H ∗ we reduce the

terms xnx
p
n−1 and x2

n and then apply the reduction modulo Ĩ, obtaining the ideal

R ′:

R ′ = (cn, . . . , c2, c1)
2.

The affine scheme Spec(K[c1, c2, . . . , cn]/R ′) is a zero-dimensional scheme supported

over the origin and with Zariski tangent space of dimension n at Y . By definition,

the multiplicity in Hilb
p(z)
X of the fat point Y is n+ 1.

http://www.dma.unina.it/~cioffi/RedirectRelative.html
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If we compute the generators for the ideal U + VZ of Theorem 2.9, then we have

to deal with
(
n−1+p

p

)
+ n− 1 parameters instead of n.

5. An open cover of a Hilbert scheme over a Cohen-Macaulay

quotient ring on a quasi-stable ideal

Let Ĩ be a saturated quasi-stable ideal, S := R/Ĩ, and consider the projective

scheme X = Proj(S). Hence we can consider the Hilbert scheme Hilb
p(z)
X , for an

admissible Hilbert polynomial p(z).

When we consider the image in S of an element f of R we mean its image [f ] by

the projection π : R → R/Ĩ, that is its residue class modulo Ĩ.

Following [21], a term τ of R is said Ĩ-free if its residue class [τ ] is non-null, i.e. τ

does not belong to Ĩ. A term of S is the image in S of an Ĩ-free term of R. If W is

any set of terms in S, by abuse of notation we will use the symbol W to also denote

the set of terms in π−1(W ) and vice versa.

The ring S inherits from R a grading for which a term [t] ∈ S has degree q ≥ 0 if

and only if t has the degree q in R.

An ideal U ⊆ S is monomial if it is the image in S of a monomial ideal of R.

Every monomial ideal U of S has a unique minimal generating set BU made of terms

of S. A monomial ideal U of S will be said quasi-stable in S if the ideal (BU ∪ BĨ)

is quasi-stable in R, that is U is the image of a quasi-stable ideal of R.

Definition 5.1. Let U be a quasi-stable ideal in S and let J̃ = (BU ∪ BĨ). The

image in S of a PJ̃ -marked set relative to Ĩ is called a U-marked set. The image of

a PJ̃ -marked basis relative to Ĩ is called a U-marked basis.

From now, we also assume that the ring S := R/Ĩ is Cohen-Macaulay.

Proposition 5.2 ([26, Theorem 3.20], [27, Theorem 5.2.9]). Let Ĩ be a quasi-stable

ideal in R and let PĨ be its Pommaret basis. Then S = R/Ĩ is Cohen-Macaulay if

and only if, for the integer m = min{min(xα) | xα ∈ PĨ}, there is a pure variable

power xam
m in Ĩ.

Remark 5.3. Note that the criterion given in Proposition 5.2 can be applied to a

quasi-stable ideal Ĩ by looking at the minimal value of min(xα) for xα in BĨ .

Let xk+1, . . . , xn be the variables that divide some minimal generators of Ĩ. In the

following discussion, we will write T′ for the set of all terms in the polynomial ring

K[xk+1, . . . , xn] and T′′ for the set of all terms in the polynomial ring K[x0, . . . , xk].
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We need to adapt [3, Proposition 7.2 and Corollary 7.4] to our current setting.

We make the following observation as a first step.

Lemma 5.4. The Cohen-Macaulay quotient ring S = R/Ĩ is a finitely generated

graded free K[x0, . . . , xk]-module

S =
d⊕

e=0

(K[x0, . . . , xk](−e))me ,

where d = max{deg(t) | t ∈ T′ \ Ĩ} and, for each 0 ≤ e ≤ d, me = |{t ∈ T′ \ Ĩ |
deg(t) = e}|.

Proof. First, note that Ĩ contains pure powers of all variables xj with j > k; hence,

the set T (e) := {t ∈ T′ \ Ĩ | deg(t) = e} is finite. Since the generators of Ĩ are terms

in T′, we have for each t ∈ T (e) an injection

ι : T′′ → S, u 7→ [u · t].

Now, we turn to the graded decomposition. Recall that the ring S inherits a

grading from R. It is easy to see that the set of terms of degree q ≥ 0 in S is

disjointly decomposed as follows:

(5.1) Sq ∩ {[u] | u ∈ T} =
d⊔

e=0

⊔
t∈T (e)

t · (Sq−e ∩ {[u] | u ∈ T′′}) .

