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Abstract Involutive bases are a special form of non-reduced Grobases with
additional combinatorial properties. Their origin liesire Janet-Riquier theory of
linear systems of partial differential equations. We stthilgm for a rather general
class of polynomial algebras including also non-commugagigebras like those
generated by linear differential and difference operatwraniversal enveloping
algebras of (finite-dimensional) Lie algebras. We reviewirthasic properties us-
ing the novel concept of a weak involutive basis and presentrete algorithms
for their construction. As new original results, we devetofheory for involutive
bases with respect to semigroup orders (as they appeardhdomputations) and
over coefficient rings, respectively. In both cases it tuvnsthat generally only
weak involutive bases exist.

1 Introduction

In the late19th and early20th century a number of French mathematicians de-
veloped what is nowadays called the Janet-Riquier theodjfigrential equations
[37-39,47,53,57,58]. It is a theory for general systemsifiéiebntial equations,
i. e. also for under- and overdetermined systems, and pesvidparticular a con-
crete algorithm for the completion to a so-called passsyestem. In recent times,
interest in the theory has been rekindled mainly in the cdrdéLie symmetry
analysis, so that a number of references to modern worksaplémentations are
contained in the review [36].

The defining property of passive systems is that they do no¢igge any non-
trivial integrability conditions. As the precise definitiof passivity requires the
introduction of a ranking on the set of all derivatives anceasry linear system

! Sometimes the equivalent term “involutive” is used whickras to go back to Lie.
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of partial differential equations with constant coeffidebijectively corresponds
to a polynomial submodule, it appears natural to relatetti@sry to the algebraic
theory of Grobner bases [1, 6].

Essentially, the Janet-Riquier theory in its original fdaoks only the concept
of reduction to a normal form; otherwise it contains all thgredients of Grobner
bases. Somewhat surprisingly, a rigorous links has beeablegied only fairly
recently first by Wu [61] and then by Gerdt and collaboratotsovintroduced
a special form of non-reduced Grobner bases for polynoidedls [20,21,62],
the involutive basegWu’s “well-behaved bases” correspond to Thomas bases in
the language of [20]). A slightly different approach to ihwtive bases has been
proposed by Apel [4]; it will not be used here.

The fundamental idea behind involutive bases (originatinthe pioneering
work of Janet [37,38]) is to assign to each generator in sskesubset of all vari-
ables: its multiplicative variables. This assignment iéecban involutive division,
as it corresponds to a restriction of the usual divisibilélation of terms. We only
permit to multiply each generator by polynomials in its nplitative variables.
This restriction makes the involutive standard repregemainique and leads to
additional combinatorial properties not shared by ordir@robner bases.

Like Grobner bases, involutive bases can be defined in mamcommutative
algebras. We will work with a generalisation of the polynahailgebras of solvable
type introduced by Kandry-Rodi and Weispfenning [41]. Bssentially equivalent
to the generalisation discussed by Kredel [42] or todhalgebras considered by
Apel [2] and Levandovskyy [44,45]. In contrast to some ofthevorks, we explic-
itly permit that the variables act on the coefficients, sd,thay, linear differential
operators withvariable coefficients form a polynomial algebra of solvable type in
our sense. Thus our framework automatically includes thekwb Gerdt [18] on
involutive bases for linear differential equations as dipalar case.

This article is the first of two parts. It reviews the basicaheof involutive
bases immediately in the framework of polynomial algebrfesobtvable type, as it
appears to be the most natural setting. Indeed, we woulddilstress that in our
opinion the core of the involutive bases theory is the mormbtheory (in fact, we
will formulate it in the language of multi indices or exponerctors, i. e. in the
Abelian monoid(IN§, +), in order to avoid problems with non-commuting vari-
ables) and the subsequent extension to polynomials rexoiry straightforward
normal form considerations.

While much of the presented material may already be founttesea in the
literature (though not always in the generality presentee land sometimes with
incorrect proofs), the article also contains original miale Compared to Gerdt
and Blinkov [20], we give an alternative definition of invtilte bases which nat-
urally leads to the new notion ofwmeakinvolutive basis. While these weak bases
are insufficient for the applications studied in Part Il \tletend the applicability
of the involutive completion algorithm to situations nowveoed before.

The main emphasis in the literature on involutive bases ismimising the
simple completion algorithm of Section 7 and on providingt implementations;
as the experiments reported in [23] demonstrate, the sealte been striking. We
will, however, ignore this rather technical topic and ir&testudy in Part Il a num-
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ber of applications of involutive bases (mainly Pommaretdsa in the structure
analysis of polynomial modules. Note, however, that in ¢hegplications we will
restrict to the ordinary commutative polynomial ring.

This first part is organised as follows. The next section @sfiimvolutive di-
visions and bases within the Abelian mondiNy,+) of multi indices. It also
introduces the two most important divisions named afteefland Pommaret, re-
spectively. Section 3 introduces the here used conceptlghpmial algebras of
solvable type. As the question whether Hilbert's Basis Taporemains valid is
non-trivial if the coefficients form only a ring and not a fielfection 4 collects
some results on this problem. The following three secticefing (weak) involu-
tive bases and give concrete algorithms for their condtact

The next four sections study some generalisations of thie teeory. Section 8
analyses the relation between left and right ideals in patyial algebras of solv-
able type and the computation of bases for two-sided idtratsextension requires
only a straightforward adaption of classical Grobner baleory. The following
three sections contain original results. The first two orersegalise to semigroup
orders and study the use of the Mora normal form. Finallyti8acll considers
involutive bases over rings. It turns out that in these memegal situations usually
only weak bases exist.

In a short appendix we fix our conventions for term orders Wlace inverse
to the ones found in most textbooks on Grobner bases. Wenadsdion an el-
ementary property of the degree reverse lexicographic ther that makes it
particularly natural for Pommaret bases.

2 Involutive Divisions

We study the Abelian monoi@N{, +) with the addition defined componentwise
and call its elementsiulti indices They may be identified in a natural way with the
vertices of am-dimensional integer lattice, so that we can easily visgadubsets
of Nj. For a multiindexy € Nj we introduce itxoneC(v) = v + N, i.e. the
set of all multi indices that can be reached frorby adding another multi index.
We say that dividesy, writtenv | u, if © € C(v). Given a finite subseV’ C N7,
we define itsspanas the monoid ideal generated v

(N) = U Clv) . (1)

veN

The basic idea of an involutive division is to introduce arnieton of the cone
of a multi index, the involutive cone: it is only allowed todathulti indices certain
entries of which vanish. This is equivalent to a restrictafrthe above defined
divisibility relation. The final goal will be having disjointunion in (1) by using
only these involutive cones on the right hand side. Thisfafimiew will naturally
lead to the combinatorial decompositions discussed inlRart

In order to finally give the definition of an involutive divia, we need one
more notation: letN'” C {1,...,n} be an arbitrary subset of the set of the first
n integers; then we writd\y = {v € N | Vj ¢ N : v; = 0} for the set of
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all multi indices where the only entries which may be nonezare those whose
positions are contained iN'.

Definition 2.1 ([20, Def. 3.2])An involutive division L is defined on the Abelian
monoid(Ng, +), if for any finite set\' ¢ N§ a subsetN,, »(v) C {1,...,n}
of multiplicative indicesis associated to every multi indexe N such that the

involutive cone<’,, v (v) = v + N ) satisfy the following two conditions.

1. If there exist two elemenjs v € N with Cp ar(p) N Cra(v) # 0, either

Cran(p) CCra(v)orCra(v) CCra(p) holds.
2. If NV C N, thenNp n(v) C Np A (v) forall v e N7,

An arbitrary multi indexy, € N is involutively divisible by v € A/, written
Ve if g€ Con(v).

It is important to note that involutive divisibility is alwa defined with respect
to both an involutive divisior and a fixed finite se/ ¢ Ny only an element of
N can be an involutive divisor. Obviously, involutive diviglity v |7, -« implies
ordinary divisibility v | 1, since the involutive coné;, x-(v) is a subset of the full
coneC(v). The first condition in the above definition says that invieletcones
can intersect only trivially: if two intersect, one must beubset of the other.

Thenon-multiplicative indiceform the complement a¥,, or(v)in {1,...,n}
and are denoted by, A/(v). If we remove some elements from the #étand
determine the multiplicative indices of the remaining edets with respect to the
subset\’, we obtain in general a different result than before. Thesdcondition
for an involutive division says that while it may happen thaton-multiplicative
index becomes multiplicative for somec N, the converse cannot happen.

Example 2.2A classical involutive division is thdanet divisionJ. In order to
define it, we must introduce certain subsets of the give\set Nj:

(dk,,dn)Z{V€N|V1:d“]CS7/Sn} (2)

The indexn is multiplicative forv € N, if v, = max,en {pn}, andk < nis
multiplicative forv € (diy1, ..., dn), if vx = max, e, ,,....d,) 1Hr}-

Obviously, this definition depends on the ordering of théaldesz, . .., x,

and we obtain variants by applying an arbitrary but fixed pgationw € S, to
the variables. In fact, Gerdt and Blinkov [20] use an “inegrdefinition, i. e. they
' /1 2 ...n
first apply the permutatloén 1.1
Janet [39, pp. 16-17].

Gerdt et al. [22] designed a special data structure, thet Jeeee for the fast
determination of Janet multiplicative indices and for a tamof other operations
useful in the construction of Janet bases (Blinkov [10] déses similar tree struc-
tures also for other divisions). As shown in [32], this datacture is based on a
special relation between the Janet division and the lexaggc term order (see
the appendix for our non-standard conventions). This imatllows us to com-
pute very quickly the multiplicative variables of any gétwith Algorithm 1. The
algorithm simply runs two pointers over the lexicograpliicardered set\V" and
changes accordingly the s&t of potential multiplicative indices. <

). Our convention is the original one of



Involution andd-Regularity | 5

Algorithm 1 Multiplicative variables for the Janet division

Input: finite list A" = {vV, ..., v®)} of pairwise different multi indices froriN}
Output: list N = {Nyn(v™M), ..., Ny (v®)} of lists with multiplicative variables
U N — sort(N, <jex); v «— N1]

12l pr —n; M—{1,...,n}; N[1] <M

13/ for j from 2to |N| do

141 p> —max {i| (v = N[j])i #0}; M= M\ {p2}

/5/ if P1 < p2 then

6 Me—MU{pi,....p>—1}

/71 end.if
18/ N[j] =M, v—NJ[jl; p1p2
/9/ end_for

/10/ return N

Definition 2.3 ([21, Def. 2.2])The divisionL is globally definedif the assignment
of the multiplicative indices is independent of the 4&tin this case we write
simply Ny, (v) for the sets of multiplicative variables.

Example 2.4Another very important division is thBommaret division P. It as-
signs the multiplicative indices according to a simple riflel < k& < n is the
smallest index such thaj, > 0 for some multi indexs € Ny \ {[0,...,0]}, then
we call k the classof v, writtencls v, and setNp(v) = {1, ..., k}. Finally, we
defineNp([0,...,0]) = {1,...,n}. HenceP is globally defined. Like the Janet
division, it depends on the ordering of the variahigs. . ., z,, and thus one may
again introduce simple variants by applying a permutation.

Above we have seen that the Janet division is in a certairesetested to the
inverse lexicographic order. The Pommaret division hasegigprelation to class
respecting orders (recall that according to Lemma A.1 aagslespecting term
order coincides on terms of the same degree with the revexgmhbraphic order).
Obviously, for homogeneous polynomials such orders alhegd to maximal sets
of multiplicative indices and thus to smaller bases. But vilkalso see in Part Il
that from a theoretical point of view Pommaret bases witpeesto such an order
are particularly useful. <

Definition 2.5 Theinvolutive sparof a finite set\" ¢ Ny is

W)= evrlw). (3)
veN

The set\ is weakly involutivefor the divisionL or a weak involutive basisf the
monoid ideall V), if (V) = (N). A weak involutive basis is strong involutive
basisor for short aninvolutive basisif the union on the right hand side of (3) is
disjoint, i. e. the intersections of the involutive cones ampty. We call any finite
setN C N C N¢ such thatt\);, = (N') a (weak) involutive completioof A
Anobstruction to involutiorfor the set\ is a multi indexv € (M) \ (M) L.

2 Historically seen, the terminology “Pommaret division'sisnisnomer, as this division
was already introduced by Janet [37, p. 30]. However, theertzes been generally accepted
by now, so we stick to it.
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This definition is essentially equivalent to [20, Def. 4/B]2However, the dis-
tinction of weak and strong bases is new and will become itapbin the sequel.
What Gerdt and Blinkov [20, Def. 4.1] call “involutive” casponds to our notion
of “weakly involutive.”

Remark 2.6An obvious necessary condition for a strong involutive bésthat no
distinct multi indicesu, v € N exist such that |, - v. Sets with this property are
calledinvolutively autoreducef0, Def. 3.8]. One easily checks that the definition
of the Janet division implies th&h,; (1) NCy,(v) = 0 wheneven # v. Hence
for this particular division any set is involutively autaleced. <

(2,0]

Fig. 1 Left: intersecting conesRight: involutive cones.

Example 2. Figure 1 demonstrates the geometric interpretation oflirtixe di-
visions forn = 2. In both diagrams one can see the monoid ideal generateeby th
set\ = {[0,2], [2,0] }; the vertices belonging to it are marked by dark points. The
arrows represent the multiplicative indices, i. e. thedakd directions”, for both
the Janet and the Pommaret division, as they coincide fergkémple. The left
diagram shows that the full cones of the two element&/dhtersect in the darkly
shaded area and thaf is not (weakly) involutive, as the multi indicék, 1] with

k > 2 are obstructions to involution. The right diagram showsrargj involutive
basis of(\) for both the Janet and the Pommaret division. We must add the
multi index [2, 1] and both for it and fof2, 0] only the indexl is multiplicative.
One clearly sees how the spak’) is decomposed into three disjoint involutive
cones: one of dimensid?) two of dimensiori. <

Proposition 2.81f A is a weakly involutive set, then a subsét C N exists such
that A’ is a strong involutive basis of\V).

Proof This proposition represents a nice motivation for the twoditions in Def-
inition 2.1 of an involutive division. If\ is not yet a strong involutive basis, the
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union in (3) is not disjoint and intersecting involutive @mexist. By the first con-
dition, this implies that some cones are contained in othespno other form of
intersection is possible. If we eliminate the tips of thesaes from\/, we get a
subset\” C N which, by the second condition, has the same involutive sasn
the remaining elements may only gain additional multiglieaindices. Thus after
a finite number of such eliminations we arrive at a strong luhee basis. O

Remark 2.9 et Z;, Z, be two monoid ideals ilN7 andA/;, N> (weak) involutive
bases of them for some divisidin In general, we cannot expect thst U N5 is
again a weak involutive basis of the id€gl + Z,, as the involutive cones of the
generators may shrink when taken with respect to the largels U A5. Only
for a global division we always obtain at least a weak invgtibasis (which may
then be reduced to a strong basis according to Proposit®)n 2. <

Recall that for arbitrary monoid ideals a basisis calledminimal if it is not
possible to remove an element &f without losing the property that we have a
basis. A similar notion can be naturally introduced for ilutive bases.

Definition 2.10 ([21, Def. 4.2]) etZ C Ny be a monoid ideal and an involutive
division. An involutive basig/" of Z with respect tol is called minimal, if any
other involutive basigv” of Z with respect tal satisfies\" C A”.

Obviously, the minimal involutive basis of a monoid idealiigque, if it exists.
For globally defined divisions, it is straightforward to shdhat any involutive
basis is unique.

Proposition 2.11 ([21, Prop. 4.1])f the monoid idealZ has an involutive basis
for the globally defined divisiof, then it is unique and thus minimal.

The algorithmic construction of (weak) involutive compdets for a given set
N c Ng will be discussed in detail in Section 6. For the moment we ooke that
we cannot expect that for an arbitrary $étand an arbitrary involutive divisiof
an involutive basisV’ of () exists.

Example 2.12Ve consider the set” = {[1,1]} for the Pommaret division. As
cls[1,1] = 1, we getNp([1,1]) = {1}. SoCp([1,1]) € C([1,1]). But any multi
index contained i A\) also has class. Hence ndinite involutive basis of V)
exists for the Pommaret division. We can generate it inwedly only with the
infinite set{[1, k] | k € N}. <

Remark 2.13ince by definition an involutive basis is always finite, iedaot re-
ally make sense to say that an infinite set involutively gatesrsome monoid ideal.
Ignoring this inconsistency for a moment, we now show thanéf’a monoid ideal
does not possess a finite Pommaret basis, it has at leastrateiPommaret basis
with so much structure that it admits a simple finite deswipgeneralising the
one found in the example above.

In order to see this fact, we consider first the case oir@uucible monoid
idealZ in INg. It is well-known that any sucli has a minimal basis of the form
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{(0)iys- o, ()i pwWith T < k < mn,f; >0andl <i; < --- < i < n. Here
(¢;)i; is the multi index where all entries are zero except ofitfle one which has
the valuel;. Such an ideal possesses a Pommaret basis, if and onlyefaneno
“gaps”in the sequencg < --- < i, < n,i.e.iy =nandi; = n—k+1. Indeed,
if a gap exists, say between andi;, then any Pommaret basis must contain
the infinitely many multi indices of the forn¢;);, + (¢);,+1 with £ > 0 and
thus cannot be finite (obviously, in this case a simple rerennp of the variables
suffices to remedy this problem). Conversely, if no gaps appken it is easy to
see that the set of all multi indicg8, ..., 0,0;,, i, 11,...,pun] With 1 < j < k
and0 < p; < £y—k4; IS a strong Pommaret basisBf

For a general monoid ide@l| we exploit that any monoid ideal INj possesses
a unique irreducible decomposition [48, Thm. 5.27], i. e.c&a always express
as the intersection of finitely many irreducible ideals. knfark 6.5 we will show
how a Pommaret basis of the intersection of two (monoid)lglean be obtained
from Pommaret bases of the ideals by simply taking least commultiples.

