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Abstract Involutive bases are a special form of non-reduced Gröbnerbases with
additional combinatorial properties. Their origin lies inthe Janet-Riquier theory of
linear systems of partial differential equations. We studythem for a rather general
class of polynomial algebras including also non-commutative algebras like those
generated by linear differential and difference operatorsor universal enveloping
algebras of (finite-dimensional) Lie algebras. We review their basic properties us-
ing the novel concept of a weak involutive basis and present concrete algorithms
for their construction. As new original results, we developa theory for involutive
bases with respect to semigroup orders (as they appear in local computations) and
over coefficient rings, respectively. In both cases it turnsout that generally only
weak involutive bases exist.

1 Introduction

In the late19th and early20th century a number of French mathematicians de-
veloped what is nowadays called the Janet-Riquier theory ofdifferential equations
[37–39,47,53,57,58]. It is a theory for general systems of differential equations,
i. e. also for under- and overdetermined systems, and provides in particular a con-
crete algorithm for the completion to a so-called passive1 system. In recent times,
interest in the theory has been rekindled mainly in the context of Lie symmetry
analysis, so that a number of references to modern works and implementations are
contained in the review [36].

The defining property of passive systems is that they do not generate any non-
trivial integrability conditions. As the precise definition of passivity requires the
introduction of a ranking on the set of all derivatives and asevery linear system

1 Sometimes the equivalent term “involutive” is used which seems to go back to Lie.
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of partial differential equations with constant coefficients bijectively corresponds
to a polynomial submodule, it appears natural to relate thistheory to the algebraic
theory of Gröbner bases [1,6].

Essentially, the Janet-Riquier theory in its original formlacks only the concept
of reduction to a normal form; otherwise it contains all the ingredients of Gröbner
bases. Somewhat surprisingly, a rigorous links has been established only fairly
recently first by Wu [61] and then by Gerdt and collaborators who introduced
a special form of non-reduced Gröbner bases for polynomialideals [20,21,62],
the involutive bases(Wu’s “well-behaved bases” correspond to Thomas bases in
the language of [20]). A slightly different approach to involutive bases has been
proposed by Apel [4]; it will not be used here.

The fundamental idea behind involutive bases (originatingin the pioneering
work of Janet [37,38]) is to assign to each generator in a basis a subset of all vari-
ables: its multiplicative variables. This assignment is called an involutive division,
as it corresponds to a restriction of the usual divisibilityrelation of terms. We only
permit to multiply each generator by polynomials in its multiplicative variables.
This restriction makes the involutive standard representation unique and leads to
additional combinatorial properties not shared by ordinary Gröbner bases.

Like Gröbner bases, involutive bases can be defined in many non-commutative
algebras. We will work with a generalisation of the polynomial algebras of solvable
type introduced by Kandry-Rodi and Weispfenning [41]. It isessentially equivalent
to the generalisation discussed by Kredel [42] or to theG-algebras considered by
Apel [2] and Levandovskyy [44,45]. In contrast to some of these works, we explic-
itly permit that the variables act on the coefficients, so that, say, linear differential
operators withvariablecoefficients form a polynomial algebra of solvable type in
our sense. Thus our framework automatically includes the work of Gerdt [18] on
involutive bases for linear differential equations as a particular case.

This article is the first of two parts. It reviews the basic theory of involutive
bases immediately in the framework of polynomial algebras of solvable type, as it
appears to be the most natural setting. Indeed, we would liketo stress that in our
opinion the core of the involutive bases theory is the monomial theory (in fact, we
will formulate it in the language of multi indices or exponent vectors, i. e. in the
Abelian monoid(Nn

0 ,+), in order to avoid problems with non-commuting vari-
ables) and the subsequent extension to polynomials requires only straightforward
normal form considerations.

While much of the presented material may already be found scattered in the
literature (though not always in the generality presented here and sometimes with
incorrect proofs), the article also contains original material. Compared to Gerdt
and Blinkov [20], we give an alternative definition of involutive bases which nat-
urally leads to the new notion of aweakinvolutive basis. While these weak bases
are insufficient for the applications studied in Part II, they extend the applicability
of the involutive completion algorithm to situations not covered before.

The main emphasis in the literature on involutive bases is onoptimising the
simple completion algorithm of Section 7 and on providing fast implementations;
as the experiments reported in [23] demonstrate, the results have been striking. We
will, however, ignore this rather technical topic and instead study in Part II a num-
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ber of applications of involutive bases (mainly Pommaret bases) in the structure
analysis of polynomial modules. Note, however, that in these applications we will
restrict to the ordinary commutative polynomial ring.