It is important to note that all elements in the sets of the right hand side of (5.1)

are non-zero; this is guaranteed by the Cohen-Macaulay property of Ĩ. The claim

follows. □

We now highlight that the definition of quasi-stable ideal U of S as the image

in S of a quasi-stable ideal J̃ in R containing Ĩ is equivalent to the definition of

quasi-stable submodule of a free module given in [3, Definition 3.2 item (i)].

Proposition 5.5. Let U ⊆ S be a monomial ideal with minimal generating set BU .

Then U is quasi-stable if and only if BU , interpreted as a monomial subset of the

K[x0, . . . , xk]-module S, generates a quasi-stable submodule.

Proof. The proof is by routine verification of quasi-stability conditions (as given in

[3, Definition 2.2]) for the minimal generators of the ideals and submodules that are

considered. □

Thanks to Proposition 5.5, a quasi-stable ideal U of S can be even considered as

a quasi-stable K[x0, . . . , xk]-submodule of S, and vice versa.
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However, the notions of marked set over a quasi-stable ideal U introduced in

Definition 5.1 and of marked set over a submodule given in [3, Definition 4.3] are

different, as we will see in Example 5.6.

Example 5.6. Take R = K[x0, x1, x2], Ĩ = (x7
2) and J̃ = (x2

1, x
7
2). Let U be the

ideal that is the image of J̃ in S. Observe that PJ̃ = {x2
1, x

2
1x2, . . . , x

2
1x

6
2, x

7
2}. Thus,

according to Definition 5.1, the set F̂ = {x0x1 + x2
1} is not a U -marked set (for

such a set, we would need additionally polynomials marked on each of the terms

x2
1x2, . . . , x

2
1x

6
2). Nevertheless, F̂ is marked on the Pommaret basis of the quasi-stable

monomial K[x0, x1]-submodule of S generated by {x2
1 ·[1]}, because this singleton set

is also the Pommaret basis of the submodule generated by it (see [3, Definition 3.1]).

Nevertheless, for high degrees q, the notions of marked sets over a quasi-stable

submodule and of U -marked sets for a quasi-stable ideal U ⊆ S coincide.

Recall that the regularity reg(Ĩ) of a quasi-stable ideal Ĩ coincides with the ma-

ximum degree of a term in its Pommaret basis PĨ . Hence, for every q ≥ reg(Ĩ), the

Pommaret basis of U≥q coincides with BU≥q
.

Corollary 5.7. Let U ⊂ S be a quasi-stable ideal and J̃ be a quasi-stable ideal

whose image in S is U . Let F ⊆ Sq be a finite set of homogeneous elements of S of

degree q ≥ max{reg(J̃), reg(Ĩ)}. Then, F is a U≥q-marked basis if and only if it is

a marked basis over the submodule U≥q.

Proof. We already observed that in the present setting a quasi-stable monomial ideal

U of S can be even considered as a quasi-stable K[x0, . . . , xk]-submodule of S, and

vice versa. Indeed, by Proposition 5.5, in both the two above interpretations BU is

a set of generators of U .

The difference between Definition 5.1 and [3, Definition 4.3] appears when BJ̃

does not coincide with PJ̃ , so that BU does not contain all the terms on which we

expect marked polynomials in a U -marked basis.

If q ≥ max{reg(J̃), reg(Ĩ)}, then BJ̃≥q
= PJ̃≥q

and BĨ≥q
= PĨ≥q

. Hence BU≥q
=

PJ̃≥q
\PĨ≥q

= BJ̃≥q
\BĨ≥q

contains all the expected terms for a U≥q-marked basis. □

Example 5.8. Consider Ĩ = (x7
2) ⊆ R = K[x0, x1, x2], and F̂ = {x0x

6
1 + x7

1}, which
is marked on {x7

1}, and U = (x7
1) is a quasi-stable ideal in S. F̂ is not a U -marked set

in the sense of Definition 5.1, because the Pommaret basis PJ̃ of J̃ = (x7
1, x

7
2) ⊆ R

includes also the terms x7
1x

a
2 for 1 ≤ a ≤ 6. Note that the degrevlex leading ideal of

J = (F̂ , Ĩ) is exactly J̃ ; this implies that J (and hence also (F, Ĩ)) is 13-regular (13

being the highest degree of an element of PJ̃).
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Now consider, as above, Ĩ = (x7
2), but set F = {x1x

6
2}. We have F ⊂ S7, and

7 = reg(Ĩ); moreover F is already marked on {x1x
6
2} which generates a quasi-stable

ideal U = (x1x
6
2) ⊆ S. Since the Pommaret basis PJ̃ of J̃ = (F, Ĩ) is exactly

F ∪ {x7
2}, F is a U -marked set in the sense of Definition 5.1. Note that the ideal

J = J̃ = (F, Ĩ) ⊆ R is 7-regular, because it is a quasi-stable monomial ideal whose

minimal Pommaret basis has maximal degree 7.