As a simple corollary of these considerations, we find thgttinian monoid
idealZ has a finite Pommaret basis. Inde&ds Artinian, if and only if it contains

an irreducible ideal7 with a minimal basig (¢1)1, . . ., (¢x). }. AS N0 gaps appear,
J possesses a finite Pommaret ba$isNow the finite set3 = B’ U (Z \ J) is
trivially a weak Pommaret basis @t <

Definition 2.14 ([20, Def. 4.3])An involutive divisiorl is Noetherianif any finite
subset\' C N{ possesses a finite involutive completion with respegt to

Lemma 2.15 ([20, Prop. 4.5])The Janet division is Noetherian.

In fact, it is straightforward to provide explicitly a Jar®sis for any monoid
idealZ given a finite generating s&f C IN? of it: if we introduce the multi index
i=lemAN, i e. u; = max,ecn v, then the set

N={reWN)|pec®} (4)

is an involutiveJ-completion ofA/ (note that generally smaller Janet baseg of
exist; thus this observation is only of theoretical intéres

3 Polynomial Algebras of Solvable Type

LetP = R[zy,...,x,] be a polynomial ring over a unitary ring. If R is com-
mutative, ther? is a unitary commutative ring with respect to the usual rplitta-
tion. We equip thék-moduleP with alternative multiplications, in particular with
non-commutative ones. We allow that both the variabledo not commute any
more and that they operate on the coefficients. The usualpticdition is denoted
either by a dot or by no symbol at all. Alternative multiplication® x P — P
are always written ag * g.

Like Grobner bases, involutive bases are always defindunegpect to #erm
order <. It selects in each polynomigl € P aleading termlt~ f = x* with
leading exponente, f = pu. The coefficientr € R of z* in f is theleading
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coefficientlcy f and the productz* is theleading monomialm~ f. Based on
the leading exponents we associate to each finitéFset P a setlex F C Ny

to which we may apply the theory developed in the previousi@ecBut this
approach makes sense only, if the multiplicatioand the chosen term order are
compatible to each other in the following sense.

Definition 3.1 (P, %, <) is apolynomial algebra of solvable tymever the unitary
coefficient ringR for the term order=, if the multiplicationx : P x P — P
satisfies three axioms.

() (P, *) is aring with unit1.
(i) VreR, feP:rxf=rf.
(i) Yu,v e N, r e R\ {0} : lex (zt xz”) =p+v A les (¥ xr) = pu.

Condition (i) ensures that arithmetics (®, x, <) obeys the usual associative
and distributive laws. Because of Condition ({iR, x) is a leftR-module. We do
not require thatit is a righR-module, as this would exclude the possibility that the
variablesz; operate non-linearly ofR. Condition (iii) ensures the compatibility
of the new multiplicationx and the term ordek; we say that the multiplicatio®
respects the term ordex. It implies the existence of injective maps : R — R,
mapsh,, : R — P withle< (h,(r)) < pforallr € R, coefficients:,,,, € R\{0}
and polynomial$y,,, € P with le< h,,, < 1+ v such that

ztxr = p,(r)zt + h,(r), (5a)

ot xa” =1, "t + by, (5b)

Lemma 3.2 The maps,, and the coefficients,,,, satisfy for arbitrary multi in-
dicesyu, v, A € Nj and for arbitrary ring elements € R

Pu (pu (r))r}l.l/ = r}LVp/L+V(r) ’ (63)
pp,(ru)\)rp,,lﬂr)\ = TwTutv,\ - (6b)

Furthermore, all mapg,, are ring endomorphisms.

Proof The first assertion is a trivial consequence of the asswoitiatf the multi-
plication+. The equations correspond to the leading coefficients oéthalities
ot % (z¥ * 1) = (2" * 2¥) % r andzt x (z¥ x 2*) = (" x z¥) 2, respectively.
The second assertion follows mainly from Condition (i). O

Remark 3.3The term “algebra of solvable type” was coined by Kandry-Radd
Weispfenning [41], when they studied Grobner bases forcmmmutative rings.
Their definition is more restrictive than ours, as it doesallotw that the terms op-
erate on the coefficients and requires a stronger form of aditipty between the
multiplicationx and the term ordek. It automatically implies that respects<.
For our purposes, the latter property is decisive and thubave used it in Defi-
nition 3.1 instead of the more technical axioms in [41].

Kredel [42] generalised the work of Kandry-Rody and Weispiag [41] and
considered essentially the same class of algebras as deénedvarious variants
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of it have appeared under different names in the literat@ogular is in particular
the approach to consider the algebras as the quotient oé éefinsor algebra by an
appropriate quadratic ideal [2,45]; one speaks the@i-@llgebras In most cases,
the authors restrict to the case of a (skew) coefficient fieltldo not allow that the
variables operate on the coefficients. The correspondiegryhof Grobner bases
has been treated at many places in the literature; besidesrgmady cited works
we mention in particular [11-13,26] where the naRBBW algebrais used (see
below for an explanation of this terminology). <

If R is a (skew) field, then for arbitrary polynomiafsg € P an element
r € R\ {0} and a polynomiah € P satisfyingle< h < le< (f - g) exist such that

fxg=r(f-9)+h. (7)

Indeed, iflm~ f = ax* andlm~ g = bx”, then a simple computation yields that
r is the (unique) solution of the equatiap,,(b)r,, = rab andh is the difference
f*g—r(f-g). Under this assumption we may reformulate Condition (&) a

(i) Vf,geP:lex(f*g)=lex f+lesyg.
The next result is a simple consequence of Condition (jii).

Proposition 3.4 The productx is fixed, as soon as the following data are given:
constants;; € R\{0}, polynomialsh;; € Pandmapg,; : R — R, h; : R — P
suchthatforl <i<n

x;*xr = pi(r)z; + hi(r), VreR, (8a)
{L‘Z‘*{L‘j:T‘ijxj*{L‘i-i-hij, Vi<ji<u. (8b)

Of course, the data in Proposition 3.4 cannot be chosenraihbjt Besides
the obvious conditions on the leading exponents of the wotyialsh;; andh; (r)
imposed by Condition (iii), each ma@ must be an injectivék-endomorphism
and each map; must satisfyh;(r + s) = h;(r) + h;(s) and a kind of pseudo-
Leibniz rule hi(rs) = pi(r)hi(s) + hi(r) * s. The associativity ok imposes
further rather complicated conditions on the data. For deeof a&-algebra with
the multiplication defined by rewrite rules, they have begplieitly determined
by Levandovskyy [44,45] who called thenon-degeneracy conditior{see also
the extensive discussion by Kredel [42, Sect. 3.3]).

Examples of polynomial algebras of solvable type abountérliterature. We
mention here only some particularly important on@se algebrasas originally
introduced by Noether and Schmeidler [50] and later systieally studied by Ore
[52], are solvable for any term ordet. Note that this class includes in particular
rings of linear differential or difference operators.

Bell and Goodearl [7] introduced thieoinca@-Birkhoff-Witt extensioiffor
shortPBW extensionof a ring’R as a ringP 2 R containing a finite number
of elementsey, ..., x, € P such that (iYP is freely generated as a l&R-module
by the monomialg:* with y € N§, (i) z; xr — rxx; € Rforall r € R and
(i) 3 xx; —xjxx; € R+ Ray + --- Ray,. Obviously, any such extension is
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a polynomial algebra of solvable type in the sense of Dedini8.1 for all degree
compatible term orders (but generally not for other orders)

The classical example of suchPBW extension is theuniversal enveloping
algebrail(g) of a finite-dimensional Lie algebgawhich also explains the name:
the Poincaré-Birkhoff-Witt theorem asserts that the nrorads form a basis of
these algebras [60]. They still fit into the framework depeld by Kandry-Rody
and Weispfenning [41], as the do not act on the coefficients. This is no longer
the case for the more genesew enveloping algebra8#4i(g) wherefR is a
k-algebra on which the elementsgéct as derivations [46, Sect. 1.7.10].

In all these examples, the coefficienfs appearing in (5) are one; thus (8b) are
classical commutation relations. This is not true forgi@ntised enveloping alge-
brasil,(g) introduced by Drinfeld [17] and Jimbo [40] or the even moregel
g-algebrasintroduced by Berger [8]. The latter ones are charactetigethe fact
that the polynomials;; in (8b) are at most quadratic with the additional restrictio
thath;; may contain only those quadratic termgr, that satisfyi < £ < ¢ < j
andk —i = j — £. Thus any such algebra is a polynomial algebra of solvalgle ty
for all degree compatible term orders.

If (P,*, <) is a polynomial algebra of solvable type with a degree compat
ble term order<, thenP is a filtered ring with respect to the standard filtration
Y, = @}, P; and we may introduce thassociated graded algebiay setting
(gryP)y = X4/ Xq—1. Itis easy to see thatr,,P is again a polynomial algebra
of solvable type for<. If in (8) deg h;(r) = 0, degh;; <1, p; = idg andr;; =1
(which is for example the case for all Poincaré-BirkhofftM@xtensions), then in
factgry,? = (P, -), the commutative polynomial ring. In this case one sometime
speaks of amlmost commutativalgebra [46, Sect. 8.4.2].

Proposition 3.51f the ring R is an integral domain, then any polynomial algebra
(P, *, <) of solvable type over it is an integral domain, too, and a@®f& domain.

Proof The first assertion is a trivial consequence of (7)Rihas no zero divisors,
thenf - g # 0 implies f x g # 0. HenceP does not contain any zero divisors.

For the second one we must verify theft Ore conditiong15,51]: we must
show that one can find for any two polynomigisy € P with f x g # 0 two
further polynomialsp, ) € P \ {0} such that x f = ¢ x g. We describe now a
concrete algorithm for this task.

We setF, = {f, g} and choose coefficients, so € R such that in the differ-
encergg x f — sof * g = hy the leading terms cancel. Then we perform a (left)
pseudo-reduction of; with respect taF,. It leads with an appropriately chosen
coefficientty € R to an equation of the form

toh1 = ¢o* f+voxg+ M 9

where the remaindér; satisfiede hy ¢ (le< Fo). If hy = 0, we are done and the
polynomialsp = torog — ¢o andy = tgso f + 1o form a solution of our problem.
By Part (iii) of Definition 3.1 we havée_ h; < le~ f + le< g. This implies by
the monotonicity of term orders thht. ¢y < le< g andle ¢y < le< f. Thus we
have found a non-trivial solution.
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Otherwise we sef; = F, U {h1} and choose coefficients, s; € R such
that in the difference f « hy — s1h1 x f = ho the leading terms cancel. Now
we perform a (left) pseudo-reduction b with respect taF;. This computation
yields a coefficient; € R and polynomialgy, ¥1, p1 € P such that

tiho = g1 f+ 1 %xg+p1xhi+ ho (10)

where the remaindér, satisfiede~ hy ¢ (le< Fi). If ho = 0, then we are done,
as we can substitute; from (9) and obtain thus for our problem the solutiba=
(tir1f—p1)*(torog—do) —t1s1ha —d1 andy = (tar1 f —p1)*(toso f+1bo) +¢1.
By the same reasoning on the leading exponents as abova,liis-trivial one.
Otherwise we iterate: we séb = F; U {ha}, choose coefficients,, s € R
such that in the difference, f « ho — sohe x f = hs the leading terms cancel,
compute the remaindér; of a (left) pseudo-reduction df; with respect taF,
and so on. If the iteration stops, i. e. if the remainfdgrvanishes for some value
N € N, then we can construct non-zero polynomials) with ¢ x f = ¢ x g by
substituting all remainders; by their defining equations. The iteration terminates
by a simple Noetherian argumenie 7o) C (lex F1) C (lexF2) C --- isa
strictly ascending chain of monoid idealsl¥j} and thus cannot be infinite. O

Obviously, we can show by the same argument #hag a right Ore domain.
The Ore multipliersp, ¢ constructed in the proof above are not unique. Instead of
always analysing differences of the formy x h; — s;h; x f, we could have used
differences of the form;g x h; — s;h; x g or we could have alternated between
using f andg and so on. In general, each ansatz will lead to differentiplidts.

We have given here a direct and in particular constructieefthat? satisfies
the left and right Ore conditions. Instead we could havedtti® invoke Theo-
rem 2.1.15 of [46] stating that any right Noetherian intédi@main is also a right
Ore domain. However, as we will see in the next section, ifchefficient ringR
of P is not a field, then the question whether or fois (left or right) Noetherian
becomes nontrivial in general.

Example 3.8n the commutative polynomial ring one has always the trig@a
lution ¢ = g andy = f. One might expect that in the non-commutative case
one only has to add some lower terms to it. However, this istim®tcase. Con-
sider the universal enveloping algebra of the Lie algeb(d). We may write it as
u(ﬁo(S)) = k[z1, 22, z3] with the multiplicationx defined by the relations:

T1 *To = T1T2 , Ta *T1 = T1T2 — T3,
T kT3 =203, r3* T = T123 + To (11)
T2 x T3 = T3 , T3 *To = Tox3 — X1 .

This multiplication obviously respects any degree conipatierm order but not
the lexicographic order. Choosingg = x; andg = x, possible solutions for
pxf =1vxgarep = z3 —1andy = ryz9 — 2w3 OFr ¢ = 1122 + 73 @nd
Y = a2 — 1. They are easily constructed using the algorithm of the pafo
Proposition 3.5 once witlf and once withy. Here we must use polynomials of
degree?; it is not possible to find a solution of degrée <
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4 Hilbert’s Basis Theorem for Solvable Algebras

A classical property of the ordinary polynomial rify= R[z1, . .., x,], which is
crucial in the theory of Grobner bases, is Hilbert's Basiedrem. For our more
general class of polynomial algebras, it remains true ontjew additional assump-
tions. AsP is generally non-commutative, we must distinguish leghtiand two-
sided ideals and thus also study separately whé®hereft or right Noetherian.

With the exception of Section 8, we will exclusively work Wileft ideals and
thus do not introduce special notations. This restrictmleft ideals is not only for
convenience but stems from the fundamental left-right amgiry of Definition 3.1
of a polynomial algebra of solvable type where produgts* andz* xr are treated
completely different. For this reason we discuss only thestjon wherP is left
Noetherian (see also Remark 4.8 below).

Most classical proofs of Hilbert’'s Basis Theorem considaydhe univariate
case and then extend inductively to an arbitrary (but fimtenber of variables.
However, this inductive approach is not possible in arbjtolynomial algebras
of solvable type, as the multiplicationdoes not necessarily restrict to a subal-
gebra with fewer variables. A simple counterexample is jged by the universal
enveloping algebral(zo(?))) introduced in Example 3.6 wherecannot be re-
stricted to the subspaddz,, x2] sincexs x 1 = x129 — x3. This observation
motivates the following definition.

Definition 4.1 The polynomial algebra of solvable tyg®, x, <) is callediter-
ated if it satisfies the following three conditions.

(i) P can be written in the forr® = R[z1][z2] - - - [z,] Where each intermediate
rng P,y = R[z1][x2] - - - [21] is again solvable for the corresponding restric-
tions of the multiplication- and the term ordex.

(ii) The equalityryxP(y—1) +Pk-1) = P—1)*Tk+Px—1) holdsforl <k < n.

(iii) In (5b) the coefficients,,, are units whenever the multi indices are of the form
uw="Lg, v=myforl <k <nandarbitrary valued, m € N.

For iterated polynomial algebras of solvable type we mayhafire usual in-
ductive technique for proving a basis theorem. The follgyiasult is proven in
[46, Theorem 1.2.9/10] for Ore algebras, but it is fairlyagghtforward to adapt
the proof such that it remains valid for our more generalstasalgebras (see [55,
Sect. 3.3] for the details). The main idea of this proof cetssdf expressing any
polynomial f = 3, aszj, € P,y with coefficientsa, € P(;_1) in the “reverse”
form f = 3",z * a, where againi, € P,—1)- Condition (i) guarantees that this
rewriting is always possible. In the proof, one multipliesk “reverse” polynomi-
als from the left by powers}*; Condition (iii) ensures that all arising coefficients
on the left are units and thus can be cancelled by multiplyiitly their inverse.

Theorem 4.2If (P, *, <) is an iterated polynomial algebra of solvable type over
a left Noetherian ringR, thenP is a left Noetherian ring, too.

The additional conditions in Definition 4.1 cannot be ondiitié a basis theo-
rem is to hold. McConnell and Robson [46, Example 1.2.11}i®a concrete
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counterexample of a univariate polynomial ring of solvatylpe which violates
them and which is neither left nor right Noetherian.

With some complications, the central (univariate) arguteém the proof of
Theorem 4.2 can be directly generalised to multivariate/pomial rings. How-
ever, this requires again certain assumptions on the coationtrelations (5) in
order to ensure that all necessary computations are pessibl

Definition 4.3 The polynomial algebra of solvable tyf®, x, <) hascentred com-
mutation relationsif (i) there exists a fielk C R lying in the centre ofR, (ii) the
functionsp,, in (5a) are of the fornp,,(r) = 5, (r)r with functionsp,, : R — k
and (iii) we have-,, € kin (5b).