This first part is organised as follows. The next section defines involutive di-
visions and bases within the Abelian monoid(Nn

0 ,+) of multi indices. It also
introduces the two most important divisions named after Janet and Pommaret, re-
spectively. Section 3 introduces the here used concept of polynomial algebras of
solvable type. As the question whether Hilbert’s Basis Theorem remains valid is
non-trivial if the coefficients form only a ring and not a field, Section 4 collects
some results on this problem. The following three sections define (weak) involu-
tive bases and give concrete algorithms for their construction.

The next four sections study some generalisations of the basic theory. Section 8
analyses the relation between left and right ideals in polynomial algebras of solv-
able type and the computation of bases for two-sided ideals;this extension requires
only a straightforward adaption of classical Gröbner basis theory. The following
three sections contain original results. The first two ones generalise to semigroup
orders and study the use of the Mora normal form. Finally, Section 11 considers
involutive bases over rings. It turns out that in these more general situations usually
only weak bases exist.

In a short appendix we fix our conventions for term orders which are inverse
to the ones found in most textbooks on Gröbner bases. We alsomention an el-
ementary property of the degree reverse lexicographic termorder that makes it
particularly natural for Pommaret bases.

2 Involutive Divisions

We study the Abelian monoid(Nn
0 ,+) with the addition defined componentwise

and call its elementsmulti indices. They may be identified in a natural way with the
vertices of ann-dimensional integer lattice, so that we can easily visualise subsets
of Nn

0 . For a multi indexν ∈ Nn
0 we introduce itsconeC(ν) = ν +Nn

0 , i. e. the
set of all multi indices that can be reached fromν by adding another multi index.
We say thatν dividesµ, writtenν | µ, if µ ∈ C(ν). Given a finite subsetN ⊂ Nn

0 ,
we define itsspanas the monoid ideal generated byN :

〈N〉 =
⋃

ν∈N

C(ν) . (1)

The basic idea of an involutive division is to introduce a restriction of the cone
of a multi index, the involutive cone: it is only allowed to add multi indices certain
entries of which vanish. This is equivalent to a restrictionof the above defined
divisibility relation. The final goal will be having adisjoint union in (1) by using
only these involutive cones on the right hand side. This point of view will naturally
lead to the combinatorial decompositions discussed in PartII.

In order to finally give the definition of an involutive division, we need one
more notation: letN ⊆ {1, . . . , n} be an arbitrary subset of the set of the first
n integers; then we writeNn

N =
{

ν ∈ Nn
0 | ∀j /∈ N : νj = 0

}

for the set of



4 Werner M. Seiler

all multi indices where the only entries which may be non-zero are those whose
positions are contained inN .

Definition 2.1 ([20, Def. 3.2])An involutive divisionL is defined on the Abelian
monoid(Nn

0 ,+), if for any finite setN ⊂ Nn
0 a subsetNL,N (ν) ⊆ {1, . . . , n}

of multiplicative indicesis associated to every multi indexν ∈ N such that the
involutive conesCL,N (ν) = ν +Nn

NL,N (ν) satisfy the following two conditions.

1. If there exist two elementsµ, ν ∈ N with CL,N (µ) ∩ CL,N (ν) 6= ∅, either
CL,N (µ) ⊆ CL,N (ν) or CL,N (ν) ⊆ CL,N (µ) holds.

2. If N ′ ⊂ N , thenNL,N (ν) ⊆ NL,N ′(ν) for all ν ∈ N ′.

An arbitrary multi indexµ ∈ Nn
0 is involutively divisible by ν ∈ N , written

ν |L,N µ, if µ ∈ CL,N (ν).

It is important to note that involutive divisibility is always defined with respect
to both an involutive divisionL and a fixed finite setN ⊂ Nn

0 : only an element of
N can be an involutive divisor. Obviously, involutive divisibility ν |L,N µ implies
ordinary divisibilityν | µ, since the involutive coneCL,N (ν) is a subset of the full
coneC(ν). The first condition in the above definition says that involutive cones
can intersect only trivially: if two intersect, one must be asubset of the other.

Thenon-multiplicative indicesform the complement ofNL,N (ν) in {1, . . . , n}
and are denoted bȳNL,N (ν). If we remove some elements from the setN and
determine the multiplicative indices of the remaining elements with respect to the
subsetN ′, we obtain in general a different result than before. The second condition
for an involutive division says that while it may happen thata non-multiplicative
index becomes multiplicative for someν ∈ N ′, the converse cannot happen.

Example 2.2A classical involutive division is theJanet divisionJ . In order to
define it, we must introduce certain subsets of the given setN ⊂ Nn

0 :

(dk, . . . , dn) =
{

ν ∈ N | νi = di , k ≤ i ≤ n
}

. (2)

The indexn is multiplicative forν ∈ N , if νn = maxµ∈N {µn}, andk < n is
multiplicative forν ∈ (dk+1, . . . , dn), if νk = maxµ∈(dk+1,...,dn) {µk}.