In the remaining part of this section, we assume that the field K is infinite.

We denote by PGL(k + 1) the subset of PGLK(n + 1) whose elements define

invertible change of coordinates of the following kind:

xi 7→ xi for i = k + 1, . . . , n, xj 7→
k∑

t=0

gjtxt for j = 0, . . . , k.

For any element g ∈ PGL(k + 1) we denote by g̃ the automorphism induced by g

on S.

Proposition 5.9. For a given degree q ≥ 0, let F ⊂ Sq be a finite set. There exists

g ∈ PGL(k + 1) such that g̃(F ) becomes after an autoreduction a marked set over a

quasi-stable monomial submodule of S (according to [3, Definition 4.3]).

Proof. We can directly apply [3, Corollary 7.4], because F is a subset of a single

degree component of the finitely generated free graded K[x0, . . . , xk]-module S by

Lemma 5.4. □

Corollary 5.10. For every field extension L of K, let J ⊆ RL be a saturated ideal

containing Ĩ and t be an integer such that t ≥ max{reg(J), reg(Ĩ)}. Then, there

exists g ∈ PGL(k + 1) such that the ideal g̃(Jt) ·S is generated by the image in S of

a PJ̃-marked basis H relative to Ĩ that belongs to Mf Ĩ≥t,J̃≥t
(L), for some saturated

quasi-stable ideal J̃ containing Ĩ.

Proof. By the assumptions on t, we can take a set F of generators of (Jt)/Ĩ made

only of elements of degree t, so that F ⊆ St. Recall that we are now assuming that

K is infinite, and hence Zariski dense in any field extension L.
Then by Proposition 5.9, there exists g ∈ PGL(k + 1) such that g̃(F ) yields

after an autoreduction a marked set H over a quasi-stable monomial submodule of

S. By [3, Lemma 7.5], we can assume that H is a marked basis over the stable

module U = (Ht(H)) (see [3, Definition 3.2]) with regularity ≤ t. Hence, the ideal

(Ht(H),PĨ≥t
) has regularity ≤ t, and its saturation J̃ contains Ĩ by Lemma 2.8.

Thus, thanks to Corollary 5.7, H is also a U -marked basis and we obtain the thesis

by Definition 5.1. □
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Recall that if J belongs toMf J̃(K) then J≥t belongs toMf J̃≥t
(K), but the converse

is not true (e.g. [4, Example 3.8]). However, by Lemma 2.8, if J≥t belongs to

Mf J̃≥t
(K) and contains Ĩ≥t, then J contains Ĩ.

Given the quasi-stable ideal Ĩ, let p(z) be any Hilbert polynomial as in Section 2,

and consider the sets

Qp(z) := {J̃ saturated quasi-stable | S/J̃ has Hilbert polynomial p(z)},

Qp(z),Ĩ := {J̃ saturated quasi-stable | J̃ ⊇ Ĩ and S/J̃ has Hilbert polynomial p(z)}.

The Gotzmann number r of the Hilbert polynomial p(z) is the smallest integer such

that r ≥ reg(J) for every saturated ideal J defining a scheme lying on Hilb
p(z)
Pn .

For every g ∈ PGL(k + 1), we consider the functor Mf g̃
Ĩ≥t,J̃≥t

that assigns to every

K-algebra A the set {(g̃−1(G)) ⊂ A[x] | (G) ∈ Mf Ĩ≥t,J̃≥t
(A)} and to every K-algebra

morphism σ : A → A′, the map

Mf g̃
Ĩ≥t,J̃≥t

(σ) : Mf g̃
Ĩ≥t,J̃≥t

(A) → Mf g̃
Ĩ≥t,J̃≥t

(A′)

g̃−1(G) 7→ g̃−1(σ(G)).