Using Konig’s Lemma, Kredel proved in his thesis [42, S8d] the following
version of Hilbert's Basis Theorem.

Theorem 4.4Let (P, x, <) be a polynomial algebra of solvable type with centred
commutation relations over a left Noetherian coefficiengriR. ThenP is left
Noetherian, too.

A third proof assumes that the rirf§ possesses ftration 3. Using an ap-
proach detailed in [9] for the special case of the Weyl alg€but which does not
use any special properties of the Weyl algebra), one obthe#llowing general
result where it is not even necessary to assume7hiata polynomial ring. Note
that it covers any polynomial algebra of solvable type wh&hlmost commuta-
tive and thus a large part of the algebras having appeardetilitérature so far.

Theorem 4.5Let X' be a filtration on the ringP. If the associated graded ring
gry. P is left Noetherian, thef® is left Noetherian, too.

Because of Condition (iii) in Definition 3.1 we can define Bmér bases for
ideals in algebras of solvable type. For a (commutativejfmeent field R = k,
such a definition becomes trivial and from now on we will riestio this case; the
general case will be discussed only in Section 11.

Definition 4.6 Let(P, x, <) be a polynomial algebra of solvable type over a fikeld
andZ C P aleft ideal. A finite sef C 7 is a Grobner basi®f Z (for the term
order <), if (lexG) =leL 7.

For the ordinary multiplication this definition reduces e tclassical one. The
decisive point, explaining the conditions imposed in Déifoami 3.1, is that normal
forms with respect to a finite s¢f C P may be computed in algebras of solvable
type in precisely the same way as in the ordinary polynoniig.rAssume we
are given a polynomiaJ € P such thatleL g | le< f for someg € G and set
w = les f —lesg. If we considerg, = z* x g, then by (i) le< g, = le f.
Settingd = lc< f/lc g, we find by (i) thatle- (f — dg,) < lex f. Hence
we may use the usual algorithms for computing normal fornpanticular, they
always terminate by the same argument as in the ordinary Nase that in general
d#les f/les g, if r # 1in (7), and that normal form computations are typically
more expensive due to the appearance of the additional paliais in (7).
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The classical Grobner basis theory can be straightforiyaxtended to poly-
nomial algebras of solvable type [2,12,13,41,42,44, 45nast proofs are based
on the computation of normal forms. The remaining argumerdstly take place
in the monoidN{ and thus can be applied without changes. In particularyelri
adaption of the standard (commutative) proof leads to theviing result crucial
for the termination of Buchberger’s algorithm.

Theorem 4.7Let (P, x, <) be a polynomial algebra of solvable type over a field.
ThenP is a left Noetherian ring and every left idedlC P possesses a @bner
basis with respect te.

Remark 4.&ven in the case of a coefficient field we cannot generally expe
to be aright Noetherian ring, too; a concrete counterexample is pral/mgain

by McConnell and Robson [46, Example 1.2.11]. In the prooffbéorem 4.7
one essentially uses that in normal form computations omaya multiplies with

elements ofP from the left. Because of the already above mentioned igfitr
asymmetry of Definition 3.1, right ideals show in general anpéetely different

behaviour. In order to obtain right Noetherian rings we neittter adapt corre-
spondingly our definition of a solvable algebra or imposeitialtal conditions on
the commutation relations (5).

The simplest possibility is to require that all the mapsin (5) are automor-
phisms (by Proposition 3.4 it suffices, if the mapsn (8a) satisfy this condition).
In this case we have x x; + k = x; x k + k for all variablesr; implying that we
can rewrite any polynomiaf = Zu cux* in the “reverse” formf = ZH # x €.
Now a straightforward adaption of the classical proof of diteen 4.7 shows that
the ringP is also right Noetherian. <

We do not give more details on Grobner bases, as they canupel fim the
above cited references. Instead we will present in the nestian a completely
different approach leading to involutive bases.

5 Involutive Bases

We proceed to define involutive bases for left ideals in poial algebras of
solvable type. In principle, we could at once consider sutbuhes of free modules
over such an algebra. As this only complicates the notatvenrestrict to the ideal
case and the extension to submodules goes as for Grobresy. bas

Definition 5.1 Let(P, x, <) be a polynomial algebra of solvable type over a fikeld
andZ C P a non-zero left ideal. A finite subsat C 7 is aweak involutive basis
of Z for an involutive divisionL on N, if its leading exponentk < H form a
weak involutive basis of the monoid idéal 7. The subseH is a (strong) invo-
lutive basisof Z, if le< H is a strong involutive basis dt 7 and no two distinct
elements of{ have the same leading exponents.

Remark 5.2This definition of an involutive basis is different from theginal one
given by Gerdt and Blinkov [20, Def. 6.2]. Firstly, the disttion into weak and
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strong bases is new. Secondly, our definition does not retjuét an involutive ba-
sis is involutively autoreduced as the one by Gerdt and Blnkhis condition en-
tails that their bases are always strongly involutive. F§n&om a “philosophical”
point of view, our approach is a natural extension of Defimit#.6 of a Grobner
basis in the ringP, whereas the approach of Gerdt and Blinkov [20] is modelled
on the equivalent characterisation of Grobner bases byahishing of the normal
forms of ideal members. However, it will follow from our rd&ibelow that both
approaches are essentially equivalent. <

Definition 5.1 implies immediately that any weak involuthasis is a Grobner
basis. As in Section 2, we call any finite SEtC P (weakly) involutiveif it is a
(weak) involutive basis of the ide&FF) generated by it.

Definition 5.3 Let 7 C P\ {0} be a finite set and. an involutive division oiNj.
We assign to each elemefie F a set of multiplicative variables

X7 <(f)={zilie Npje rle< f)} . (12)
Theinvolutive sparof F is then the set
(Flr<= Z k[ X7 <(f)] *fC(F). (13)
feF

An important aspect of Grobner bases is the existence oflatd represen-
tations for ideal elements. For (weak) involutive basesmilar characterisation
exists and in the case of strong bases we even obtain unigresesntations.

Theorem 5.4LetZ C P be a non-zero ideali{ C Z \ {0} a finite set and_ an
involutive division oriNg. Then the following two statements are equivalent.

(i) The setH is a weak involutive basis of with respect tal and <.
(i) Every polynomialf € Z can be written in the form

f=Y Puxh (14)

heH

where the coefficients), € k[X, < (h)] satisfyle< (P, x h) < le< f forall
polynomialsh € H.

‘H is a strong involutive basis, if and only if the represerdat{14) is unique.

Proof Let us first assume that the sktis a weak involutive basis. Take an arbi-
trary polynomialf € Z. According to Definition 5.1, its leading expondat, f
lies in the involutive con€y, i (k) of at least one elemerit € H. Let u =
le<x f—le< hand setf; = f — cx* x h where the coefficient € k is chosen such
that the leading terms cancel. Obviously, € 7 andleL f1 < le< f. Iteration
yields a sequence of polynomigfs € Z. After a finite number of steps we must
reachfy = 0, as the leading exponents are always decreasing and by pssam
the leading exponent any polynomial inZ possesses an involutive divisor in
le< H. But this implies the existence of a representation of tmnf(14).
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Now assume that{ is even a strong involutive basis and take an involutive
standard representation (14). By definition of a strongdydkere exists one and
only one generatok € H such thate< (P, x h) = le< f. This fact determines
uniquelyle P,. Applying the same argument o— (1t< P, ) x h shows by recur-
sion that the representation (14) is indeed unique.

For the converse note that (i) trivially implies thiat, f € (le<x H) < for
any polynomialf € Z. ThuslexZ C (lex H)r <. As the converse inclusion is
obvious, we have in fact an equality akdis a weak involutive basis.

Now let us assume that the sktis only a weak but not a strong involutive
basis ofZ. This implies the existence of two generataérs ho € H such that
Cr e H(le< he) C Cp e, 1(lex hq). Hence we havém_ hy = Im_ (cz# * hy)
for suitably chosen € k andp € IN{j. Consider the polynomial, —cz#xh; € 7.

If it vanishes, we have found a non-trivial involutive stand representation @f.
Otherwise an involutive standard representafign- cz* x hy = ), .5 Pn x h
with P, € k(X 3 <(h)] exists. SettingP?, = P, for all generators # hi, ho
andpj, = Py, +ca", Pj = P, —1yields again a non-trivial involutive standard
representatiod = >, _,, P/ x h. The existence of such a non-trivial representa-
tion of 0 immediately implies that (14) cannot be unique. Thus ontyafgtrong
involutive basis the involutive standard representatioalivays unique. O

Corollary 5.5 Let the setH be a weak involutive basis of the left idealC P.
Then{H) . < = Z.If H is even a strong involutive basis 8f thenZ possesses as
k-linear space a direct sum decompositibr= @, ., k[X 1 #,<(h)] x h.

Proof It follows immediately from Theorem 5.4 thatC (H) ., <. ButasH is also

a Grobner basis ¢f, we have in fact equality. The direct sum decomposition for a
strong involutive basis is a trivial consequence of the uaitgss of the involutive
standard representation in this case. O

Example 5.6t is not true that any sef with (), » = T is a weak involutive
basis of the ideal. Consider in the ordinary polynomial ririg[z, y] the idealZ
generated by the two polynomiafs = 32 and f, = y? + 22. If we order the
variables asr; = = andzy = y, then the setF = {fi, fo} trivially satisfies
(F)s~ = T, as with respect to the Janet division all variables are iplidative
for each generator. Howevde . F = {[0, 2]} doesnot generatde Z, as obvi-
ously[2,0] € lexZ \ ({[0,2]}). ThusF is not a weak Janet basis (neither is the
autoreduced sef’ = {y?, 22}, asz?y ¢ (F') s <). <

Proposition 5.7LetZ C P be an ideal and{ C P a weak involutive basis of it
for the involutive divisior.. Then there exists a subge&t C H which is a strong
involutive basis off.

Proof If the setle< H is already a strong involutive basis bf, Z, we are done.
OtherwiseH contains polynomial&,, ho such thate hq |1 1e_ + le< ho. Con-
sider the subsét’ = H\ {h2}. As in the proof of Proposition 2.8 one easily shows
thatles H' = le<x H \ {le< ho} is still a weak involutive basis db Z and thus
'H' is still a weak involutive basis df. After a finite number of such eliminations
we must reach a strong involutive basis. O
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Given this result, one may wonder why we have introduced thtéeon of a
weak basis. The reason is that in more general situatioescdmputations in
local rings or polynomial algebras over coefficient ringeéted in later sections)
strong bases rarely exist.

Definition 5.8 ([20, Def. 5.2])Let / C P be a finite set and. an involutive
division. A polynomialy € P is involutively reduciblewith respect toF, if it

contains a terme* such thatle. f |1 1o 7 1 for somef € F. Itis in involutive
normal formwith respect toF, if it is not involutively reducible. The sef is

involutively autoreducedf no polynomialf € F contains a terme* such that
another polynomiaf’ € F \ {f} exists withle~ f’ |1 1e_ 7 .

Remark 5.9The definition of an involutively autoreduced sennotbe formulated
more concisely by saying that eaghe F is in involutive normal form with respect
to 7\ {f}. If we are not dealing with a global division, the removalfofrom F
will generally change the assignment of the multiplicativéices and thus affect
the involutive divisibility. <

An obstruction to involutioris a polynomialy € (F) \ (F)r,~ possessing
a (necessarily non-involutive) standard representatiith respect taF. We will
later see that these elements make the difference betweewalntive and an
arbitrary Grobner basis.

Example 5.1@onsider the set = {f1, f2, f3} C k[z, y, z] with the polynomials
fi = 22—zy, f» = yz—zandf; = y? — 2. For any degree compatible term order,
the leading terms of> and f3 are unique. Foyf; we have two possibilities: if we
use the degree lexicographic order (i.e. for< y < z), it is 22, for the degree
inverse lexicographic order (i. e. far>~ y > z) the leading term isy.

In the first case(]:>J7<deglex = (F), so that for this term ordeF is a Janet
basis, i. e. an involutive basis with respect to the Janésidiv, although we have
not yet the necessary tools to prove this fact. In the secaned,£; = 23 — 22 =
zf1 +xfs € (F) does not possess a standard representatiorfFaisdnot even
a Grobner basis. Adding, to F yields a Grobner basig§ of (F), as one may
easily check. But this makesnon-multiplicative forf, and f5 = zf2 is now an
obstruction to involution of, as it is not involutively reducible with respect to the
Janet division. In fact, the sét’ = {f1, f2, f3, f4, f5} is the smallest Janet basis
of 7 for this term order, as it is not possible to remove an elenigate that this
second basis is not only larger but also contains polynaoghigher degree.<

Remark 5.11f G is a Grobner basis of the ide@l| then any element df has a
standard representation. But this fact does not imply thatfgiven divisionL
the idealZ is free of obstructions to involution. In order to obtain ea$t a weak
involutive basis, we must add further element&ab G until (lex G), = le< 7.
Obviously, this observation allows us to reduce the cortita of a polynomial
involutive basis to a Grobner basis computation plus a moaabcompletion. But
we will see later that better possibilities exist.

It follows that in general involutive bases are not reducedl@er bases, as
we already observed in Example 5.10. Fafegex the set? was simultaneously
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a Janet basis and a reduced Grobner basis. Butdgyinviex the reduced Grobner
basis isF U { f4}, whereas a Janet basis requires in addition the polynofgial
We will see in Part Il that this “redundancy” in involutive $&s is the key for their
use in the structure analysis of polynomial ideals and maslul <

It often suffices, if one does not consider all termgjibut only the leading
termlt~ g: the polynomial is involutively head reducibléf le. f |7 1o 7 le< g
forsomef € F. Similarly, the setF is involutively head autoreduceidino leading
exponent of an elemerfte F is involutively divisible by the leading exponent of
another element’ € F\ {f}. Note that the definition of a strong involutive basis
immediately implies that it is involutively head autoreddc

As involutive reducibility is a restriction of ordinary redibility, involutive
normal forms can be determined with trivial adaptions offéailiar algorithms.
The termination follows by the same argument as usual, nathakt any term
order is a well-order. Iy’ is an involutive normal form ofy € P with respect to
the setF for the divisionL, then we writeg’ = NF = 1, ~(g), although involutive
normal forms are in general not unique (like ordinary norfieains). Depending
on the order in which reductions are applied different rissate obtained.

The ordinary normal form is unique, if and only if it is compdtwith re-
spect to a Grobner basis; this property is often used asteamative definition of
Grobner bases. The situation is somewhat different foirthalutive normal form.

Lemma 5.12The sum in (13) is direct, if and only if the finite sEtC P \ {0} is
involutively head autoreduced with respect to the invekidivisionL.

Proof One direction is obvious. For the converse, fet f- be two distinct ele-
ments ofF and X; = X1 r ~(f;) their respective sets of multiplicative variables
for the divisionL. Assume that two polynomialg; € k[X;] exist with P, x f; =

P, % fo and hencée (Py x f1) = le< (P2 * f2). As the multiplicationx respects
the term order, this implies thatCy, 1o #(le< f1) N Cp 1o #(le< f2) # 0. Thus
one of the involutive cones is completely contained in tHeeobne and either
lex fi|res 7 le< fa Orlex folr e # le< fi1 contradicting thatF is involutively
head autoreduced. O

Proposition 5.13If the finite setF C P \ {0} is involutively head autoreduced,
every polynomiay € P has a unique involutive normal fortiF ~ 1, ~(g).

Proof If 0 is an involutive normal form of;, then obviouslyy € (F)r <. Con-
versely, assume that € (F)r <, i.e. the polynomialy can be written in the
formg = >,z Py * f with Py € k[X1 7 <(f)]. As F is involutively head
autoreduced, the leading terms of the summands never césaethe proof of
Lemma 5.12). Thude_ g = leL (P = f) for somef € F and any polynomial
g € (F)r,< is involutively head reducible with respect . Each reduction step
in an involutive normal form algorithm leads to a new polyriahy’ € (F), <
with le< ¢’ < leL g. If the leading term is reduced, we even giet ¢’ < le g. As
each terminating normal form algorithm must sooner or lageluce the leading
term, we eventually obtai®as unigue involutive normal form of anye (F)r, <.
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Let g; andg, be two involutive normal forms of the polynomigl Obviously,
g1 — g2 € (F)1,<. By definition of a normal form, neither; nor g, contain any
term involutively reducible with respect 16 and the same holds fgi — g». Hence
the differencey; — g- is also in involutive normal form and by our considerations
above we must havg, — g2 = 0. O

The next result provides a slight generalisation of [20, THrit] where only
strongly involutive sets are treated. We modify the proaegi there such that it
also holds for weakly involutive sets.

Proposition 5.14The ordinary and the involutive normal form of any polyndmia
g € P with respect to a finite weakly involutive setc P \ {0} are identical.

Proof Recalling the proof of the previous proposition, we see thatused the
assumption tha# was involutively head autoreduced only for proving the exis
tence of a generatof € F such thatle< f |1 1. x le< g for every polynomial

g € (F)r,<. But it follows immediately from Theorem 5.4 that this progye
also holds for any weak involutive basis. Thus by the samaraemt as above,
we conclude that the involutive normal form with respect taeakly involutive
set is unique. For Grobner bases the uniqueness of theapydilormal form is a
classical property and any weak involutive basis is also@@er basis. As a poly-
nomial in ordinary normal form with respect 16 is trivially in involutive normal
form with respect taF, too, the two normal forms must coincide. O

Finally, we extend the notion of a minimal involutive basisrhIN{ to P. This
is done in the same manner as in the theory of Grobner bases.