Obviously, this definition depends on the ordering of the variablesx1, . . . , xn

and we obtain variants by applying an arbitrary but fixed permutationπ ∈ Sn to
the variables. In fact, Gerdt and Blinkov [20] use an “inverse” definition, i. e. they

first apply the permutation
„

1 2 · · · n
n n− 1 · · · 1

«

. Our convention is the original one of

Janet [39, pp. 16–17].
Gerdt et al. [22] designed a special data structure, the Janet tree, for the fast

determination of Janet multiplicative indices and for a number of other operations
useful in the construction of Janet bases (Blinkov [10] discusses similar tree struc-
tures also for other divisions). As shown in [32], this data structure is based on a
special relation between the Janet division and the lexicographic term order (see
the appendix for our non-standard conventions). This relation allows us to com-
pute very quickly the multiplicative variables of any setN with Algorithm 1. The
algorithm simply runs two pointers over the lexicographically ordered setN and
changes accordingly the setM of potential multiplicative indices. ⊳
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Algorithm 1 Multiplicative variables for the Janet division

Input: finite listN = {ν(1), . . . , ν(k)} of pairwise different multi indices fromNn
0

Output: list N =
˘

NJ,N (ν(1)), . . . , NJ,N (ν(k))
¯

of lists with multiplicative variables
/1/ N ← sort(N ,≺lex); ν ← N [1]
/2/ p1 ← n; M← {1, . . . , n}; N [1]←M
/3/ for j from 2 to |N | do
/4/ p2 ← max

˘

i | (ν −N [j])i 6= 0
¯

; M←M\ {p2}
/5/ if p1 < p2 then
/6/ M←M∪ {p1, . . . , p2 − 1}
/7/ end if
/8/ N [j]←M; ν ← N [j]; p1 ← p2

/9/ end for
/10/ return N

Definition 2.3 ([21, Def. 2.2])The divisionL is globally defined, if the assignment
of the multiplicative indices is independent of the setN ; in this case we write
simplyNL(ν) for the sets of multiplicative variables.

Example 2.4Another very important division is thePommaret2 divisionP . It as-
signs the multiplicative indices according to a simple rule: if 1 ≤ k ≤ n is the
smallest index such thatνk > 0 for some multi indexν ∈ Nn

0 \ {[0, . . . , 0]}, then
we callk the classof ν, written cls ν, and setNP (ν) = {1, . . . , k}. Finally, we
defineNP ([0, . . . , 0]) = {1, . . . , n}. HenceP is globally defined. Like the Janet
division, it depends on the ordering of the variablesx1, . . . , xn and thus one may
again introduce simple variants by applying a permutation.

Above we have seen that the Janet division is in a certain sense related to the
inverse lexicographic order. The Pommaret division has a special relation to class
respecting orders (recall that according to Lemma A.1 any class respecting term
order coincides on terms of the same degree with the reverse lexicographic order).
Obviously, for homogeneous polynomials such orders alwayslead to maximal sets
of multiplicative indices and thus to smaller bases. But we will also see in Part II
that from a theoretical point of view Pommaret bases with respect to such an order
are particularly useful. ⊳

Definition 2.5 Theinvolutive spanof a finite setN ⊂ Nn
0 is

〈N〉L =
⋃

ν∈N

CN ,L(ν) . (3)

The setN is weakly involutivefor the divisionL or a weak involutive basisof the
monoid ideal〈N〉, if 〈N〉L = 〈N〉. A weak involutive basis is astrong involutive
basisor for short aninvolutive basis, if the union on the right hand side of (3) is
disjoint, i. e. the intersections of the involutive cones are empty. We call any finite
setN ⊆ N̄ ⊂ Nn

0 such that〈N̄ 〉L = 〈N〉 a (weak) involutive completionof N .
Anobstruction to involutionfor the setN is a multi indexν ∈ 〈N〉 \ 〈N〉L.

2 Historically seen, the terminology “Pommaret division” isa misnomer, as this division
was already introduced by Janet [37, p. 30]. However, the name has been generally accepted
by now, so we stick to it.
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This definition is essentially equivalent to [20, Def. 4.1/2/3]. However, the dis-
tinction of weak and strong bases is new and will become important in the sequel.
What Gerdt and Blinkov [20, Def. 4.1] call “involutive” corresponds to our notion
of “weakly involutive.”

Remark 2.6An obvious necessary condition for a strong involutive basis is that no
distinct multi indicesµ, ν ∈ N exist such thatµ |L,N ν. Sets with this property are
calledinvolutively autoreduced[20, Def. 3.8]. One easily checks that the definition
of the Janet division implies thatCN ,J(µ)∩CN ,L(ν) = ∅ wheneverµ 6= ν. Hence
for this particular division any set is involutively autoreduced. ⊳

[0, 2]

[2, 0]

[0, 2]

[2, 0]

[2, 1]

Fig. 1 Left: intersecting cones.Right: involutive cones.