The transformation g̃−1 induces a natural isomorphism of functors between the

functors Mf Ĩ≥t,J̃≥t
and Mf g̃

Ĩ≥t,J̃≥t
. Hence, Mf g̃

Ĩ≥t,J̃≥t
is an open subfunctor of Hilb

p(z)
X

for every g ∈ PGL(k + 1) thanks to Theorem 4.2 item (ii). Analogously, for every

g ∈ PGLK(n+ 1), Mf g
J̃≥t

is the open subfunctor of Hilb
p(z)
Pn that we obtain from

Mf J̃≥t
by the natural isomorphism induced by g−1.

Theorem 5.11. Let Ĩ ⊆ R be a saturated quasi-stable ideal such that S = R/Ĩ is a

Cohen-Macaulay ring and let X = Proj(S) be the scheme defined by Ĩ. Let p(z) be

a Hilbert polynomial such that p(t) ≤ pX(t) for t ≫ 0, r be the Gotzmann number

of p(z) and t := max{reg(Ĩ), r}. Then, there is the open cover

Hilb
p(z)
X =

⋃
g∈PGL(k+1)

 ⋃
J̃∈Qp(z),Ĩ

Mf g̃
Ĩ≥t,J̃≥t

 .

Proof. We can apply [3, Proposition 10.3] to the Hilbert functor Hilb
p(z)
Pn , obtaining

the following open cover

(5.2) Hilb
p(z)
Pn =

⋃
g∈PGLK(n+1)

 ⋃
J̃∈Qp(z)

Mf g
J̃≥t

 .
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Since Hilb
p(z)
X is a closed subfunctor of Hilb

p(z)
Pn , we have an open cover of Hilb

p(z)
X

intersecting it with the open subfunctors of (5.2). In order to cover Hilb
p(z)
X it is

enough to consider J ∈ Qp(z),Ĩ , thanks to Theorem 3.4.

We now observe that it is even enough to only take g ∈ PGL(k + 1) thanks to

Corollary 5.10. We can now conclude taking into account that Mf g
J̃≥t

∩Hilb
p(z)
X =

Mf g̃
Ĩ≥t,J̃≥t

by Theorem 4.2 item (ii), combined with [9, Exercise VI-11]. □

6. Lex-point in Hilbert schemes over Macaulay-Lex quotients on

quasi-stable ideals

6.1. Generalities. Following [21], the same notation and terminology as in Sec-

tion 5 are here used also for quotient rings S := R/M when M is any monomial

ideal of R.

Definition 6.1. (see [17, 21]) A set W of terms of S is called a lex-segment of S

if, for all terms u, v ∈ S of the same degree, if u belongs to W and v >lex u then v

belongs to W . A monomial ideal U of S is called a lex-ideal if the set of terms in U

is a lex-segment of S.

Example 6.2. The image of a lex-ideal of R in S is a lex-ideal of S. However, there

are lex-ideals of S that are not the image of a lex-ideal of R. For example, consider

n = 3 and Ĩ = (x2
3, x

5
2). Then, the image U in S of the ideal J̃ = (x2

3, x3x2, x3x
2
1, x

5
2) ⊆

R is a lex-ideal in S, but J̃ is not a lex-ideal in R.

The quotient ring S is called a Macaulay-Lex ring if, for any homogeneous ideal U

of S, there exists a lex-ideal of S having the same Hilbert function as U (e.g. [17]).

If the monomial ideal M induces a Macaulay-Lex quotient ring, then we say that

M is Macaulay-Lex and that M is a Macaulay-Lex ideal.

Example 6.3. Various families of Macaulay-Lex monomial ideals M ⊆ R are

known. We list some of them explicitly and point to references in other cases.

(1) The most well-known class of Macaulay-Lex ideals are the Clements-Lindström

ideals [8]. They are ideals generated by a regular sequence xdn
n , x

dn−1

n−1 , . . . , x
d0
0 ,

where 1 ≤ dn ≤ dn−1 · · · ≤ d0 are integers or ∞ with x∞
i = 0. A Clements-

Lindström ideal is a quasi-stable ideal Ĩ and the quotient ring S := R/Ĩ,

which is called a Clements-Lindström ring, is Cohen-Macaulay. If dn = 1,

one may as well work in a quotient of K[x0, . . . , xn−1] and drop the genera-

tor xn.
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(2) Abedelfatah [2, Theorem 4.5] discovered two families of Macaulay-Lex ideals,

whose generating sets show some similarities to the generators of Clements-

Lindström ideals. In our conventions, they are given as follows, under the

conditions 2 ≤ en ≤ en−1 ≤ · · · ≤ e0 ≤ ∞ and ti < ei for all i:

• I = (xen
n , xtn

n x
en−1

n−1 , . . . , x
tn
n xe0

0 ),

• I = (xen
n , xen−1

n x
en−1

n−1 , x
en−1
n x

tn−1

n−1 x
en−2

n−2 , . . . , x
en−1
n x

tn−1

n−1 · · ·xt1
1 x

e0
0 ).