Definition 5.15 ([21, Def. 5.1] L etZ C P be a non-zero ideal anfl an involutive
division. An involutive basig{ of Z with respect tal. is minimal, if le< H is the
minimal involutive basis of the monoid idéal Z for the divisionL.

By Proposition 2.11, we find that for a globally defined divisiike the Pom-
maret division any involutive basis is minimal. Uniquenessuires two additional
assumptions. First of all, our definition of an involutivesisrequires only that it is
involutively head autoreduced; for uniqueness we obvionekd a full involutive
autoreduction. Secondly, we must normalise the leadindficmats to one, i.e.
we must take anonicbasis.

Proposition 5.16 ([21, Thm. 5.2])Let Z C P be a non-zero ideal and an in-
volutive division. Thef possesses at most one monic, involutively autoreduced,
minimal involutive basis for the divisiab.

6 Monomial Completion

We turn to the question of the actual construction of invekibases. Unfortu-
nately, for arbitrary involutive division no satisfying Istion is known so far. In
the monomial case, one may follow a brute force approachgehaperforming
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a breadth first search through the tree of all possible cotiople Obviously, it
terminates only, if a finite basis exists. But for divisiomas$isfying some additional
properties one can design a fairly efficient completion atpo.

The first problem in constructing an involutive completiohaofinite subset
N C Ny for a division L is to checkeffectivelywhether\ is already involutive.
The trouble is that we do not know a priori where obstructimnigsivolution might
lie. If we denote byl; € N the multi index where all entries are zero except the
jth one which is one, then the multi indices+ 1; with v € A" and;j € Ny x(v)
are a natural first guess.

Definition 6.1 ([20, Def. 4.7])The finite set\" € N7 is locally involutive for
the involutive divisionZ, if v + 1; € (N) for every non-multiplicative index
j € N n(v) of every multi index € N.

Obviously, local involution is easy to check effectivelyoever, while (weak)
involution obviously implies local involution, the conwer does not necessarily
hold. A concrete counterexample was given by Gerdt and Blir{RO, Ex. 4.8].
But they also discovered that for many divisions the coreéssn fact true and
thus for such divisions we can effectively decide involatio

Definition 6.2 ([20, Def. 4.9])Let L be an involutive division and/ C N7 a finite
set. Let furthermorér (V). .., v(!)) be a finite sequence of elements\éfwhere
every multi index(®) with k& < ¢ has a non-multiplicative indej, € Ny r(v(¥))
such that/*+1) |\ v(®) 41, . The divisionL is continuousif any such sequence
consists only of distinct elements, i. evif) £ () for all k # ¢.

Proposition 6.3 ([20, Thm. 4.10])For a continuous divisior., any locally invo-
lutive set\/ C IN? is weakly involutive.

Proof Let the set’ contain those obstructions to involution that are of mirima
length® We claim that for a continuous divisioh all multi indiceso € X' are of
the formv + 1; with v € A andj € Ny a(v). This observation immediately
implies our proposition: since for a locally involutive sdt such multi indices are
contained i), we must havel’ = () and thug\) = (N) ..

In order to prove our claim, we chooserac X for which nov € N exists
with o = v + 1;. We collect inV, all divisorsv € N of o of maximal length.
Let »(Y) be an element aN,; by assumption the multi index(Y) = ¢ — (1)
satisfies|(")| > 1 and at least one non-multiplicative indgx € Nz - (v())
exists With,ug) > 0. By the definition of> we havev™™ +1,, € (N)r. Thus a
multi indexv? € N exists withv® |, »r v + 1;, . This impliesv? | & and
we setu? = ¢ — v(2), By the definition of the set/, we have|v(?)| < [v(1)].
Hencev® +1; € (V) forall j.

Choose a non-multiplicative index € NLN(V(Q)) with uﬁ) > 0. Such an
index exists as otherwise € (N).. By the same arguments as above, a multi

3 The length|v| of a multi indexv € INF is the sum of its entries, i. e. the degree of the
monomialz”.
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indexv®) € N exists withv®) |, xr (2 +1;, and|v®)| < [1(?)]. We can iterate
this process and produce an infinite sequepé®, v(?) .. .) where each multi
index satisfies) € N andv(+Y | @ + 1, with j; € Np (D). ASN

is a finite set, the elements of the sequence cannot be @teliff. This contradicts
our assumption that is a continuous division: by taking a sufficiently large part
of this sequence we obtain a finite sequence with all praggentientioned in Def-
inition 6.2 but containing some identical elements. Henceudti indexv ¢ A
must exist such that = v + 1. 0

Lemma 6.4 ([20, Cor. 4.11])The Janet and the Pommaret division are continuous.

Proof Let N/ C N7 be a finite set andv(, ..., v(®) a finite sequence where
v v v® 415 with j € Np v (v@) for1 <i < ¢.

We claim that forL, = J, the Janet divisiony(‘+1) =, v(*) implying that the
sequence cannot contain any identical entrieskSetmax {i | u; # v;}. Then
j < k, as otherwisg € N, (v(*V) entailsj € N, (v) contradicting our
assumption thaf is non-multiplicative for the multi index(?). Butj < k is also

not possible, as then ™" < »{” and sok cannot be multiplicative fop(+1),

There remains as only possibilify= k. In this case/j(.i“) = z/j(.i) +1, as otherwise

j could not be multiplicative for**1), Thus we conclude that('*1) s, (%)
and the Janet division is continuous.

The proof for the casé = P, the Pommaret division, is slightly more sub-
tle.* The conditionj € Np(v(®) implies thatcls (1) +1;) = clsv® and if
v+ | p @ 415, thencls v+ > clsv(@, i e. the class of the elements of the
sequence is monotonously increasingelifv(it1) = clsy(d = E, then the in-
volutive divisibility requires that/,(j“) < u,(j), i.e. among the elements of the
sequence of the same class the corresponding entry is mnaly decreasing.

And if finally "™ = 1" then we must have(i+1) = () +1;,i. e. the length
of the elements is strictly increasing. Hence all elemehth® sequence are dif-
ferent and the Pommaret division is continuous. O

Remark 6.9n Remark 2.9 we discussed that for a global division a wegadlin
tive basis of the suri; + Z, of two monoid ideals is obtained by simply taking
the union of (weak) involutive bases &f andZ,. As a more theoretical applica-
tion of the concept of continuity, we prove now a similar staent for the product
711 - I and the intersectiofi; N Z, in the special case of the Pommaret division.
Let A7 be a (weak) Pommaret basis Bf and N> of Z,. We claim that the set
N ={p+v|ueNi,veNy}isaweak Pommaret basisBf - Z, and that the
setN = {lem (u,v) | p € N1,v € Ny} is a weak Pommaret basis Bf N Z;.

4 It is tempting to tackle the Pommaret division in the samemeams the Janet division
using <reviex instead of<ey; in fact, such a “proof” can be found in the literature. Unfor
tunately, it is not correct: if D) = v 4 1, thenv+D) < ey v although the latter
multi index is a divisor of the former one<(eyiex iS NOt a term order!). Thus the sequences
considered in the application of Definition 6.2 to the Ponenhdivision are in general not
strictly ascending with respect treyiex-
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By Proposition 6.3, it suffices to show that the setandA/, respectively, are
locally involutive for the Pommaret division. Thus we takgemeratop+v € N/,
where we assume for definiteness tHaj: < cls v, and a non-multiplicative index
j1 > cls (u + v) = cls p of it. Theny is also non-multiplicative fop, € N7 alone
and the Pommaret baslé; must contain a multi index(! which involutively
dividesy + 1;, . If we are lucky, then the generatof!) + v € A is an involutive
divisor of u + v + 1;,, too, and we are done.

Otherwise, there exists an indéx > cls v such thaty — p™),, > 0. In this
case the Pommaret basi§ must contain a multi index(*) which involutively
dividesv+1y, . Again, if we are lucky, thep V) 4 (1) € A/ is an involutive divisor
of p+v+1; and we are done. Otherwise, there are two possibilitiesteltauld
be an indexj» > cls uM) such thatu + v+ 1;, — u™ + M), > 0 entailing the
existence of a further generafo® < A; which involutively divideg:(Y)+1,. Or
there could exist an indé > cls v such thau+v41;, — M +vM),, >0
implying that there is a multi index®) € A5 involutively dividing (") + 1,,.

Continuing in this manner, one easily sees that we build up gequences
(p, 0, 1@, 00) € Ny and (v, D, 03 ) C A as in the definition of a
continuous division. Since both Pommaret bases are finitédfipition and the
Pommaret division is continuous by Lemma 6.4, no sequenged@eome infinite
and the above described process must stop with an involditigor of u+v+1;, .
Hence\ is locally involutive and a weak Pommaret basisZef- Z,. The proof
for A goes completely analogously replacing at appropriatesgsléte sum of two
multi indices by their least common multiple. <

Definition 6.6 ([20, Def. 4.12])Let L be a continuous involutive division and
N C Nj afinite set of multi indices. Choose a multi indexc A" and a non-
multiplicative indexj € Ny, () such that:

D v+1; ¢ (N); _
(ii) if there existsy € N andk € N a(p) such thaty + 1, | v + 1; but
w1k #v+1;,thenu+ 1, € (M.

The divisionL is constructive if for any such set\" and any such multi index
v+ 1; nomultiindexp € (M) withv + 1; € Cp prugpy(p) exists.

In words, constructivity may roughly be explained as folfowhe conditions
imposed orv andj ensure a kind of minimality: no proper divisor of+ 1; is
of the formu + 1, for ap € A and not contained in the involutive spai’) ;..
The conclusion implies that it is useless to add multi inglie\" that lie in some
involutive cone, as none of them can be an involutive divisar + 1;. An effi-
cient completion algorithm for a constructive division skibconsider only non-
multiplicative indices.

Lemma 6.7 ([20, Prop. 4.13])Any globally defined division (and thus the Pom-
maret division) is constructive. The Janet division is ¢ardive, too.

We present now an algorithm for determining weak involutivempletions
of finite sets\/ C Nf. As mentioned above, for arbitrary involutive divisions,
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nobody has so far been able to find a reasonable approacH. \Beitsissume that
the division is constructive, then a very simple completgorithm exists (given
first in the proof of [20, Thm. 4.14]), the basic ideas of whgthback to Janet.

Algorithm 2 Completion in(Ng, +)

Input: a finite set\" ¢ INg, an involutive division

Output: a weak involutive completiol” of A/

11U N — N

12/ loop

1B S—{v+1;|veN,je N, yw),v+1; ¢ (N)L}
14/ if S = (@ then

/5/ return A/

16/ else

17/ chooseu € S such thatS does not contain a proper divisor of it
18/ N — N u{u}

9/ endif

/10/ end_loop

The strategy behind Algorithm 2 is fairly natural given thesults above. It
collects in a se§ all obstructions to local involution. For a continuous diein L,
the set\ is weakly involutive, if and only ifS = 0. Furthermore, for a construc-
tive division L it does not make sense to add element§\df;, to N in order to
complete. Thus we add in Line /8/ an elementoivhich is minimal in the sense
that the setS does not contain a proper divisor of it. The following terietiion
and correctness proof is essentially due to Gerdt and Blifik@, Thm. 4.14].

Proposition 6.8Let the finite sef\V" C IN7 possess a finite (weak) involutive com-
pletion with respect to the constructive divisién Then Algorithm 2 terminates
with a weak involutive completiok” of A/

Proof If Algorithm 2 terminates, its correctness is obvious untter made as-
sumptions. The criterion for its terminatioff, = @, is equivalent to local involu-
tion of /. By Proposition 6.3, local involution implies for a contiows division
weak involution. Thus the resul is a weak involutive completion of/, as by
constructioo\V' C N c (V).

If the input set\ is already involutive, Algorithm 2 leaves it unchanged and
thus obviously terminates. Let us assume Kais not yet involutive. In the first
iteration of thel oop a multi index of the formu = v + 1, is added taV. It is
not contained i), andS does not contain a proper divisor of it. 7, is an
arbitrary involutive completion of\/, it must contain a multi index ¢ N such
that\ |z A, p. We claim thaty = 4.

Assume on the contrary that # u. SinceN;, C (N), the multi index\
must lie in the cone of a generatef”) € A. We will show that, because of the
continuity of L, A € (N), contradicting the constructivity af. If () | zr A,
we are done. Otherwise we write= v(!) + p(1) for some multi index(!) € N7.

By construction, a non-multiplicative indgx € Nz (")) with p§? > 0 must
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exist. Consider the multiindex') +1;, . Because o)) +1;, | A, the multi index
v 4 1;, is a proper divisor ofu. Since the sef does not contain any proper
divisor of 1, we must have ") +1,, € (). Thus a multiindex(?) € A exists
such thav® | x v™ + 1.

By iteration of this argument, we obtain a sequerﬁc@>,y(2), . ) where
each element”) € N is a divisor of\ and where/( 1) |, () + 1, with a
non-multiplicative indexj; € NL,N(V(”). This sequence cannot become infinite
for a continuous division, a& possesses only finitely many different divisors and
all the multi indices/( in arbitrary finite pieces of the sequence must be different.
But the sequence will only stop, if som&) € A exists such that(? |, »r A and
hence we must have thate (V).

Thuseveryweak involutive completiooVy, of the given set\V" must contain
the multi indexv + 1;. In the next iteration of thé oop, Algorithm 2 treats the
enlarged setV; = N U {v + 1,}. It follows from our considerations above that
any weak involutive completiolV;, of A/ is also a weak involutive completion of
N1 and hence we may apply the same argument again. As a conmphétids by
definition a finite set, we must reach after a finite numbef iterations a weak
involutive basisV;, of (\). 0

Note the crucial difference between this result and the itgation proof of
Buchberger’s algorithm for the construction of Grobnesés In the latter case,
we can show the termination for arbitrary input, i. e. theotfeen provides a con-
structive proof for the existence of such a basis. Here wepalg able to prove
the termination under the assumption that a finite (wealdlutive basis exists;
the existence has to be shown separately. For example, Le&nifiguarantees us
that any monoid ideal possesses a finite weak Janet basis.

Recall that by Proposition 2.8 any weak involutive basistlmamade strongly
involutive by simply eliminating some redundant elemerilsus we obtain an
algorithm for the construction of a strong involutive basig ") by adding an in-
volutive autoreduction as last step to Algorithm 2. Altaiwmely, we could perform
the involutive autoreduction as first step. Indeed, if theuinset\ is involutively
autoreduced, then all intermediate s&fsonstructed by Algorithm 2 are also in-
volutively autoreduced. This fact is a simple consequeiffiteeosecond condition
in Definition 2.1 of an involutive division that involutiveaes may only shrink, if
we add elements to the skf.

Remark 6.9 While we just stated that it suffices to perform an involutagore-
duction as either first or last step in Algorithm 2, we now gsalfor later use
what happens, if we involutively autoredutéevery time a new element has been
added to it. The termination argument given in the proof aff@sition 6.8 does
not remain valid after this modification and we must providealiernative proof.
LetagainVy, = {uW), ..., u("} be a weak involutive completion of the input
setN. If we denote byV; the value of\ after theith iteration of thd oop, then
it was shown in the proof of Proposition 6.8 th&f, is also a weak involutive
completion of any set;. As by definition\/, is finite and eachV; is a subset

5 The following considerations are joint work with Vladimire@it.
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of it, the only possibility for non-termination is the appaace of a cycle, i. e. the
existence of valueky, ¢ such thatVy ., = N}, forall k > k.

Assume that in some iteration of the@op the multi index;*) is added to
N and that in the subsequent involutive autoreduction sormmehts of\” are
eliminated (in order to have a cycle this must indeed happerg first step in the
autoreduction must be that some multi ingelX) is eliminated, because®) is
an involutive divisor of it. Indeed, by Condition (ii) in Detftion 2.1, any other
reduction would have been possible already before thetingenf ;) and thus
the previous involutive autoreduction would not have beeislfied.

Sincen®) has been added 1, there must exist some multi indgx®) € A/
such thap®) = p(*) 4 p. Furthermore, we know that) = ,(¥) + & for some
multi index & with |5| > 0 and thusu® = p(9) + ¢ with ¢ = 5 + p and
lo| > 1. As we are in a cycle, the multi index*) must have been added A6
in a previous iteration of theoop, say when analysing/;. Thusu(©) cannot be
involutively divisible by(?1) and we must have;, > 0 for a non-multiplicative
indexji € Ny g, (u(@)). It cannot be thap(@) + 1;, = u®, as|o| > 1,
and thereforg.(*) + 1;, is a proper divisor of(¥). HenceN; must contain an
involutive divisoru(2) of (@) + 1, , as otherwise this multi index would have
been added t¢/ instead ofu(®).

Obviously, z(*2) | 1) and, decomposing®) = p(92) + 7, we conclude
by the same reasoning as above that > 0 for some non-multiplicative in-
dex jo € NL,/\_/,; (u(@2)). Iteration of this argument yields an infinite sequence
(ple), pl@2) ) as in Definition 6.2 of a continuous division. However, since
L is a continuous division andl7, a finite set, we arrive at a contradiction. Thus
even with involutive autoreductions after each step Altponi 2 terminates. <

In some sense our description of Algorithm 2 is not complaseye have not
specified how one should choose the multi ingeix Line /7/, if several choices
are possible. One would expect that different involutivenptetions are obtained
for different choices. However, an interesting aspect ofwaof of Proposition 6.8
is that it shows that this is not the case. The choice affadistbe order in which
multi indices are added but not which or how many multi indieee added during
the completion. A simple method for choosipgconsists of taking an arbitrary
term order< (which also could be changed in each iteration of tte®p) and
settingu = min< S. The following two corollaries expand [20, Cor. 4.15].