Example 2.7Figure 1 demonstrates the geometric interpretation of involutive di-
visions forn = 2. In both diagrams one can see the monoid ideal generated by the
setN =

{

[0, 2], [2, 0]
}

; the vertices belonging to it are marked by dark points. The
arrows represent the multiplicative indices, i. e. the “allowed directions”, for both
the Janet and the Pommaret division, as they coincide for this example. The left
diagram shows that the full cones of the two elements ofN intersect in the darkly
shaded area and thatN is not (weakly) involutive, as the multi indices[k, 1] with
k ≥ 2 are obstructions to involution. The right diagram shows a strong involutive
basis of〈N〉 for both the Janet and the Pommaret division. We must add toN the
multi index [2, 1] and both for it and for[2, 0] only the index1 is multiplicative.
One clearly sees how the span〈N〉 is decomposed into three disjoint involutive
cones: one of dimension2, two of dimension1. ⊳

Proposition 2.8 If N is a weakly involutive set, then a subsetN ′ ⊆ N exists such
thatN ′ is a strong involutive basis of〈N〉.

Proof This proposition represents a nice motivation for the two conditions in Def-
inition 2.1 of an involutive division. IfN is not yet a strong involutive basis, the
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union in (3) is not disjoint and intersecting involutive cones exist. By the first con-
dition, this implies that some cones are contained in other ones; no other form of
intersection is possible. If we eliminate the tips of these cones fromN , we get a
subsetN ′ ⊂ N which, by the second condition, has the same involutive span, as
the remaining elements may only gain additional multiplicative indices. Thus after
a finite number of such eliminations we arrive at a strong involutive basis. ⊓⊔

Remark 2.9Let I1, I2 be two monoid ideals inNn
0 andN1, N2 (weak) involutive

bases of them for some divisionL. In general, we cannot expect thatN1 ∪ N2 is
again a weak involutive basis of the idealI1 + I2, as the involutive cones of the
generators may shrink when taken with respect to the larger set N1 ∪ N2. Only
for a global division we always obtain at least a weak involutive basis (which may
then be reduced to a strong basis according to Proposition 2.8). ⊳

Recall that for arbitrary monoid ideals a basisN is calledminimal, if it is not
possible to remove an element ofN without losing the property that we have a
basis. A similar notion can be naturally introduced for involutive bases.

Definition 2.10 ([21, Def. 4.2])LetI ⊆ Nn
0 be a monoid ideal andL an involutive

division. An involutive basisN of I with respect toL is calledminimal, if any
other involutive basisN ′ of I with respect toL satisfiesN ⊆ N ′.

Obviously, the minimal involutive basis of a monoid ideal isunique, if it exists.
For globally defined divisions, it is straightforward to show that any involutive
basis is unique.

Proposition 2.11 ([21, Prop. 4.1])If the monoid idealI has an involutive basis
for the globally defined divisionL, then it is unique and thus minimal.

The algorithmic construction of (weak) involutive completions for a given set
N ⊂ Nn

0 will be discussed in detail in Section 6. For the moment we only note that
we cannot expect that for an arbitrary setN and an arbitrary involutive divisionL
an involutive basisN ′ of 〈N〉 exists.

Example 2.12We consider the setN =
{

[1, 1]
}

for the Pommaret division. As
cls [1, 1] = 1, we getNP ([1, 1]) = {1}. SoCP ([1, 1]) ( C([1, 1]). But any multi
index contained in〈N〉 also has class1. Hence nofinite involutive basis of〈N〉
exists for the Pommaret division. We can generate it involutively only with the
infinite set

{

[1, k] | k ∈ N}

. ⊳

Remark 2.13Since by definition an involutive basis is always finite, it does not re-
ally make sense to say that an infinite set involutively generates some monoid ideal.
Ignoring this inconsistency for a moment, we now show that even if a monoid ideal
does not possess a finite Pommaret basis, it has at least an infinite Pommaret basis
with so much structure that it admits a simple finite description generalising the
one found in the example above.

In order to see this fact, we consider first the case of anirreducible monoid
idealI in Nn

0 . It is well-known that any suchI has a minimal basis of the form
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{(ℓ1)i1 , . . . , (ℓk)ik
} with 1 ≤ k ≤ n, ℓj > 0 and1 ≤ i1 < · · · < ik ≤ n. Here

(ℓj)ij
is the multi index where all entries are zero except of theijth one which has

the valueℓj . Such an ideal possesses a Pommaret basis, if and only if there are no
“gaps” in the sequencei1 < · · · < ik ≤ n, i. e.ik = n andi1 = n−k+1. Indeed,
if a gap exists, say betweenij and ij+1, then any Pommaret basis must contain
the infinitely many multi indices of the form(ℓj)ij

+ (ℓ)ij+1 with ℓ > 0 and
thus cannot be finite (obviously, in this case a simple renumbering of the variables
suffices to remedy this problem). Conversely, if no gaps appear, then it is easy to
see that the set of all multi indices[0, . . . , 0, ℓij

, µij+1, . . . , µn] with 1 ≤ j ≤ k
and0 ≤ µi < ℓn−k+i is a strong Pommaret basis ofI.