One can show that every such ideal is quasi-stable.

(3) Mermin [19] showed that a monomial regular sequence generates a Macau-

lay-Lex ideal if and only if it is of the form

(xen
n , x

en−1

n−1 , . . . , x
er+1

r+1 , x
er−1
r xi),

where en ≤ en−1 ≤ . . . ≤ er and i ≤ r. Note that such an ideal is quasi-stable

if and only if i = r, i.e., if it is a Clements-Lindström ideal.

(4) A complete characterization of all Macaulay-Lex monomial ideals in K[x0, x1]

is known (see e.g. [14]). In particular, there are many quasi-stable Macaulay-

Lex ideals in the polynomial ring with two variables.

(5) Given n zero-dimensional Macaulay-Lex monomial ideals Mi, each of them

in a polynomial ring with two variables, one can construct [15] a zero-dimen-

sional Macaulay-Lex ideal in R from M1, . . . ,Mn. Being zero-dimensional,

this ideal is also quasi-stable. Note that the construction in [15] covers also

more general cases.

(6) For each Macaulay-Lex monomial ideal Mi ⊆ Ri = K[xi, . . . , xn], where

i ∈ {1, . . . , n}, also the extension ideal (Mi) · R ⊆ R is Macaulay-Lex. [20,

Thm. 4.1]

Remark 6.4. The property of being Macaulay-Lex is not preserved under many

common ideal operations like for example saturation.

Consider the monomial ideal I = (x2
3, x3x

7
2, x3x2x

7
1, x3x2x

2
1x

7
0) ⊂ R = K[x0, . . . , x3].

It is Macaulay-Lex according to Example 6.3 item (2). Its saturation is Isat =

(x2
3, x3x2x

2
1, x3x

7
2). We can apply [15, Proposition 1] to see that Isat is not Macaulay-

Lex. Consider the set J4 = {x3x
3
1} ⊆ R/I. Its lex-segment in R/Isat is L4 = {x3x

3
2}.

Multiplying J4 with the generators x0, . . . , x3 of the homogeneous maximal ideal, we

obtain the set {x0, x1, x2, x3}{x3x
3
1} = {x3x

3
1x0, x3x

4
1, x3x2x

3
1, x

2
3x

3
1} which, modulo

the ideal Isat, is equal to {x3x
3
1x0, x3x

4
1}, a set with two elements; but multiplying L4

with x0, . . . , x3, we obtain the set {x0, x1, x2, x3}{x3x
3
2} = {x3x

3
2x0, x3x

3
2x1, x3x

4
2, x

2
3x

3
2}

which, modulo the ideal Isat, is equal to {x3x
4
2, x3x

3
2x1, x3x

3
2x0}, with three elements.
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Thus, it is not possible to find a lex-ideal in the quotient R/Isat having the same

Hilbert function as the ideal (J4) + Isat/Isat.

The Macaulay-Lex property is in general also not preserved when truncating an

ideal at a given degree.

Consider the ideal I = (x2
3, x3x

3
2, x3x2x

3
1, x3x2x

2
1x

3
0) ⊂ K[x0, ..., x3]. It is Macaulay-

Lex according to Example 6.3 item (2). Consider the same ideal in K[w, x0, ..., x3],

where the variable w is ranked lower than the others. The ideal is still Macaulay-Lex,

see Example 6.3 item (6). Moreover, it is also saturated in this ring. As mentioned

in Example 6.3 item (2), the ideal is quasi-stable. Its regularity is 8, as its minimal

Pommaret basis has maximal degree 8 [27, Corollary 5.5.18] (one element of degree

8 being x3x
2
2x

2
1x

3
0). The truncation I≥8 is a stable ideal [27, Proposition 5.5.19]. A

minimal generator of I≥8 is a = x3x2x
2
1x

4
0. Now consider the term b = x3x

2
2x1x

3
0. b is

also of degree 8, is lexicographically larger than a, and min(a) = min(b). But b is not

in the ideal I≥8. This shows that I≥8 is not piecewise lexsegment [2, Definition 3.1]

although it is stable. It follows [2, Theorem 3.6] that I≥8 is not Macaulay-Lex.