Corollary 6.10 If Algorithm 2 terminates, its output’ is independent of the man-
ner in whichy is chosen. Furthermore,_WL is any weak involutive completion
of N with respect to the divisioy, then\ C N.

Proof Consider the sef(\) of all weak involutive completions of/ with respect
to the divisionL and define

N= (1 M. (15)
NLeL(N)

We claim that Algorithm 2 determines this skf independent of the used term
order. Obviously, this implies our corollary.
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In the proof of Proposition 6.8 we showed that the multi iediadded in Al-
gorithm 2 are contained iaveryweak involutive completion al. Thus all these
multi indices are elements #f. As Algorithm 2 terminates with a weak involutive
completion, its output is also an element(f\') and hence must b¥'. O

Corollary 6.11 If the monoid ideall C N} possesses an involutive basis for the
constructive divisiorl, thenZ has a unique minimal involutive basis.

Proof If we apply Algorithm 2 to the unique minimal basi¢ of Z in the usual
sense, then it follows trivially from Corollary 6.10 thatetfoutput is a minimal
involutive basis off and that no other involutive basis Hfcan be minimal, as it
is necessarily an involutive completion af. O

7 Polynomial Completion

An obvious way to compute an involutive basis for an idéah a polynomial
algebra(P, x, <) of solvable type goes as follows: we determine first a Grdobne
basisG of Z and then with Algorithm 2 an involutive completionlef, G. In fact,

a similar method is proposed by Sturmfels and White [56] f&r ¢tonstruction of
Stanley decompositions (cf. Part I1). However, we prefenttend the ideas behind
Algorithm 2 to a direct completion algorithm for polynomidkals, as we believe
that this approach is more efficient.

First, we need two subalgorithrrisvolutive normal form&ndinvolutive head
autoreductionsThe design of an algorithrormalForm;, < (g, H) determining
an involutive normal form of the polynomiglwith respect to the finite s&{ C P
is trivial. We may use the standard algorithm for normal ferin the Grobner
theory, if we replace the ordinary divisibility by its inugive version. Obviously,
this modification does not affect the termination. Actualtyr our purposes it is
not even necessary to compute a full normal form; we may sfgman as we have
obtained a polynomial that is not involutively head redieib

The design of an algorithminvHeadAutoReducer, <(F) for an involutive
head autoreduction of a finite s&tis also obviou$.Again one may use the stan-
dard algorithm with the ordinary divisibility replaced byviolutive divisibility.

Based on these two subalgorithms, we propose Algorithm Ihfercompu-
tation of involutive bases ifP.” It follows the same strategy as the monomial
algorithm. We multiply each generator by its non-multiplive variables. Then
we decide whether or not the result is already containedanirttolutive span of
the basis; if not, it is added. This decision is effectivelyde via an involutive nor-
mal form computation: the involutive normal form of a polynial is zero, if and
only if the polynomial lies in the involutive span. As our d&sa strong involutive
basis, we take care that our set is always involutively hesoraduced.

% [20, Sect. 5] contains explicit pseudocode for both needibdlgorithms. Note, how-
ever, that there always a full autoreduction and not onlyadteutoreduction is performed.

” We present here only the basic form of the involutive conipfealgorithm, as it makes
the simple underlying ideas more transparent. Gerdt angkBVi [20, Sect. 8] provide an
optimised form of this algorithm which is, however, moreaixed.
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Algorithm 3 Completion in(P, x, <)

Input: a finite set7 C P, an involutive divisionL

Output: an involutive basig{ of Z = (F) with respect ta and<
[1/ 'H < InvHeadAutoReducer, «(F)

12/ loop

13/ S<—{l'j*h|h€H, l’jGXL_’H_’<(h),xj*h¢<H>L_’<}
14/ if S = @ then

5/ return H

16/ else

17/ choosgj € S suchthate; § = ming S

18/ g < NormalFormy, <(g, H)

19/ ‘H < InvHeadAutoReducer,<(H U {g})

/10/  end.if

/11/ end.loop

The manner in which we choose in Line /7/ the next polynomtial be treated
(we briefly writemin_ S for the minimal leading exponent of an elementS)f
corresponds to the normal selection strategy in the thefdBr@bner bases. There,
this strategy is known to work very well for degree compagitdrm orders but not
so well for other orders like the purely lexicographic oneh&keas for Grobner
bases the selection strategy concerns only the efficientlyeo€omputation, we
will see below that here the use of this particular strategynportant for the ter-
mination proof. With more refined and optimised versionshaflhasic completion
Algorithm 3 one can circumvent this restriction [5, 14, 119]t we will not discuss
this highly technical question here.

Definition 7.1 A finite set# C P is locally involutivefor the divisionL, if for ev-
ery polynomialf € F and for every non-multiplicative variable; € X, = ~(f)
the productz; = f has an involutive standard representation with respeckto

If the setF is involutively head autoreduced, then we may equivaleddy
mand that:; x f € (F)r <. Because of Lemma 5.12, this condition automatically
implies the existence of an involutive standard repregiemtaln fact, the criterion
appears in this form in Line /3/ of Algorithm 3. In any case;dbinvolution may
be effectively verified by computing an involutive normatroof x; « f in the
usual manner, i. e. always performing head reductions.

Our next result is similar to one direction of [20, Thm. 6.8jats proof uses
essentially the same techniques. It is more general wittego its assumptions,
as it does not require that the s€tis involutively autoreduced. As a consequence
we obtain only a weaker conclusion (see, however, the sulesggorollary).

Proposition 7.21f the finite set7 C P is locally involutive for the continuous
divisionL, then(F) . = (F).

Proof We claim that if the sefF is locally involutive (with respect to the con-
tinuous divisionL), then every product” x f; of an arbitrary termz* with a
polynomial f; € F possesses an involutive standard representation. Thia cla
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trivially entails our proposition, as any polynomial {tF) consists of a finite lin-
ear combination of such products: adding the corresponidivigjutive standard
representations shows that the polynomial is containédin, <.

In order to prove our claim, it suffices to show the existerfce@presentation

Tt x f1 = Z(Pf*f—i- Z c%fx”*f) (16)

feF veNg

where Py € k(X 7 <(f)] andle< (Pf % f) = lex (z* x f1) (or Py = 0) and
where the coefficients, ; € k vanish for all multi indicess € Ny such that
le< (¥ % f) = le< (z* % f1). Our claim follows then by an obvious induction.

If z € k[X 1, 7 ~(f1)], i.e. it contains only variables that are multiplicative
for le< f1, nothing has to be shown. Otherwise we choose a non-mukHiple
indexj; € Np . #(le< f1) such thatu;, > 0. As F is locally involutive, an
involutive standard representation, x f1 = Zfef P}l) * f exists. LetF, C F
contain all polynomialgf; such thafe (P}zl) * fa) = lex (z;, * f1). If we have
xt~liv € k(X 7 <(f2)] for all polynomialsf, € F», then we are done, as at
leastlm (z#~ 1 % P}j)) € k(X1 7 <(f2)]-

Otherwise we consider the subsgf C F, of polynomials f, for which
zt~lin ¢ k[X, 7 <(f2)] and iterate over it. For each polynomid € F; we
choose a non-multiplicative index € Ny, 1o #(le< f2) suchthatu—1;,);, > 0.
Again the local involution of the sef implies the existence of an involutive stan-
dard representation;, x fo = Efef P}Q) * f. We collect inF3 C F all poly-
nomials f3 such thatle (Pjﬁf) * f3) = le< (zj, * f2). If we introduce the multi
indexv = lex (zj, x f1) — le< fo, thenles (a# * f1) = le< (axt TVt —liz x f3)
forall f3 € Fs. If a#Tv=1in—Liz € k[ X 7 <(f3)] forall f3 € F3, we are done.

Otherwise we continue in the same manner: we collect in asdUBsC F;
all polynomialsfs which are multiplied by non-multiplicative variables, feach
of them we choose a non-multiplicative indgx € k[X; r <(f3)] such that
(e —1; —1;,); > 0, determine an involutive standard representation;gk fs
and analyse the leading terms. If they are still multipliagthwmon-multiplicative
variables, this leads to sefs, C F, and so on. This process yields a whole tree
of cases and each branch leads to a sequeriée = le. f1, 2 =les fa,...)
where all contained multi indices*) are elements of the finite sét_ F and
where to eaclr(*) a non-multiplicative indeyy, € Ny .. #(v*)) exists such that
vEFD | e 7 v 115, . By the definition of a continuous division, this sequence
cannot become infinite and thus each branch must terminatehB implies that
we may construct for each polynomial € F and each non-multiplicative vari-
ablesz; € X1 7 <(f1) arepresentation of the claimed form (16). O

Note that the proposition only asserts that the involutpasequals the normal
span. It doesiot say thatF is weakly involutive (indeed, the sét studied in Ex-
ample 5.6 would be a simple counterexampley. ¥ ZuelNg Zfef cu, et x f
is an arbitrary polynomial iF), then adding the involutive standard represen-
tations of all the products” x f for which ¢, ; # 0 yields a representation
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g = Y jerPrx fwhereP; € k[X, 7 <(f)]. Butin general it will not sat-
isfy the conditionle< (Py * f) < le<x g forall f € F, as we cannot assume that
we started with an ordinary standard representatioq. dfhe satisfaction of this
condition is guaranteed only for involutively head autareed sets, as there it is
impossible that the leading terms cancel (Lemma 5.12). &oh sets the above
proof simplifies, as all the set5; consist of precisely one element and thus no
branching is necessary.

Corollary 7.3 For a continuous divisiorl. an involutively head autoreduced set
F C P isinvolutive, if and only if it is locally involutive.

As in the proof of Proposition 6.8, local involution &f is obviously equivalent
to the termination conditio = () of thel oop in Algorithm 3. Thus we are now
in the position to prove the following result.

Theorem 7.4Let L be a constructive Noetherian involutive division gfitl x, <)
a polynomial algebra of solvable type. Then Algorithm 3 feates for any finite
input setF with an involutive basis of the idedl = (F).

Proof We begin by proving theorrectnes®f the algorithm under the assumption
that it terminates. The relatioch = (H) remains valid throughout, althougt
changes. But the only changes are the addition of furthemeis ofZ and invo-
lutive head autoreductions; both operations do not affexideal generated ly.
When the algorithm terminates, we haSe= ) and thus the outpu is locally
involutive and by Corollary 7.3 involutive.

There remains the problem términation Algorithm 3 produces a sequence
(H1,Ho,...) with (H;) = Z. The setH;, is determined fron¥<; in Line /9/.
We distinguish two cases, namely whether or not during themdation of the
involutive normal form in Line /8/ the leading exponent chan. Ifle< g = le< g,
then(le, H;) = (lex H;11), aslex g = le< h + 1, for someh € H;. Otherwise
we claim that(les H;) € (le<x Hiy1).

By constructiong is in involutive normal form with respect to the skt im-
plying thatles g € (lex H;) \ (lex H;)r. If we had(lex H;) = (lex Hiy1), @
polynomialh € H; would exist such thale g = le<x h + p where the multi
index 1 has a non-vanishing entry; for at least one non-multiplicative index
j € Np e #,(h). This implies thate< h + 1, < le< g < le< g. But we choose
the polynomialg in Line /7/ such that its leading exponent is minimal amorig al
non-multiplicative products, x h with h € H;; hencde g < le h+1;. As this
is a contradiction, we must havk . H;) C (le<x Hiy1).

So thel oop of Algorithm 3 generates an ascending chain of monoid ideals
(lexH1) C (lexHs) C -+ C lexZ. As N{ is Noetherian, the chain must be-
come stationary at some indék. It follows from the considerations above that in
all iterations of thd oop after theNth onele~ g = le< g in Line /8/. At this stage
Algorithm 3 reduces to an involutive completion of the monalsetle ; H v us-
ing Algorithm 2—but with additional involutive autoredimns after each appear-
ance of a new element. Indeed, in Line /7/ we choose the poliaig such that
le« g is a possible choice for the multi indexAlgorithm 2 adds in Line /8/. Since
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we assume that our division is Noetherian, it follows nownfr&roposition 6.8
together with Remark 6.9 that Algorithm 3 terminates (arel ¢brrectness proof
above implies that in fadflex Hy) = le< 7). O

Remark 7.9f the division L is not Noetherian, then it may happen that, even when
the idealZ = (F) does possess a finite involutive basis with respedt,tdlgo-
rithm 3 does not terminate for the inp&t We will see concrete examples for this
phenomenon in Part Il for the Pommaret division.

The problem is that the existence of an involutive basiddorZ does not im-
ply that all subideals of it have also an involutive basisg(&$vial counterexample
consider(zy) C (xy, y?) with the Pommaret division). In such a case it may hap-
pen that at some stage of Algorithm 3 we encounter a Bdssuch thatle< H,;)
does not possess an involutive basis and then it is poshiflerte algorithm iter-
ates endlessly in an attempt to compliete ;.

This observation entails that variations of Theorem 7.4ltadéo for divisions
which are not Noetherian. For example, we could assumesdidstet all subideals
of le< Z possess an involutive basis. Alternatively, we could retstio term orders
of typew. Then it suffices to assume thiat, 7 has an involutive basis. Indeed,
now it is not possible that Algorithm 3 iterates endlesslyhimile ; H,;, as sooner
or later an elemerg must be selected in Line /7/ with< g ¢ les H;. <

Corollary 7.6 For a constructive Noetherian divisioh every idealZ C P pos-
sesses a finite involutive basis.

Example 7. ™Now we are finally in the position to prove the claims made in Ex
ample 5.10. With respect to the degree reverse lexicogeaphin order the Janet
(and the Pommaret) division assigns the polynonfiiak 22 — zy the multiplica-
tive variables{z,y, z} and the polynomialg, = yz — x andf3 = y? — z the
multiplicative variables{z,y}. Thus we must check the two non-multiplicative
products:zfo = yf1 + xf3 andzfs = yfo — f1. As both possess an involutive
standard representation, the gein Line /3/ of Algorithm 3 is empty in the first
iteration and thugt is a Janet (and a Pommaret) basis of the ideal it generates.
The situation changes, if we use the degree inverse |lexapbge term or-
der, as therit~ f; = zy. Now X, 7 (f1) = {z}, Xs7<(f2) = {z,9,2}
and X 7 <(f3s) = {z,y}. In the first iteration we findS = {zf1}. Its involu-
tive normal form isf; = 23 — 22 and we add this polynomial t& to obtain
H1 = {f1, f2, f3, fa} (the involutive head autoreduction does not change the set)
For f, all variables are multiplicative; for the other generatiwere is one change:
z is no longer multiplicative forfo. Thus in the second iteratioft = {zf2}. It
is easy to check that this polynomial is already in involativormal form with
respect td{; and we obtairt, by addingfs = yz2 — xz to H;. In the next iter-
ationS is empty, so that(, is indeed the Janet basis F) for the degree inverse
lexicographic term order. <

The proof of Theorem 7.4 has an interesting consequencehwhiés first
discovered by Apel [3] for the special case of the Pommandsioin (see also
[21, Prop. 5.4] where for arbitrary divisions the case of @egcompatible or-
ders is considered). Assume that the term ordds of typew, i.e. for any two
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multi indicesy, v with 1 < v only finitely many multi indicesp() exist with
p =< pM < p® < ... < v Then even if Algorithm 3 doesot terminate, it
determines in a finite number of steps a Grobner basis o1 .

Proposition 7.8Let the term order< be of typev. Then Algorithm 3 determines
for any finite input sefF C P and any involutive divisiod in a finite number of
steps a Gobner basis of the idedl = (F).

Proof Above we introduced the séi such thatle Hy¢) = (le< Hy) for all
£ > 0. We claim thatH  is a Grobner basis df.

Let f € 7 be an arbitrary element of the ideal. A&y is a basis off, we find
for eachh € Hy a polynomialg;, € P such that

f=> gnxh. 17)
heHn

‘H is a Grobner basis, if and only if we can choose the coeffisignsuch that
le< (gn *h) =< le< f. Assume that forf no such standard representation exists
and lety = maxpeny {le< gn +le< h} = les f. If we denote byHy the set
of all polynomialsh € Hy for which le g;, + lex h = u, then the identity
> heriy le< (g7 * h) = 0 must hold and henc v contains at least two elements.
For each elemerit € Hy we haveu € C(le< h). As by construction the sé{
is involutively head autoreduced, the involutive coneshefleading exponents do
not intersect and there must be at least one genehator  such that some
non-multiplicative variable:; € Xy, 3, (h) divideslt- gj.

As < is of typew, after a finite number of steps the non-multiplicative produ
x; = h is analysed in Algorithm 3. Thus for some > 0 the setH ., contains
an element’ with le< b’ = le< (z; x h). Lety = le< g5, 2* 7Y % x; = ca# + 11
andh’ = dxz; x h + ro. Then we may rewrite

gp, xh = lc_;_dgh [a:"’_l-f *x (B — o) — dry * ﬁ} + (95 —Im<gp) xh. (18)
As 1/ was determined via an involutive normal form computatioplega to the
productz; % h and as we know that at this stage of the algorithm the leading
exponent does not change during the computation, the Igadiponent on the
right hand side of (18) ide~ (z#~% x A’). If the termz#~1 contains a non-
multiplicative variablez, € X ., (h'), we repeat the argument obtaining
a polynomialh” € Hy 1y, 1n, Such thale h” = le< (zx x h').