For a general monoid idealI, we exploit that any monoid ideal inNn
0 possesses

a unique irreducible decomposition [48, Thm. 5.27], i. e. wecan always expressI
as the intersection of finitely many irreducible ideals. In Remark 6.5 we will show
how a Pommaret basis of the intersection of two (monoid) ideals can be obtained
from Pommaret bases of the ideals by simply taking least common multiples.

As a simple corollary of these considerations, we find that any Artinian monoid
idealI has a finite Pommaret basis. Indeed,I is Artinian, if and only if it contains
an irreducible idealJ with a minimal basis{(ℓ1)1, . . . , (ℓn)n}. As no gaps appear,
J possesses a finite Pommaret basisB′. Now the finite setB = B′ ∪ (I \ J ) is
trivially a weak Pommaret basis ofI. ⊳

Definition 2.14 ([20, Def. 4.3])An involutive divisionL is Noetherian, if any finite
subsetN ⊂ Nn

0 possesses a finite involutive completion with respect toL.

Lemma 2.15 ([20, Prop. 4.5])The Janet division is Noetherian.

In fact, it is straightforward to provide explicitly a Janetbasis for any monoid
idealI given a finite generating setN ⊂ Nn

0 of it: if we introduce the multi index
µ = lcmN , i. e.µi = maxν∈N νi, then the set

N̄ =
{

ν̄ ∈ 〈N〉 | µ ∈ C(ν̄)
}

(4)

is an involutiveJ-completion ofN (note that generally smaller Janet bases ofI
exist; thus this observation is only of theoretical interest).

3 Polynomial Algebras of Solvable Type

Let P = R[x1, . . . , xn] be a polynomial ring over a unitary ringR. If R is com-
mutative, thenP is a unitary commutative ring with respect to the usual multiplica-
tion. We equip theR-moduleP with alternative multiplications, in particular with
non-commutative ones. We allow that both the variablesxi do not commute any
more and that they operate on the coefficients. The usual multiplication is denoted
either by a dot· or by no symbol at all. Alternative multiplicationsP × P → P
are always written asf ⋆ g.

Like Gröbner bases, involutive bases are always defined with respect to aterm
order ≺. It selects in each polynomialf ∈ P a leading termlt≺ f = xµ with
leading exponentle≺ f = µ. The coefficientr ∈ R of xµ in f is the leading
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coefficientlc≺ f and the productrxµ is the leading monomiallm≺ f . Based on
the leading exponents we associate to each finite setF ⊂ P a setle≺ F ⊂ Nn

0

to which we may apply the theory developed in the previous section. But this
approach makes sense only, if the multiplication⋆ and the chosen term order are
compatible to each other in the following sense.

Definition 3.1 (P , ⋆,≺) is apolynomial algebra of solvable typeover the unitary
coefficient ringR for the term order≺, if the multiplication⋆ : P × P → P
satisfies three axioms.

(i) (P , ⋆) is a ring with unit1.
(ii) ∀r ∈ R, f ∈ P : r ⋆ f = rf .
(iii) ∀µ, ν ∈ Nn

0 , r ∈ R \ {0} : le≺ (xµ ⋆ xν) = µ+ ν ∧ le≺ (xµ ⋆ r) = µ.

Condition (i) ensures that arithmetics in(P , ⋆,≺) obeys the usual associative
and distributive laws. Because of Condition (ii),(P , ⋆) is a leftR-module. We do
not require that it is a rightR-module, as this would exclude the possibility that the
variablesxi operate non-linearly onR. Condition (iii) ensures the compatibility
of the new multiplication⋆ and the term order≺; we say that the multiplication⋆
respects the term order≺. It implies the existence of injective mapsρµ : R → R,
mapshµ : R → P with le≺

(

hµ(r)
)

≺ µ for all r ∈ R, coefficientsrµν ∈ R\{0}
and polynomialshµν ∈ P with le≺ hµν ≺ µ+ ν such that

xµ ⋆ r = ρµ(r)xµ + hµ(r) , (5a)

xµ ⋆ xν = rµνx
µ+ν + hµν . (5b)

Lemma 3.2The mapsρµ and the coefficientsrµν satisfy for arbitrary multi in-
dicesµ, ν, λ ∈ Nn

0 and for arbitrary ring elementsr ∈ R

ρµ

(

ρν(r)
)

rµν = rµνρµ+ν(r) , (6a)

ρµ(rνλ)rµ,ν+λ = rµνrµ+ν,λ . (6b)

Furthermore, all mapsρµ are ring endomorphisms.