From now we assume that M := Ĩ is a quasi-stable ideal in R and that S = R/Ĩ

is a Macaulay-Lex ring. Recall that a monomial ideal U of S is quasi-stable in S if

the ideal (BU ∪ BĨ) is quasi-stable in R.

Lemma 6.5. With the notation above,

(i) If W is a lex-segment in S then {x0, . . . , xn} ·W is a lex-segment in S.

(ii) A lex-ideal U in S is quasi-stable.

(iii) If U is a lex-ideal of S, then (BU ∪ BĨ)
sat/Ĩ is a lex-ideal.

Proof. For item (i) see [20, Proposition 2.5]. For item (ii), let τ be a term of U with

minimal variable xi and let xj > xi. Since xj
τ
xi

>lex τ , we must have that xj
τ
xi

belongs to U unless it belongs to Ĩ. Then, we conclude because Ĩ is quasi-stable.

Item (iii) now follows from item (ii) and from the properties of the lexicographic

term order, because thanks to the properties of quasi-stable ideals we obtain the

saturation replacing x0 by 1 in every generator. □

If Ĩ is a saturated ideal we can consider the projective scheme X = Proj(S) and

the Hilbert scheme Hilb
p(z)
X on the Macaulay-Lex ring S, for an admissible Hilbert

polynomial p(z).

Theorem 6.6. Let S = R/Ĩ be a Macaulay-Lex ring and X = Proj(S). Then

Hilb
p(z)
X is non-empty if and only if it contains a (unique) point Y defined by a

lex-ideal of S. Moreover, Y has the minimal possible Hilbert function in Hilb
p(z)
X .
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Proof. Let r be the maximum between the Gotzmann number of p(z) and the regu-

larity of Ĩ. If Hilb
p(z)
X is non-empty, then there exists at least a lex-ideal U of S such

that S/U has Hilbert polynomial p(z), because S is Macaulay-Lex. In particular,

letting p̃(z) be the Hilbert polynomial of S = R/Ĩ, the set W made of the p̃(r)−p(r)

lex-largest terms of U of degree r is a lex-segment. Thanks to Lemma 6.5 item (iii),

the ideal (W ∪ BĨ)
sat/Ĩ is a lex-ideal too and by construction defines the desired

point Y in Hilb
p(z)
X . Indeed, by definition of saturation we obtain the same point Y

starting from any other lex-ideal of S with Hilbert polynomial p(z), so that the last

assertion also follows. □

Definition 6.7. Let S be a Macaulay-Lex ring over a saturated quasi-stable ideal

Ĩ and X = Proj(S). If Hilb
p(z)
X is non-empty, then its unique point defined by a

lex-ideal of S is called the lex-point of Hilb
p(z)
X .

6.2. Examples of smooth and singular lex-points. We now give some examples

both of smooth and singular lex-points in Hilbert schemes over Macaulay-Lex rings.

When it is necessary, we apply Algorithm 1 and, like in Section 4, take into

account the fact that a scheme Mf Ĩ≥t,J̃≥t
is an open subscheme of Hilb

p(z)
X . Hence,

the Zariski tangent space to Mf Ĩ≥t,J̃≥t
at one of its points is equal to the Zariski

tangent space to Hilb
p(z)
X at the same point (see also [5, Corollary 1.9]).

Example 6.8. Here is a trivial case of smooth lex-points. When Ĩ = (x3, . . . , xn), X

is the projective plane and so every point of the Hilbert scheme Hilb
p(z)
X is smooth,

for a constant polynomial p(z). Hence, in this case every point in Hilb
p(z)
Pn
K
, even

singular, corresponds to a smooth point in Hilb
p(z)
X . This is the extremal case of

the trivial situation in which Ĩ is generated by variables. In fact, in such case the

image in S of a lex-point of R is still smooth because it is simply the lex-point in a

Hilbert scheme over a lower dimensional projective space.