Obviously, this process terminates after a finite numbetegfs even if we do
it for eachh € Hy. Thus after/ further iterations we obtain a s&t, ., such
that, after applying all the found relations (18),can be expressed in the form
f = Yhern,, Gn x h where still ;. = maxper ., {le< gn + le< h}. Denote
again byH ¢ C Hy . the set of all polynomialé achieving this maximum.

By construction, no ternit - g; with h € H ., contains a variable that is
non-multiplicative forh. Thus we must now have € Ci._ (3, ), (le< h) for
eachh € H ., implying thatH ., contains at most one element. But then it is
not possible that > le~ f. Hence each polynomigl € P possesses a standard
representation already with respectig; and this set is a Grobner basis. 0O
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Note that in the given form this result is only of theoreticdkrest, as in gen-
eral no efficient method exists for checking whether theenirbasis is already a
Grobner basis. Using standard criteria would destroy ateptial advantages of
the involutive algorithm. For the special case of Pommaasels, Apel [3] found a
simple criterion that allows us to use a variant of AlgoritBrfor the construction
of Grobner bases independent of the existence of a finitdutive basis.

In contrast to the monomial case, one does not automatichtfin a minimal
involutive basis by making some minor modifications of Aliglam 3. In particu-
lar, it does not suffice to apply it to a minimal basis in theipady sense. Gerdt and
Blinkov [21, Sect. 5] presented an algorithm that alwaysret a minimal invo-
lutive basis provided a finite involutive basis exists. Vghilstill follows the same
basic strategy of study all products with non-multipligatvariables, it requires a
more complicated organisation of the algorithm. We omitehtéee details.

8 Right and Two-Sided Bases

We now briefly discuss the relation between left and righolative bases and the
computation of bases for two-sided ideals. We use in thiiaethe following
notations: the left ideal generated By P is denoted by 7)), the right ideal
by (F)(") and the two-sided ideal b§{F)) and corresponding notations for the
left, right and two-sided involutive span.

Recall from Remark 4.8 that even with a coefficient fikld is not guaranteed
thatP is also right Noetherian and hence generally the existefidght Grobner
bases for right ideals is not clear. However, we also notatittte ringP is always
right Noetherian, if we assume that the maps: k — k in (8a) are automor-
phisms. In the sequel of this section we will always make alssumption.

From a computational point of view, the theory of right ice& almost iden-
tical to the corresponding theory for left ideals. The lefiat asymmetry in our
definition of polynomial algebras of solvable type leadsydolone complication.
Suppose that we want to perform a right reduction of a tem with respect to
another termez? with i | v. This requires to find a coefficiete k such that
les (cxt * ba¥=*) = ¢pu(b)ru—u = a. Since, according to the above made as-
sumption, all the mapg,, are automorphisms, suchbalways exists. It turns out
[42, Sect. 4.11] that under the made assumption the resuKsmedry-Rodi and
Weispfenning [41, Sects. 4/5] remain valid for our largersd of non-commutative
algebras and can be straightforwardly extended to inwaiases.

Lemma 8.1A polynomialf € P is (involutively) left reducible modulo a finite set
F C P (with respect to an involutive divisioh), if and only if it is (involutively)
right reducible (with respect td.).

Proof Because of the made assumptions on the mapseducibility depends
solely on the leading exponents. O

Proposition 8.2Let H; be a monic, involutively left autoreduced, minimal left in-
volutive set and+{,. a monic, involutively right autoreduced, minimal right alu-
tive set for an involutive divisiod. If (H;)() = (H,)(") = T, thenH; = H..
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Proof By definition of a minimal basis, the sdts; H; andle H, are both min-
imal involutive bases of the monoid idelel; Z and thus are identical. Assume
that (H; \ H,) U (H, \ Hi) # 0 and letf be an element of this set with minimal
leading exponent with respect to. Without loss of generality, we assume that

f € H; \ H,.. Because of the conditioft;)!) = (H,)("), we havef € (H,)!"..
Thus the (by Proposition 5.13 unique) right involutive natrform of f with re-
spect toH,. is 0. This implies in particular thaf is right involutively reducible
with respect to somé € H, withlex h < leL f.

If lex h < lex f, thenh € H;, too, asf was chosen as a minimal element of
the symmetric difference df(; and’H,.. Hence, by Lemma 8.1, is also left invo-
lutively reducible with respect th (because oe H; = le4 H,. the multiplicative
variables ofh are the same in both cases). But this contradicts the assxmtpat
‘H; is involutively left autoreduced.

If le<x h = le< f = u, then we consider the differenge= f — h € Z: both the
left involutive normal form ofyg with respect td+; and the right involutive normal
form with respect tdH,. must vanish. By constructiote~ g < p andsuppg C
(supp f Usupph) \ {u}. Since bothH; and#, are assumed to be involutively
autoreduced, no term in this set is involutively reducibjddy, H; = le H, and
hence we must haweipp g = 0, i. e.¢g = 0, a contradiction. O

A direct derivation of a theory of two-sided involutive basdong the lines of
Section 5 fails, as two-sided linear combinations are ratimsvieldy objects. A
general polynomiaf € {(H)) for some finite set{ C P is of the form

MNh
F=Y tixhxr (19)
heH i=1
with polynomialst;, r; € P, i. e. we must allow several summands with the same
generatorh. The definition of a unique involutive standard represéntatvould
require control over the numbers, which seems rather difficult. Therefore we
will take another approach and construct left involutivedmeven for two-sided
ideals. The following proposition is an involutive versioff41, Thm. 5.4].

Proposition 8.3Let H C (P, *, <) be a finite set and. an involutive division.
Then the following five statements are equivalent.
(i) H is a left involutive basis an@H) () = (H).
(i) H is a right involutive basis andH) (™) = ((H)).
(iiiy H is aleftinvolutive basis of)(") and bothhxz; € (H)® andhxc € (H)®
for all generatorsh € ‘H, all variablesz; and all coefficients € k.
(iv) H is a right involutive basis of#)(") and bothz; x h € (H)(") andc« h €
(H)(™) for all generatorsh € H, all variablesz; and all coefficients € k.
(v) A unique generatoh € H exists for every polynomigl € (H)) such that
le< h |L,le_< # les f.
Proof We begin with the equivalence of the first two statementdniplies that
(M) = (H)® = (M) and hence trivially#)(") C (1)". The same argu-
ment as in the proof of Proposition 8.2 shows that we havedn&a equality and
thus(ﬁ()(g’f< = (H)(") = (H)), i. e. (ii). The converse goes analogously.
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Next we consider the equivalence of (i) and (iii); the eqléwae of (ii) and (iv)
follows by the same argument. (iii) is a trivial consequeoic@). For the converse,
we note that (iii) implies thaf « (ct) € (H)® forall f € (H)®, all termst € T
and all constants € k. Indeed, we may rewrite the monomialas a polynomial
in the “terms”z;, xx;, *- - -%x;, With iy <ip < --- <, and then apply repeatedly
our assumptions. Obviously, this entails (i).

The equivalence of (i) or (ii), respectively, with (v) is @ial consequence of
the definition of an involutive basis. O

We would like to exploit Statement (iii) for the construgtiof a left involutive
basis for the two-sided ideglF)). However, if the fieldk is infinite, then it con-
tains an infinite number of conditions. We make now one furdissumption about
the algebraP. Letkg = {c € k | Vf € P : c¢x f = f % ¢} be the constant part
of the centre ofP. By analysing the products « ¢! % ¢ for an arbitrary element
c € k., one easily proves that, is even a subfield dk [42, Sect. 4.11].

We make now the assumption that eithe&r = {cy, ..., ¢, } is finite or that the
field extensiork/kg is finite, i. e. thatk is a finite-dimensional vector space over
ko with basis{cy, ..., c¢}. In the latter case, it is easy to see that it suffices in (iii)
to require that only all products « c; lie in (H)(®), as forc = 35_; Ajc; with

Aj € ko we haveh xc = 320 Aj(hxc)).

These considerations lead to the simple Algorithm 4 belofitdt constructs
in Line /1/ a left involutive basigt of the left ideal(F)(" (using Algorithm 3).
Thewhi | e loop in Lines /2—-19/ extends the sKtto a left generating set of the
two-sided ideal(F)) according to our simplified version of Proposition 8.3 (iii)
Finally, we complete in Line /20/ this set to an involutivesisa In Line /1/ it is not
really necessary to compute a left involutive basis; any@tbner basis would
suffice as well. Similarly, an ordinary left normal form cdude used in Lines /6/
and /12/, respectively; the use dhvLeftNormalForm;, - anticipates the final
involutive basis computation in Line /20/.

The termination of thehi | e loop follows from the fact that under the made
assumptiong’ is Noetherian and hence a finite generating se{8f) exists. In
principle, we perform here a simple breadth-first searchtfarhe termination of
the involutive bases computations in Lines /1/ and /20fheesvely, depends on
the conditions discussed in the last section. Thus the textion is guaranteed, if
the divisionL is constructive and Noetherian.

9 Involutive Bases for Semigroup Orders

For many applications it is of interest to compute involatior Grobner bases
with respect to more general orders, namsdynigroup ordergsee Appendix A).
This generalisation does not affect the basic propertiggbtfomial algebras of
solvable type as discussed in Section 3, but i§ no longer the smallest term,
then normal form computations do no longer terminate foirgluts. So we can
no longer apply Algorithm 3 directly for the determinatiohivolutive bases.
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Algorithm 4 Left Involutive basis for two-sided ideal ifP, x, <)
Input: finite setZ C P, involutive divisionL

Output: left involutive basisH of (F))

1/ 'H «— LeftInvBasisy <(F); S<—H

12/ while S # () do

13 T «—0

14/ forall fe Sdo

/5/ for i from 1ton do

16/ h « InvLeftNormalFormr, < (f * z;, H)
17/ if h # 0then

18/ H—HU{h}; T —TU{h}

19/ end.if

110/ end_for
111/ for j from 1to ¢ do

112/ h « InvLeftNormalFormy, «(f x¢;, H)
113/ if h # 0then

114/ H—HU{h};, T —TU{h}

115/ end.if

116/ end_for

/17/  end.for

118/ ST

/19/ end.while

/20/ return LeftInvBasisy, < (H)

Example 9.1IThe Weyl algebraWV,, is the polynomial algebra in thx variables
x1,...,T, @andoy, ..., d, with the following non-commutative produet for all
1 <i < nwehaved; x z; = x;0; + 1 andx is the normal commutative product
in all other cases. It is easy to see th&lt, is a polynomial algebra of solvable
type for any monoid order. A semigroup order respects thdipligation « only,
if 1 < z;0; forall 4. In [54] such orders are calledultiplicative monomial orders
An important class of semigroup orders is defined via reafvievectors. Let
(£,¢) € R"xR™besuchthag+( € R™ is non-negative and let be an arbitrary
monoid order. Then we defing' 0" < ) 2707, ifeithery-{+v-¢ < o-E+7-¢
orpu-{+v-C=0-£+7-Candz9” < x°97. This yields a monoid order, if and
only if both £ and¢ are non-negative. A special case are the orders with weight
vectors(¢, —¢) arising from the action of the algebraic tor(is*)™ on the Weyl
algebra. They have numerous applications in the theofy-afodules [54]. <«

As normal form computations do not necessarily terminateséonigroup or-
ders, we must slightly modify our definitions of (weak) inwtive or Grobner
bases. The proof of Theorem 5.4 (and consequently also hefoGorollary 5.5
showing that a weak involutive basis of an id&ak indeed a basis dof) requires
normal form computations and thus this theorem is no longkd vThe same prob-
lem occurs for Grobner bases. Therefore we must explititiude this condition
in our definition.

Definition 9.2 Let (P, x, <) be a polynomial algebra of solvable type wheras
an arbitrary semigroup order. Let furthermof® C P be a left ideal. AGrobner
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basisof 7 is a finite setG such that(G) = Z and (lex G) = le<Z. The setg
is aweak involutive basief 7 for the involutive division, if in addition the set
le~ G is weakly involutive fol. It is a (strong) involutive basisf it is furthermore
involutively head autoreduced.

In the case of Grobner bases, a classical trick due to Lg48td¢onsists of ho-
mogenising the input and lifting the semigroup order to a oidrder on the ho-
mogenised terms. One can show that computing first a Grddasss for the ideal
spanned by the homogenised input and then dehomogenigildg y Grobner ba-
sis with respect to the semigroup order. Note, however,ithgéneral we cannot
expect thateducedGrobner bases exist.

We extend now this approach to involutive bases. Here welerieothe ad-
ditional difficulty that we must lift not only the order butsal the used involutive
division. In particular, we must show that properties likarty Noetherian or con-
tinuity are preserved by the lift which is non-trivial. Fdre special case of invo-
lutive bases in the Weyl algebra, this problem was first sbive[35]. As most
arguments are independent of the actually used algebrawatde type, we recall
here the results of [35] without proofs (all details can berfd in [55, Sect. 4.5]).

Let (P, %, <) be a polynomial algebra of solvable type wherds any semi-
group order that respects the multiplicatieriWe setP = k[zo, z1,...,z,]) @and
extend the multiplicatior to P by defining that:, commutes with all other vari-
ables and the elements of the fidtd For a polynomialf = > c,a* € P of
degreey, we introduce as usual |t$omogen|sat|orf(h) =Y eyl g e P.
Conversely, for a polynomleﬂ € P we denote its projection tB as f = f|gc0 1

We denote by the set of terms ifP; obviously, it is in one-to-one correspon-
dence to the multi indices ﬂNg“. We use in the sequel the following convention.
Multi indices inN{ ! always carry a tildefi = [uo, - - ., it»]. The projection to
IN§ defined by dropping the first entry (i. e. the exponent of thenbgenisation
vanablexo) is signalled by omitting the tilde; thys = [y, . .., u,]. For subsets
N ¢ Npttwe also simply writeV' = {v | 7 € N'} € NZ.

We I|ft the semigroup ordex on T to a monoid order<h on T by defining
xh <y, o7, if either || < |7] or both|j| = |7] andx# < x¥. Itis trivial to check
that this yields indeed a monoid order and ttit , <;) is again a polynomial
algebra of solvable type. For lifting the involutive divisi, we proceed somewhat
similarly to the definition of the Janet division: the homagation variablex is
multiplicative only for terms which have maximal degreerin

Proposition 9.3 ([35, Prop. 5.1])Let L be an involutive division oiNg. For any
finite set\” c N{! and every multi indeg € NV, we defineV; (i) by:

-0 € Nj (@), ifand only if g = max, . g{vo},

-0 <ie Ng y(p), ifandonlyifi € Np n(u).

This determines an involutive divisidnon Nyt

Now we must check to what extent the propertiesLodre inherited by the
lifted division L. As the definition ofL is very similar to the one of the Janet
division, the proofs of the following results reuse manyhigiques from the corre-
sponding proofs for the Janet division.
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Proposition 9.4 ([35, Prop. 5.2])f L is a Noetherian division, then so is
Proposition 9.5 ([35, Prop. 5.3])f L is a continuous division, then so is

Unfortunately, it is much harder to show that construcyivit preserved. So
far, a proof is known only for globally defined divisions amtJanet division.

Proposition 9.6 ([35, Prop. 5.4])If the continuous divisiorl. is either globally
defined or the Janet division, then the lifted divisiois constructive.

Based on these results, Algorithm 3 can be extended to seuamigorders.
Given a finite seff € P, we first determine its homogenisatigt®) € P and then
compute an involutive basis ¢f(")) with respect tal and~<;,. What remains to
be done is first to show that the existence of a finite invoubeasis is preserved
under the lifting toP and then to study the properties of the dehomogenisation of
this basis.

Proposition 9.7 ([35, Prop. 6.1])f the leftidealZ = (F) C P possesses an invo-
lutive basis with respect to the Noetherian divisiband the semigroup ordex,
then the left ideall = (FWY C P generated by the homogenisations of the el-
ements in the finite s possesses an involutive basis with respect to the lifted
division L and the monoid ordex},.

Hence our lifting leads to a situation where we can apply Téeo/.4. Unfor-
tunately, the dehomogenisation of the strong involutiveisaomputed i does
not necessarily lead tostronginvolutive basis irP, but we obtain always at least
a weak involutive basis and thus in particular a Grobneish&$ote also that the
dehomogenised basis is in general smaller than the bagls & some elements
of the latter one may differ only in powers of the homogerndsavariablez.

Theorem 9.8 ([35, Thm. 6.1])Let H be a strong involutive basis of the left ideal
7 C P with respect ta. and <j. Then the dehomogenisatidhis a weak involu-
tive basis of the left ideal C P with respect tal and <.

Remark 9.%or the Pommaret divisio® the situation is considerably simpler.
There is no need to define a lifted divisidhaccording to Proposition 9.3. Instead
we renumberz, to z,,41 and then use the standard Pommaret divisiomqﬁl.
This approach implies that for all multi indic@se ]Ng+1 with . # 0 the equality
Np(iz) = Np(p) holds, as obviously + 1 is multiplicative only for multi indices

of the formi = ¢,,41, i. e. for whichy, = 0. One easily sees that the above proof
of Theorem 9.8 is not affected by this change of the divisise\djin]l\Ig+1 and
hence remains true. <

It is not a shortcoming of our proof that in general we do nat gestrong
involutive basis, but actually some ideals do not possessginvolutive bases. In
particular, there is no point in invoking Proposition 5.7 ébtaining a strong basis.
While we may surely obtain by elimination a sub&gtC H such thaleL H’ is a
strong involutive basis ofle< H), in generakH’) C 7.