Proof The first assertion is a trivial consequence of the associativity of the multi-
plication⋆. The equations correspond to the leading coefficients of theequalities
xµ ⋆ (xν ⋆ r) = (xµ ⋆ xν) ⋆ r andxµ ⋆ (xν ⋆ xλ) = (xµ ⋆ xν) ⋆ xλ, respectively.
The second assertion follows mainly from Condition (i). ⊓⊔

Remark 3.3The term “algebra of solvable type” was coined by Kandry-Rody and
Weispfenning [41], when they studied Gröbner bases for non-commutative rings.
Their definition is more restrictive than ours, as it does notallow that the terms op-
erate on the coefficients and requires a stronger form of compatibility between the
multiplication⋆ and the term order≺. It automatically implies that⋆ respects≺.
For our purposes, the latter property is decisive and thus wehave used it in Defi-
nition 3.1 instead of the more technical axioms in [41].

Kredel [42] generalised the work of Kandry-Rody and Weispfenning [41] and
considered essentially the same class of algebras as definedhere. Various variants
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of it have appeared under different names in the literature.Popular is in particular
the approach to consider the algebras as the quotient of a free tensor algebra by an
appropriate quadratic ideal [2,45]; one speaks then ofG-algebras. In most cases,
the authors restrict to the case of a (skew) coefficient field and do not allow that the
variables operate on the coefficients. The corresponding theory of Gröbner bases
has been treated at many places in the literature; besides the already cited works
we mention in particular [11–13,26] where the namePBW algebrais used (see
below for an explanation of this terminology). ⊳

If R is a (skew) field, then for arbitrary polynomialsf, g ∈ P an element
r ∈ R\{0} and a polynomialh ∈ P satisfyingle≺ h ≺ le≺ (f · g) exist such that

f ⋆ g = r (f · g) + h . (7)

Indeed, iflm≺ f = axµ andlm≺ g = bxν , then a simple computation yields that
r is the (unique) solution of the equationaρµ(b)rµν = rab andh is the difference
f ⋆ g − r(f · g). Under this assumption we may reformulate Condition (iii) as

(iii)’ ∀f, g ∈ P : le≺ (f ⋆ g) = le≺ f + le≺ g.

The next result is a simple consequence of Condition (iii).

Proposition 3.4The product⋆ is fixed, as soon as the following data are given:
constantsrij ∈ R\{0}, polynomialshij ∈ P and mapsρi : R → R, hi : R → P
such that for1 ≤ i ≤ n

xi ⋆ r = ρi(r)xi + hi(r) , ∀r ∈ R , (8a)

xi ⋆ xj = rijxj ⋆ xi + hij , ∀1 ≤ j < i . (8b)

Of course, the data in Proposition 3.4 cannot be chosen arbitrarily. Besides
the obvious conditions on the leading exponents of the polynomialshij andhi(r)
imposed by Condition (iii), each mapρi must be an injectiveR-endomorphism
and each maphi must satisfyhi(r + s) = hi(r) + hi(s) and a kind of pseudo-
Leibniz rulehi(rs) = ρi(r)hi(s) + hi(r) ⋆ s. The associativity of⋆ imposes
further rather complicated conditions on the data. For the case of aG-algebra with
the multiplication defined by rewrite rules, they have been explicitly determined
by Levandovskyy [44,45] who called themnon-degeneracy conditions(see also
the extensive discussion by Kredel [42, Sect. 3.3]).

Examples of polynomial algebras of solvable type abound in the literature. We
mention here only some particularly important ones.Ore algebras, as originally
introduced by Noether and Schmeidler [50] and later systematically studied by Ore
[52], are solvable for any term order≺. Note that this class includes in particular
rings of linear differential or difference operators.

Bell and Goodearl [7] introduced thePoincaŕe-Birkhoff-Witt extension(for
shortPBW extension) of a ringR as a ringP ⊇ R containing a finite number
of elementsx1, . . . , xn ∈ P such that (i)P is freely generated as a leftR-module
by the monomialsxµ with µ ∈ Nn

0 , (ii) xi ⋆ r − r ⋆ xi ∈ R for all r ∈ R and
(iii) xi ⋆ xj − xj ⋆ xi ∈ R + Rx1 + · · ·Rxn. Obviously, any such extension is
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a polynomial algebra of solvable type in the sense of Definition 3.1 for all degree
compatible term orders (but generally not for other orders).

The classical example of such aPBW extension is theuniversal enveloping
algebraU(g) of a finite-dimensional Lie algebrag which also explains the name:
the Poincaré-Birkhoff-Witt theorem asserts that the monomials form a basis of
these algebras [60]. They still fit into the framework developed by Kandry-Rody
and Weispfenning [41], as thexi do not act on the coefficients. This is no longer
the case for the more generalskew enveloping algebrasR#U(g) whereR is ak-algebra on which the elements ofg act as derivations [46, Sect. 1.7.10].