Example 6.9. The following saturated quasi-stable ideals Ĩ ⊂ J̃ in the ring R =

K[x0, . . . , xn] give smooth lex-points Y in the Hilbert scheme Hilb
p(z)
X , where X =

Proj(R/Ĩ), p(z) is the Hilbert polynomial of R/J̃ and Y is defined by J̃/Ĩ:

(i) Ĩ = (xk
n, x

k−1
n xn−1) ⊂ J̃ = (xk

n, x
k−1
n xn−1, x

k−1
n xn−2), for every n ≥ 3 and

k ≥ 2

(ii) Ĩ = (xn, xn−1)
2 ⊂ J̃ = (x2

n, xnxn−1, xnxn−2, x
2
n−1), for every n ≥ 3.

In case (i), the ideal Ĩ is Macaulay-Lex thanks to [14, Theorem 4] and [20, Theo-

rem 4.1] and the ideal J̃ already defines a lex-point inR. By a pencil-and-paper work,

we apply Algorithm 1 and obtain the following results. The set H is made of the
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polynomial h = xk−1
n xn−2+c1x

k
0+ . . . csx

k−1
n xn−3 in the ring Q[c1, . . . , cs][x0, . . . , xn],

with s =
(
n+k
n

)
− 3. By −→H ∗ we need to reduce the three polynomials xnh,

xn−1h, xn · xk−1
n xn−1 and then apply the reduction modulo Ĩ. The last polynomial

xn · xk−1
n xn−1 is already reduced with respect to −→H ∗ and moreover belongs to Ĩ.

The terms in the polynomial xn−1h that do not belong to Ĩ are already reduced

modulo −→H ∗ . Hence, their coefficient must be null. On the other hand, the

coefficients of the terms belonging to Ĩ are free. Such terms are of type xn−1 ·xk−1
n xj,

where 0 ≤ j ≤ n− 3, hence they are n− 2.

The terms in the polynomial xnh that belong to Ĩ are of type xn · xk−1
n xj, where

0 ≤ j ≤ n − 3, hence they have the same coefficients of the analogous terms in

xn−1h. All the other terms must have a null coefficient because of the polynomial

xn−1h, even those that are not reduced with respect to −→H ∗ .

In conclusion, the ideal R ′ is generated by s − (n − 2) parameters ci, and hence

Mf Ĩ≥t,J̃≥t
is a linear variety of dimension n−2. Hence, it is smooth and, in particular,

the point Y is smooth in Hilb
p(z)
X .

In case (ii), the ideal Ĩ is Macaulay-Lex thanks to [18, Theorem 2.1] and the ideal

J̃ does not define a lex-point in R, but J̃/Ĩ defines a lex point in S = R/Ĩ. As

for case (i), we apply Algorithm 1. We proceed in an analogous way as for case (i),

obtaining that Mf Ĩ≥t,J̃≥t
is a linear variety of dimension 2n− 3.

Example 6.10. The saturated quasi-stable ideals Ĩ = (x3
3, x

2
3x2) ⊂ J̃ = (x2

3, x3x2,

x3x1) ⊂ R = K[x0, . . . , x3] give a singular lex-point Y in the Hilbert schemeHilb
p(z)
X ,

where X = Proj(R/Ĩ), p(z) is the Hilbert polynomial of R/J̃ and Y is defined by

J̃/Ĩ. Like in Example 6.9, the ideal Ĩ is Macaulay-Lex thanks to [14, Theorem 4]

and [20, Theorem 4.1]. For t ≥ 1, the dimension of Mf Ĩ≥t,J̃≥t
is 2 and the dimension

of its Zariski tangent space at Y is 6. In this case we have PJ̃ \ PĨ = PJ̃ and so we

apply the computation described at the end of Section 2.

Remark 6.11. The points Y of Examples 4.6 and 4.7 are singular lex-points in

Hilbert schemes over Clements-Lindström rings (see also Example 6.2). Actually, it

seems not obvious to find a non-trivial example of smooth lex-point in a Clements-

Lindström ring. However, there are other points that are smooth. For example,

letting Ĩ = (x2
3) ⊂ J̃ = (x2

3, x
2
2) ⊂ R = K[x0, . . . , x3], both the dimensions of

Mf Ĩ≥1,J̃≥1
and of the Zariski tangent space at the point defined by J̃/Ĩ, which is not

a lex-point, are 8 in the Hilbert scheme Hilb
p(z)
X with X = Proj(R/Ĩ) and p(z) = 4z.
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