Involution andd-Regularity | 39

Example 9.1@onsider in the Weyl algebraV, = k(z,y,d,, 0,] the left ideal
generated by the st = {1 + = + y,0, — J,}. We take the semigroup order
induced by the weight vectgr-1, —1, 1, 1) and refined by a term order for which

0y > 0 > y > z. Then the underlined terms are the leading ones. One easily
checks thatF is a Grobner basis for this order. Furthermore, all vaealdre mul-
tiplicative for each generator with respect to the Pommdirgsion and thusF is

a weak Pommaret basis, too.

Obviously, the sef is neither a reduced Grobner basis nor a strong Pommaret
basis, ad is a (multiplicative) divisor ob,. However, it is easy to see that the left
idealZ = (F) does not possess a reduced Grobner basis or a strong Pommare
basis. Indeed, we have; Z = N¢ and thus such a basis had to consist of only a
single generator; buf is not a principal ideal. <

A special situation arises for the Janet division. RecalhfrRemark 2.6 that
any finite setN" ¢ N7 is automatically involutively autoreduced with respect to
the Janet division. Thus any weak Janet basis is a strong, biall generators
have different leading exponents. If we follow the abovdinatl strategy of ap-
plying Algorithm 3 to a homogenised basis and then dehomisgenthe result,
we cannot generally expect this condition to be satisfiedvétder, with a minor
modification of the algorithm we can achieve this goal.

Theorem 9.11 ([35, Thm. 6.2])Let (P, x, <) be a polynomial algebra of solv-
able type where< is an arbitrary semigroup order. Then every left idgalC P
possesses a strong Janet basis-for

Proof Assume that at some intermediate stage of Algorithm 3 thés rason-
tains two polynomialg’ andg such thate<, (9) = lex, (f) + 1o, i. e. the leading
exponents differ only in the first entry. if = z, f, we will find f = ¢ after de-
homogenisation and no obstruction to a strong basis app@#rerwise we note
that, by definition of the lifted Janet divisiof,, the homogenisation variabig

is non-multiplicative forf. Thus at some later stage the algorithm must consider
the non-multiplicative product, f (if it was already treated® would not be in-
volutively head autoreduced).

In the usual algorithm, we then determine the involutivenmalrform of the
polynomialzx, f; the first step of this computation is to replacgf by zof — g.
Alternatively, we may proceed instead as follows. The potyial § is removed
from the basis and replaced by, f. Then we continue by analysing the invo-
lutive normal form ofg with respect to the new basis. Note that this modification
concerns only the situation that a multiplication by has been performed and
that the basig{ contains already an element with the same leading exposent a
the obtained polynomial.

If the final outputH{ of the thus modified completion algorithm contains two
polynomialsj and f such thate_, (§) andle, (f) differ only in the first entry,
then eitherg = x’gf or f = xkg for somek € N. Thus the dehomogenisation
yields a basig{ where all elements possess different leading exponents#fand
is a strong Janet basis. Looking at the proof of Theorem 7.i$, @asy to see
that this modification does not affect the correctness ardd¢hmination of the
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algorithm. As the Janet division is Noetherian, these a@mrsitions prove together
with Proposition 9.4 the assertion. O

Note that our modification only achieves its goal, if we ngadistrict in Algo-
rithm 3 to head reductions. Otherwise some other terms thateading term in
xo f might be reducible but not the corresponding termg.imThen we could still
find after dehomogenisation two generators with the sarmirigaxponent.

Example 9.1Zonsider in the Weyl algebféV 5 with the three variables, y, z the
leftideal generated by the sét= {0.—yd,, d,}. If we apply the usual involutive
completion Algorithm 3 (to the homogenisatidfi™)), we obtain for the weight
vector(—1,0,0,1,0,0) refined by the degree reverse lexicographic order and the
Janet division the following weak basis with nine genesitor

7_{1 = { 83:, aya aza 8a:8za 8yaza yawv yaa:+8za yawazv yaa:az +8§ } . (20)

As one easily sees from the last four generators, it is nabagtbasis.
Applying the modified algorithm for the Janet division yislthe following
basis with only seven generators:

Hy = { 0y + 0,0, 0y, 0, 050, 0,0., YO, + 0., y0,0. + 92 } . (21)

Obviously, we now have a strong basis, as all leading expsraea different.

This example also demonstrates the profound effect of thedgenisation.
A strong Janet or Pommaret basis(df) is simply given byH = {0,, 9y, 0.}
which is simultaneously a reduced Grobner basigAf") many reductions are
not possible because the terms contain different powets ldbwever, this is a
general problem of all approaches to Grobner bases forggenn orders using
homogenisation and not specific for the involutive approach

In this particular case, one could have applied the invedutiompletion algo-
rithm directly to the original sef and it would have terminated with the minimal
basisH, although we are using an order which is not a monoid ordefoktun
nately, it is not clear how to predict when infinite reductidrains appear in nor-
mal form computations with respect to such orders, so thatdwes not know in
advance whether one may dispense with the homogenisation. <

10 Involutive Bases for Semigroup Orders Il: Mora’s Normal Form

One computational disadvantage of the approach outlingokeiprevious section
is that the basi¢? in the homogenised algebfa is often much larger than the
final basisH in the original algebr&, as upon dehomogenisation generators may
become identical. Furthermore, we have seen that it is diffto prove the con-
structivity of the lifted divisionL;, which limits the applicability of this technique.
Finally, for most divisions we are not able to determinestybases.

An alternative approach for Grobner bases computatiotfsdrordinary poly-
nomial ring was proposed first by Greuel and Pfister [29] atef lmadependently
by Grabe [27,28]; extensive textbook discussions areaioetl in [16, Chapt. 4]
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and [30, Sect. 1.6]. It allows us to dispense completely witimputing in the ho-
mogenised algebr@. Two ideas are the core of this approach: we modify the
normal form algorithm using ideas developed by Mora [49]tFe computation of
tangent cones and we work over a ring of fraction®ofe will now show that a
generalisation to arbitrary polynomial algebras of soleaigpe and to involutive
normal forms is possible and removes all the mentioned prob!

The central problem in working with semigroup orders is ttiaty are no
longer well-orders and hence normal form computations endlassical form do
not necessarily terminate. Mora [49] introduced the notibthe écartof a poly-
nomial f as the difference between the lowest and the highest detiagern in f
and based a new normal form algorithm on it which always teatss. The main
differences between it and the usual algorithm lie in thesflity to reduce also
with respect to intermediate results (see Line /9/ in Altori 5 below) and that it
computes only a “weak” normal form (cf. Proposition 10.1dve).

Mora’s approach is valid only for tangent cone orders whieedéading term is
always of minimal degree. Greuel and Pfister [29] noticetldlslight modification
of the definition of the écart allows us to use it for arbiyraemigroup orders. So
we set for any polynomiaf € P \ {0} and any semigroup order

écart f = deg f — deglt< f . (22)

The extension of the Mora normal form to an involutive norrfam faces
one problem. As already mentioned, one allows here alscctiohs with respect
to some intermediate results and thus one must decide orssignanent of mul-
tiplicative variables to these. However, it immediateljidws from the proof of
the correctness of the Mora algorithm how this assignmersgtrba done in or-
der to obtain in the end an involutive standard representatiith respect to the
setg (one should stress that this assignmentdsperformed according to some
involutive division in the sense of Definition 2.1).

In Algorithm 5 below we use the following approach. To eachmberg of the
setG with respect to which we reduce we assign aséj] of multiplicative in-
dices. We writde g | v le< h, if the multiindexle & lies in the restricted cone of
le g defined byN[g]. The setS collects all generatorg € G which have already
been used for reductions and the 4étis the intersection of the corresponding
sets of multiplicative indices. If a new polynomialis added tog, it is assigned
as multiplicative indices the current value o

Proposition 10.1Algorithm 5 always terminates. LEP = k[X], x, <) be a poly-
nomial algebra of solvable type (for an arbitrary semigroogler <) such that
k[X'] is a subring of P for any subsetX’ C X. Then the output is a weak
involutive normal formof the inputf with respect to the s&f in the sense that
there exists a polynomial € P with leL v = 0 such that the differencex f — h
possesses an involutive standard representation

uxf—h=> Py*g (23)
geg

and none of the leading exponents, g involutively dividesleL h. If < is a
monoid order, them = 1 andh is an involutive normal form in the usual sense.
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Algorithm 5 Involutive Mora normal form for a semigroup orderon P

Input: polynomial f € P, finite setG C P, involutive divisionL
Output: involutive Mora normal formf. of f with respect ta@g
12/ forall g € Gdo

13" Nlg] < NLje_ g(le< g)

4] end._for

5l N —{1,....,n}; S0

16/ while (b #0) A (3g € G : le< g|n le< h) do

7/ choosey with écart ¢ minimal among aly € G such thate g v le<h
18/ if (g €G)A(g¢S)then

91 §—Su{gh N<—NnNg]

/10/  end.if

/11/  if écart g > écart h then

112/ G—GU{h}; N[h —N

/13/  end.if

114/ p—le<h—lesg; he—h—Efa%aﬂwg

/15/ end.while

/16/ return h

Proof As the proof is almost identical to the one for the non-intiwkl version
of the Mora normal form given by Greuel and Pfister [29, 30],omy sketch the
required modifications; full details are given in [55, Set61]. For the termina-
tion proof no modifications are needed. For the existencesiitvolutive standard
representation one uses the same induction as in the nohsiwe case and keeps
track of the multiplicative variables. The key point is tlilad reduction with re-
spect to a polynomial € G \ G is performed, then it is multiplied only with terms
which are multiplicative for al € G appearing inj. This fact ensures that in the
end indeed each non-zero coefficigftis contained irk[ X, ¢, <(g)]. O

Remark 10.Z'he assumption abo@® in Proposition 10.1 is necessary, because
the coefficients’, in (23) are the result of multiplications. While the abovei€o
siderations ensure that each factor liek{X 1, g <(g)], it is unclear in a general
polynomial algebra whether this remains true for their pretd Simple examples
for polynomial algebras of solvable type satisfying the madsumption are rings
of linear difference or differential operators. In the cas¢he Pommaret division,
the assumption can be weaken a bit and every iterated polghatgebra of solv-
able type in the sense of Definition 4.1 is permitted, too. <

We move now to a larger ring of fractions where all polynomiaith leading
exponen® are units. In such a ring it really makes sense to kal(weak) normal
form of f, as we multiplyf only by a unit.

Proposition 10.3Let (P, %, <) be a polynomial algebra of solvable type where
is a semigroup order. Then the subset

Sc={fePllexf=0}. (24)
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is multiplicatively closed and the left localisati@ty, = S;l * P is a well defined
ring of left fractions.

Proof Obviously,1 € S¢. If 1 + f and1 + g are two elements i, then the
compatibility of the order< with the multiplicationx ensures that their product
is of the form(1 + f) » (1 + g) = 1 + h with le<x h < 0. Hence the sef_ is
multiplicatively closed.

As polynomial algebras of solvable type do not possess zersods, a suf-
ficient condition for the existence of the ring of left framisS=' P is that for
all f € S< andg € P the intersection(P x f) N (S< = g) is not empty [15,
Sect. 12.1]. But this fact can be shown using minor modificetiof our proof of
Proposition 3.5 on the existence of Ore multipliers.

We first choose coefficients), so € R such thatinh; = rog* f — sof *x g
the leading terms cancel, i.e. we have h; < le~ f +le< g = le~ g. Then
we compute with (the non-involutive form of) Algorithm 5 a alenormal form
hy of hy with respect to the seFy = {f,¢}. By Proposition 10.1 this yields a
standard representatiaf x h1 — h1 = ¢ * f + 1o * g wherele u; = 0. Assume
thatles vy = 0. Then we arrive at the contradictida (9 xg) = lexg >
1e< ill = le< (U1 * 77/1) ThUSle_< ¢0 <0.If h1 =0, then(u1 *T0g — ¢0) * f =
(u1 * sof + 1o) * g and by the considerations above on the leading exponents
uy * sof + 1o € S< sothatindeedP x f) N (S< xg) # 0.

If hy # 0, we proceed as in the proof of Proposition 3.5. We introdfice=
Fo U {h1} and choose,s; € R such that inhy = r1hy x f — s1f % hy the
leading terms cancel. If we compute a weak Mora normal fagmof h,, then
we obtain a standard representationx ho — ho = ¢y % f + 1 % g + p1 * hy
where agaife~ u; = 0. The properties of a standard representation imply now
thatles ¢ +lew g < les hy andle p; + le< hy = le ho. Together with the
inequalitiesle hy < le f + lex hy = lesh; < le g this entails that both
lex 11 < 0 andle< p; < 0. Thus forhe = 0 we have founds € P andy € S
such thaty x f = 1) x g. If hy # 0, similar inequalities in the subsequent iterations
ensure that we always havee S.. O

As any localisation of a Noetherian ring is again NoetherRanis Noetherian,
if P is so. One sees immediately that the unit®in are all those fractions where
not only the denominator but also the numerator is contaméd, . Given an ideal
7 C P<, we may always assume without loss of generality that it isegated
by a setF C P of polynomials, as multiplication of a generator by a uniedo
not change the span. Hence in all computations we will ekalswork with
polynomials and not with fractions.

As all elements o5 are units inP~, we may extend the notions of leading
term, monomial or exponent: if € P, then we can choose a unite S with
le<c u = 1suchthau* f € P is a polynomial; now we definle f = le< (ux f)
etc. One easily verifies that this definition is independétite choice ofu.

Following Greuel and Pfister [30], one can now construct aflete theory of
involutive bases oveP~. Definition 9.2 of Grobner and involutive bases can be
extended without changes from the rirgo the localisatior’. Theorem 4.7 on
the existence of Grobner bases generalis§&.tpas its proof is only based on the
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leading exponents and a simple normal form argument remgivalid due to our
considerations above.

Note that even if the sef is involutively head autoreduced, we cannot con-
clude in analogy to Proposition 5.13 that the involutive Blerormal form is
unigue, as we only consider the leading term in Algorithm 8 hance the lower
terms inh may still be involutively divisible by the leading term ofre@ generator
g € G. However, Theorem 5.4 remains valid.

Theorem 10.4Let (P = k[X], %, <) be a polynomial algebra of solvable type
(for an arbitrary semigroup ordeK) such thatk[X’] is a subring of P for any
subsetX’ C X. Furthermore, letL be a constructive Noetherian division. For a
finite setZ C P of polynomials, lefZ = (F) be the left ideal generated by it in
the localisatiorP. If we apply Algorithm 3 with the involutive Mora normal form
instead of the usual one to the sEtthen it terminates with an involutive basis of
the idealZ.

Proof The termination of Algorithm 3 under the made assumptions sfzown
in Proposition 7.2 and Theorem 7.4. One easily verifies theit {oroofs are not
affected by the substitution of the normal form algorithra,they rely mainly
on Theorem 5.4 and on the fact that the leading term of the abfonm is not
involutively divisible by the leading term of any generatdoth properties remain
valid for the Mora normal form. O

Remark 10.9Note that Theorem 10.4 guarantees the existenstafiginvolutive
bases. Due to the extension7, Example 9.10 is no longer a valid counterex-
ample. As the first generator ifi is now a unit, we find thatF) = P and{1} is
a trivial strong Pommaret basis. <

Example 10.6Me continue Example 9.12. Following the approach given bg-Th
orem 10.4, we immediately compute as Janet bas{gdf(overP~) the minimal
basisHs = {0,, 9y, 0. }. Obviously, it is considerably smaller than the bases ob-
tained with Lazard’s approach (ov®). This effect becomes even more profound,
if we look at the sizes of the bases in the homogenised Wegbaég bott{; and

H, consist of21 generators. <

11 Involutive Bases over Rings

Finally, we consider the case thBt= R|[z1,...,z,] is a polynomial algebra of
solvable type over a (left) Noetherian rifiy For commutative products, Grobner
bases for such algebras have been studied in [25,59] (s&hht. 4] for a more
extensive textbook discussion); feBW extensions a theory of Grobner bases was
developed in [26]. We will follow the basic ideas developethiese references and
assume that linear equations are solvable in the coefficiegtR which means
that the following two operations can be effectively penfied:

() given elements, rq,...,7, € R, we can decide whethere (ry,...,rx)r
(the left ideal inR generated by, ..., 7);



Involution andd-Regularity | 45

(i) given elements-, ..., € R, we can construct a finite basis of the module
Syz(ri,...,r) of left syzygiessiry + -+ + spry, = 0.

The first operation is obviously necessary for the algorittmeduction of poly-
nomials with respect to a sét C P. The necessity of the second operation will
become evident later. Compared with the commutative caskiction is a more
complicated process, in particular due to the possibiligtin the commutation
relations (5) for the multiplication irP the mapsp,, may be different from the
identity onR and the coefficients,,,, unequal one.