In all these examples, the coefficientsrµν appearing in (5) are one; thus (8b) are
classical commutation relations. This is not true for thequantised enveloping alge-
brasUh(g) introduced by Drinfeld [17] and Jimbo [40] or the even more general
q-algebrasintroduced by Berger [8]. The latter ones are characterisedby the fact
that the polynomialshij in (8b) are at most quadratic with the additional restriction
thathij may contain only those quadratic termsxkxℓ that satisfyi < k ≤ ℓ < j
andk− i = j − ℓ. Thus any such algebra is a polynomial algebra of solvable type
for all degree compatible term orders.

If (P , ⋆,≺) is a polynomial algebra of solvable type with a degree compati-
ble term order≺, thenP is a filtered ring with respect to the standard filtration
Σq =

⊕q

i=0 Pi and we may introduce theassociated graded algebraby setting
(grΣP)q = Σq/Σq−1. It is easy to see thatgrΣP is again a polynomial algebra
of solvable type for≺. If in (8) deg hi(r) = 0, deg hij ≤ 1, ρi = idR andrij = 1
(which is for example the case for all Poincaré-Birkhoff-Witt extensions), then in
factgrΣP = (P , ·), the commutative polynomial ring. In this case one sometimes
speaks of analmost commutativealgebra [46, Sect. 8.4.2].

Proposition 3.5 If the ringR is an integral domain, then any polynomial algebra
(P , ⋆,≺) of solvable type over it is an integral domain, too, and a leftOre domain.

Proof The first assertion is a trivial consequence of (7): ifR has no zero divisors,
thenf · g 6= 0 impliesf ⋆ g 6= 0. HenceP does not contain any zero divisors.

For the second one we must verify theleft Ore conditions[15,51]: we must
show that one can find for any two polynomialsf, g ∈ P with f ⋆ g 6= 0 two
further polynomialsφ, ψ ∈ P \ {0} such thatφ ⋆ f = ψ ⋆ g. We describe now a
concrete algorithm for this task.

We setF0 = {f, g} and choose coefficientsr0, s0 ∈ R such that in the differ-
encer0g ⋆ f − s0f ⋆ g = h̄1 the leading terms cancel. Then we perform a (left)
pseudo-reduction of̄h1 with respect toF0. It leads with an appropriately chosen
coefficientt0 ∈ R to an equation of the form

t0h̄1 = φ0 ⋆ f + ψ0 ⋆ g + h1 (9)

where the remainderh1 satisfiesle≺ h1 /∈ 〈le≺ F0〉. If h1 = 0, we are done and the
polynomialsφ = t0r0g−φ0 andψ = t0s0f +ψ0 form a solution of our problem.
By Part (iii) of Definition 3.1 we havele≺ h̄1 ≺ le≺ f + le≺ g. This implies by
the monotonicity of term orders thatle≺ φ0 ≺ le≺ g andle≺ ψ0 ≺ le≺ f . Thus we
have found a non-trivial solution.
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Otherwise we setF1 = F0 ∪ {h1} and choose coefficientsr1, s1 ∈ R such
that in the differencer1f ⋆ h1 − s1h1 ⋆ f = h̄2 the leading terms cancel. Now
we perform a (left) pseudo-reduction ofh̄2 with respect toF1. This computation
yields a coefficientt1 ∈ R and polynomialsφ1, ψ1, ρ1 ∈ P such that

t1h̄2 = φ1 ⋆ f + ψ1 ⋆ g + ρ1 ⋆ h1 + h2 (10)

where the remainderh2 satisfiesle≺ h2 /∈ 〈le≺ F1〉. If h2 = 0, then we are done,
as we can substituteh1 from (9) and obtain thus for our problem the solutionφ =
(t1r1f−ρ1)⋆(t0r0g−φ0)−t1s1h1−φ1 andψ = (t1r1f−ρ1)⋆(t0s0f+ψ0)+ψ1.
By the same reasoning on the leading exponents as above, it isa non-trivial one.

Otherwise we iterate: we setF2 = F1 ∪ {h2}, choose coefficientsr2, s2 ∈ R
such that in the differencer2f ⋆ h2 − s2h2 ⋆ f = h̄3 the leading terms cancel,
compute the remainderh3 of a (left) pseudo-reduction of̄h3 with respect toF2

and so on. If the iteration stops, i. e. if the remainderhN vanishes for some value
N ∈ N, then we can construct non-zero polynomialsφ, ψ with φ ⋆ f = ψ ⋆ g by
substituting all remaindershi by their defining equations. The iteration terminates
by a simple Noetherian argument:〈le≺ F0〉 ⊂ 〈le≺ F1〉 ⊂ 〈le≺ F2〉 ⊂ · · · is a
strictly ascending chain of monoid ideals inNn

0 and thus cannot be infinite. ⊓⊔

Obviously, we can show by the same argument thatP is a right Ore domain.
The Ore multipliersφ, ψ constructed in the proof above are not unique. Instead of
always analysing differences of the formrif ⋆ hi − sihi ⋆ f , we could have used
differences of the formrig ⋆ hi − sihi ⋆ g or we could have alternated between
usingf andg and so on. In general, each ansatz will lead to different multipliers.