Let G C P be a finite set. We introduce for any polynomjale P the sets
Gr={9€G]| lexg|lex f}and

Gr={a"rglgeGrAp=lesf—lesgnles(a'*g)=les f} (25)

Note that the last condition in the definition 6§ is redundant only, if the coef-
ficient ring R is an integral domain. Otherwise it may happen tigaf < |Gy,
namely ifp,, (r)r,., = 0 wherelm_ g = rz*. The polynomialf is head reducible
with respect tag, if lc g € (le< G¢)w (note that we us€; here so that the re-
duction comes only from the leading terms and is not due tceszgro divisors as
leading coefficients)involutive head reducibilitys defined analogously via sets
Gy.1, andGy, 1, where only involutive divisors with respect to the divisibron N2
are taken into account, i. e. we set

Grr=19€G|lex feCrie ge<g)}. (26)

Thus the seg isinvolutively head autoreduceiilc< g ¢ (le< (G, \ {g}))= for
all polynomialsg € G. This notion is now much weaker than before; in particular,
Lemma 5.12 is no longer valid.

Definition 11.1LetZ C P be a left ideal in the polynomial algebr@P, , <)

of solvable type over a rin@® in which linear equations can be solved. A finite
setG C P is aGrobner basi®f Z, if for every polynomialf € Z the condition
le< f € (le< Gy)r is satisfied. The s&t is aweak involutive basifor the involu-
tive divisionL, if for every polynomialf € 7 the conditionlc< f € (le< Gr.1)»

is satisfied. A weak involutive basis is@ong involutive basisif every seG, .
contains precisely one element.

Itis easy to see that the characterisation of (weak) inixalttases via the exis-
tence of involutive standard representations (Theoremrdmains valid. Indeed,
only the first part of the proof requires a minor change: thiypamial f; is now
of the form f; = f — ZhEHM rph where the coefficients, € R are chosen
such thale fi; < lex f.

Clearly, a necessary condition for the existence of Groland thus of (weak)
involutive bases for arbitrary left ideals C P is that the algebr& is a (left)
Noetherian ring. As we have seen in Section 4, this assumggromes non-
trivial, if the coefficient ringR is not a field. In this section, we will assume
throughout thaf is a polynomial algebra of solvable type over a left Noeteri
ring R with centred commutation relations (cf. Definition 4.3) kattTheorem 4.4
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asserts thaP is left Noetherian, tod.A very useful side effect of this assumption
is that the scalars appearing in the commutation relatisynaré units and thus not
zero divisors which is important for some arguments.

Example 11.2As in the previous two sections, we cannot generally exgeatg
involutive bases to exist. As a simple concrete exampl® désnonstrating the
need of the second assumption®nwe consider irk[z, y][z] (with the ordinary
multiplication) the ideal generated by the st = {22z —1,3%z+1}. Obviously,

both generators have the same leading expdigntevertheless none is reducible
by the other one due to the relative primeness of the coeftigi€&urthermore, the
syzygyS = z%es — y2e; € k[z, y]? connecting the leading coefficients leads to
the polynomiak? + 2 € Z. It is easy to see that a Grobner and weak Janet basis
of 7 is obtained by adding it t&. A strong Janet basis does not exist, as none of
these generators may be removed from the basis. <

This example shows that simply applying the completion Alhon 3 will
generally not suffice. Obviously, with respect to the Jamgsitn 2 is multiplica-
tive for both elements of- so that no non-multiplicative variables exist and thus
it is not possible to generate the missing generator by pligdétion with a non-
multiplicative variable. We must substitute in Algorithnit8 involutive head au-
toreduction by a more comprehensive operafion.

Definition 11.3Let 7 C P be a finite set and. an involutive division. We con-
sider for eachf € F the syzygiegfeﬁf _ 87 le f = 0 connecting the leading
coefficients of the elements of the $&t,.. The setF is involutively R-saturated

for j[he div_isionL, if for any such syz_y@ t_he polynomiaEf—eﬁfyL s¢f possesses
an involutive standard representation with respecfto

For checking involutiveR-saturation, it obviously suffices to consider a finite
basis of each of the finitely many syzygy modusg:(lc< F; 1) so that such
a check can easily be performed effectively. An elemgrg F is involutively
head reducible by the other elements7fif and only if Syz(lc< Fy, ) contains
a syzygy withsy; = 1. For this reason it is easy to combine an involutiRe
saturation with an involutive head autoreduction leadmglgorithm 6.

8 The case of an iterated polynomial algebra of solvable tgpeDefinition 4.1) will be
considered in Part Il, after we have developed a syzygy yhieoiinvolutive bases.

® Inthe classical case of commutative variables over a céattidield, it is not difficult to
show that for any finite sef the syzygy modul8yz(Ilm < F) of the leadingnonomialan
be spanned by binomial generators corresponding t&'tpelynomials in the Buchberger
algorithm. In Part Il we will show that in any such syzygy adéone component contains
a non-multiplicative variable, so that implicitly the irutive completion algorithm also
runs over a generating set of this syzygy module. When we maov® coefficient rings,
it is well-known that additional, more complicated syzyg@oming from the coefficients
must be considered. For these we can no longer assume thedimp@nent contains a non-
multiplicative variable. Henceartially we must follow the same approach as in the gen-
eralisation of the Buchberger algorithm and this leads éorthtion of R-saturation where
some syzygies not reachable via non-multiplicative vaeislare explicitly considered.
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Thef or loop in Lines /5-13/ takes care of the involutive head awtaction
(the callHeadReduce, <(f,H) involutively head reduceg with respect to the
setH \ {f} but with multiplicative variables determined with respezthe full
setH—cf. Remark 5.9). Thé or loop in Lines /17-22/ checks the involutive-
saturation. Each iteration of the outehi | e loop analyses from the remaining
polynomials (collected i) those with the highest leading exponent. The$et
reset to the full basis, whenever a new element has been foukfinthis ensures
that all new reduction possibilities are taken into accolmtine /15/ it does not
matter which elemenf € S, we choose, as the s’ﬁt}i depends only o f
and all elements af,, possess by construction the same leading expanent

Algorithm 6 Involutive R-saturation (and head autoreduction)

Input: finite setF C P, involutive division onIN{

Output: involutively R-saturated and head autoreducedlsetith (H) = (F)
I H—F, S—F

2] while S # § do

138/ ve—maxslexS; S, —{feH]|lexf=r}

4 §—8\S.,; H «H

/51 forall feS, do

16/ h < HeadReducer, < (f, H)

17/ if f# hthen

18/ Sy =S\ {fh H <~ H\{f}
19/ if h # 0then

110/ H — H U{h}

111/ end.if

112/ end.if

/13/  endfor

114/ if S, # ( then

115/ choosef € S, and determine the sét’;
116/ compute basi8 of Syz(lc<x H’ )

1171 forall S = Zf—eﬂ,m spep € Bdo

118/ h NormalFormL,<(Zf€H} 5 sif,H')
119/ if b # 0then ’

120/ H' — H U {h}

121/ end.if

122/ end._for

123/ end.if

124/ if H' # H then

125/ H—H:;: S—H
126/  end.if

127/ end.while

128/ return H

Proposition 11.4Under the made assumptions about the polynomial algéhra
Algorithm 6 terminates for any finite input sét C P with an involutivelyR-
saturated and head autoreduced $&such that(H) = (F).
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Proof The correctness of the algorithm is trivial. The terminatiollows from the
fact that bothR andINj; are Noetherian. Whenever we add a new polynorhial
to the sett’, we have either thde h ¢ (lex H')nyp Orle<h ¢ (le<H}, )=

As neither inIN§ nor in R infinite ascending chains of ideals are possible, the
algorithm must terminate after a finite number of steps. O

An obvious idea is now to substitute in the completion Algum 3 the involu-
tive head autoreduction by an involutif&-saturation. Recall that Proposition 7.2
(and Corollary 7.3) was the crucial step for proving the eotness of Algorithm 3.
Our next goal is thus to show that under the made assumptioins/blutively R-
saturated sets local involution implies weak involution.

Proposition 11.5Under the made assumptions about the polynomial algéhra
a finite, involutivelyR-saturated sefF C P is weakly involutive, if and only if it
is locally involutive.

Proof We first note that Proposition 7.2 remains true under the raademptions.
Its proof only requires a few trivial modifications, as allpgaring coefficients
(for example, when we rewrite* — z#~1 x z;) are units in the case of centred
commutation relations and thus we may proceed as for a fi@dcklif F is locally
involutive, thenZ = (F) = (F)r < implying that any polynomiay € Z may be
written in the formg = >~ . - Py * f with Py € R[Xp 7 <(f)]. Furthermore,
it follows from this proof that for centred commutation rétens we may assume
that the polynomial$’s satisfyle (Py x f) = le< Py +le f. We are done, if we
can show that they can be chosen such that additiokallyPs + f) < le< g, i.e.
such that we obtain an involutive standard representafign o

If the representation coming out of the proof of Proposifiahalready satisfies
this condition on the leading exponents, nothing has to e dotherwise we set
v=max_{lex (Pyxf)| fe€F}andF, = {f € F |lex (P;* f) =v}.Asby
constructionv € (., Cr e #(le< f), the properties of an involutive division
imply that we can writeF,, = {f1,..., fi} withle< f1 | le< fa | -+ | lex fr and
henceF, C Fy, .. Since we have assumed that (Pr * f) = le4 Py + le f,
we even findF, C Fy, 1.

By construction, the equalitEfEﬂ le< (P = f) = 0 holds. If we now set
Im_ f = rya®s andlm Py = syz#/, then we obtain under the made assump-
tions:le< (Prx f) = sgpu,; (re)rusw, = [S¢pu; (rf)rusv, |7y and hence the
above equality corresponds to a syzygy of thelsetFy, . As the setF is invo-
lutively R-saturated, there exists an involutive standard repratient

k

Z [Sfi ﬁ/if,i (Tfi)r#fi VfJ ]?l = Z Qf * f (27)

i=1 feF

with Q¢ € k[ Xy, 7 ~(f)] andle<x (Qf * f) =lex Q5 +lex f < vy,.
Introducing now the pon_nomial@’f = Qy — [s¢pu, (r§)rusv, |a"r—"s for
fer andQ} = @y otherwise, we get the syzy@jfef Q’f * f = 0. If we set

PJ/c =P — C;lxufl’fk * Q'f with ¢y = py—y,, (Sfﬁuf (rf)rﬂfo)ﬁH.f' (re)Tpsvss
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then, by constructiory = Zfef PJQ * f is another involutive representation of
the polynomialy with v/ = max_ {le< (P} x f) | f € F} < v.

Repeating this procedure for a finite number of times obvioyiglds an invo-
lutive standard representation of the polynongialhs g was an arbitrary element
of the idealZ = (), this implies thatF is indeed weakly involutive. O

Theorem 11.6LetP be a polynomial algebra of solvable type satisfying the made
assumptions. If the subalgorithtnvHeadAutoReducey,  is substituted in Algo-
rithm 3 by Algorithm 6, then the completion will terminatetwa weak involutive
basis ofZ = (F) for any finite input sefF C P such that the monoid ide&; 7
possesses a weak involutive basis.

Proof The correctness of the modified algorithm follows immediafi®m Propo-
sition 11.5. For the termination we may use the same arguegeint the proof of
Theorem 7.4, as it depends only on the leading exponents. O

12 Conclusions

We studied involutive bases for a rather general class ofamnmutative poly-

nomial algebras. Our approach was closely modelled on f&andry-Rody and

Weispfenning [41] and subsequently Kredel [42]. We belithat the third condi-
tion in Definition 3.1 (compatibility between term orderand non-commutative
productx) is more natural than the stricter axioms in [41]. It is urclevhere

Kandry-Rody and Weispfenning actually needed these straginditions, as all
their main results hold in our more general situation, asxshioy Kredel.

Comparing with [2,13,42,45], one must say that the there aggproach is
more constructive than ours. More precisely, all these astlspecify the non-
commutative product via commutation relations and thusshawtomatically a
concrete algorithm for evaluating any product. As we hawnse the proof of
Proposition 3.4, the same data suffices to fix our axiom#yidaiscribed product,
but it does not provide us with an algorithm. However, we sbdwhat we can
always map to their approach via a basis transformation.

We showed that the polynomial algebras of solvable type formatural frame-
work for involutive bases. This fact does not come as a ssepif one takes into
account that the main part of the involutive theory happartieé monoidNy and
the decisive third condition in Definition 3.1 of a polynoinédgebra of solvable
type ensures that its produetioes not interfere with the leading exponents.

We extended the theory of involutive bases to semigroupreraed to poly-
nomials over coefficient rings. It turned out that the novat@ept of aveakin-
volutive basis is crucial for such generalisations, as ithbmases strong bases
rarely exist. These weak bases are still Grobner baseswaollitive standard rep-
resentations still exist (though they are no longer unigliedeems that in such
computations the Janet division has a distinguished posiéis by Theorem 9.11
strong Janet bases always exist. If one is only interestesliimg Algorithm 3 as an
alternative to Buchberger’s algorithm, weak bases arecseiffi. However, most of
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the more advanced applications of involutive bases studi€rt 11 will require
strong involutive bases.

Concerning involutive bases over rings, we will study intRathe special
case that the coefficient ring is again a polynomial algebsolvable type. Using
the syzygy theory that will be developed there, we will beeabl obtain stronger
results and a “purely involutive” completion algorithm.& burrent approach con-
tains hidden in the concept &-saturation parts of the Buchberger algorithm for
the construction of Grobner bases over rings.

Definition 2.1 represents the currently mainly used debnitf an involutive
division. While it appears quite natural, one problem it thgome sense too many
involutive divisions exist, in particular rather weird anwith unpleasant proper-
ties (a concrete example can be found in [20, Ex. 4.8]). Tffexthas lead to
the introduction of such technical concepts like contiyaid constructivity. One
could imagine that there should exist a stricter definitibrineolutive divisions
that automatically ensures that Algorithm 2 terminatefiauit having to resort to
these technicalities.

Most of these weird divisions are globally defined and miittgiive indices
are assigned only to finitely many multi indices. Such dosis are obviously of
no interest, as more or less no monoid ideal possesses dutivgdasis for them.
One way to eliminate these divisions would be to require thakvery degree
q € Ny the monoid idea[Ny)>, = {v € N} | ¢ < |v|} has an involutive basis.
All the involutive divisions used in practice satisfy thisralition, but it is still a
long way from this simple condition to the termination of Akthm 2.

We did not discuss the efficiency of the here presented akgos. Much of the
literature on involutive bases is concerned with their ussaraalternative approach
to the construction of Grobner bases. In particular, expents by Gerdt et al. [23]
comparing a specialised C++ program for the construction of Janet bases with
the Grobner bases package oi8ULAR [31] indicate that the involutive approach
is highly competitive. This fact is quite remarkable, if cla&es into account that
SINGULAR is based on the results of many years of intensive resear@rimer
bases by many groups, whereas involutive bases are stilijeeing and only a few
researchers have actively worked on them. The results inlPaill offer some
heuristic explanations for this observation.

Finally, we mention that most of the algorithms discussethis article have
been implemented (for general polynomial algebras of sévaype) by M. Haus-
dorf[33,34] in the computer algebra systéfuPAD.° The implementation does
not use the simple completion Algorithm 3 but a more optimigersion yielding
minimal bases developed by Gerdt and Blinkov [21]. It alsdudes the modified
algorithm for determining strong Janet bases in local rings

A Term Orders

We use in this article non-standard definitions of some bi@sio orders. More
precisely, we revert the order of the variables: our definisibecome the standard

10 For more information seaww. nmupad. de.
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ones, if one transform&ey, . .., x,) — (xn,...,x1). The reason for this reversal
is that this way the definitions fit better to the conventianghie theory of invo-
lutive systems of differential equations. Furthermoreythppear more natural in
some applications like the determination of the depth irt Par

A term order= is for us a total order on the sét of all termsx* satisfying
the following two conditions: (il < ¢ for all termst € T and (ii) s < ¢t implies
r-s < r-tforalltermsr,s,t € T. If aterm order fulfils in addition the condition
thats < ¢ whenevereg s < degt, it is calleddegree compatibleAs T andNg
are isomorphic as monoids, we may also speak of term ordelgjoim fact, most
term orders are defined via multi indices.

A more appropriate name for term orders mightrbenoid ordersas the two
conditions above say nothing but that these orders respeanbnoid structure
of T'. A more general class of (total) orders aemigroup ordersvhere we skip
the first condition, i. e. we only take the semigroup struetnf T into account. It
is a well-known property of such orders that they are no lowgall-orders. This
implies in particular the existence of infinite descendiaguences so that normal
form algorithms do not necessarily terminate.

The lexicographicorder is defined byc* <jex ¥, if the last non-vanishing
entry of 4 — v is negative. Thus:3zs <iex z123. With respect to theeverse
lexicographicorder x# <eviex 2V, if the first non-vanishing entry ofi — v is
positive. Now we have:; 2% <reviex 573. HOWEVET, < reyiex iS ONly & semigroup
order, as it violates the first condition;j <eviex 1. Degree compatible versions of
these orders exist, 0@ <geglex 2, if || < |v| Orif || = |v] anda? <jex 2.
Similarly, * <gegreviexx”, i |1t| < |v| orif || = || andaz# <reviex . Obviously
~degreviexiS @ term order. It possesses the following useful charietiéon which
is easy to prove.

Lemma A.1 Let < be a degree compatible term order such that the condition
It< f € (x1,...,2%) Is equivalent tof € (z1,...,x) for every homogeneous
polynomialf € P. Then< is the degree reverse lexicographic ordegegreviex

We say that a term ordeespects classe# for multi indicesy, v of the same
lengthcls 1 < clsv impliesz# < z¥. Itis now easy to see that by Lemma A.1 on
terms of the same degree any class respecting term ordBramincides with the
degree reverse lexicographic order. If we consider fregmmhial modules, class
respecting orders have the same relatiom@® lifts [1] of <gegreviex
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