We have given here a direct and in particular constructive proof thatP satisfies
the left and right Ore conditions. Instead we could have tried to invoke Theo-
rem 2.1.15 of [46] stating that any right Noetherian integral domain is also a right
Ore domain. However, as we will see in the next section, if thecoefficient ringR
of P is not a field, then the question whether or notP is (left or right) Noetherian
becomes nontrivial in general.

Example 3.6In the commutative polynomial ring one has always the trivial so-
lution φ = g andψ = f . One might expect that in the non-commutative case
one only has to add some lower terms to it. However, this is notthe case. Con-
sider the universal enveloping algebra of the Lie algebraso(3). We may write it as
U
(

so(3)
)

= k[x1, x2, x3] with the multiplication⋆ defined by the relations:

x1 ⋆ x2 = x1x2 , x2 ⋆ x1 = x1x2 − x3 ,

x1 ⋆ x3 = x1x3 , x3 ⋆ x1 = x1x3 + x2 ,

x2 ⋆ x3 = x2x3 , x3 ⋆ x2 = x2x3 − x1 .

(11)

This multiplication obviously respects any degree compatible term order but not
the lexicographic order. Choosingf = x1 andg = x2, possible solutions for
φ ⋆ f = ψ ⋆ g areφ = x2

2 − 1 andψ = x1x2 − 2x3 or φ = x1x2 + x3 and
ψ = x2

1 − 1. They are easily constructed using the algorithm of the proof of
Proposition 3.5 once withf and once withg. Here we must use polynomials of
degree2; it is not possible to find a solution of degree1. ⊳
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4 Hilbert’s Basis Theorem for Solvable Algebras

A classical property of the ordinary polynomial ringP = R[x1, . . . , xn], which is
crucial in the theory of Gröbner bases, is Hilbert’s Basis Theorem. For our more
general class of polynomial algebras, it remains true only under additional assump-
tions. AsP is generally non-commutative, we must distinguish left, right and two-
sided ideals and thus also study separately whetherP is left or right Noetherian.

With the exception of Section 8, we will exclusively work with left ideals and
thus do not introduce special notations. This restriction to left ideals is not only for
convenience but stems from the fundamental left-right asymmetry of Definition 3.1
of a polynomial algebra of solvable type where productsr⋆xµ andxµ⋆r are treated
completely different. For this reason we discuss only the question whenP is left
Noetherian (see also Remark 4.8 below).

Most classical proofs of Hilbert’s Basis Theorem consider only the univariate
case and then extend inductively to an arbitrary (but finite)number of variables.
However, this inductive approach is not possible in arbitrary polynomial algebras
of solvable type, as the multiplication⋆ does not necessarily restrict to a subal-
gebra with fewer variables. A simple counterexample is provided by the universal
enveloping algebraU

(

so(3)
)

introduced in Example 3.6 where⋆ cannot be re-
stricted to the subspacek[x1, x2] sincex2 ⋆ x1 = x1x2 − x3. This observation
motivates the following definition.

Definition 4.1 The polynomial algebra of solvable type(P , ⋆,≺) is called iter-
ated, if it satisfies the following three conditions.

(i) P can be written in the formP = R[x1][x2] · · · [xn] where each intermediate
ring P(k) = R[x1][x2] · · · [xk] is again solvable for the corresponding restric-
tions of the multiplication⋆ and the term order≺.

(ii) The equalityxk⋆P(k−1)+P(k−1) = P(k−1)⋆xk+P(k−1) holds for1 ≤ k ≤ n.
(iii) In (5b) the coefficientsrµν are units whenever the multi indices are of the form

µ = ℓk, ν = mk for 1 ≤ k ≤ n and arbitrary valuesℓ,m ∈ N.

For iterated polynomial algebras of solvable type we may apply the usual in-
ductive technique for proving a basis theorem. The following result is proven in
[46, Theorem 1.2.9/10] for Ore algebras, but it is fairly straightforward to adapt
the proof such that it remains valid for our more general class of algebras (see [55,
Sect. 3.3] for the details). The main idea of this proof consists of expressing any
polynomialf =

∑

ℓ aℓx
ℓ
k ∈ P(k) with coefficientsaℓ ∈ P(k−1) in the “reverse”

form f =
∑

ℓ x
ℓ
k ⋆ āℓ where again̄aℓ ∈ P(k−1). Condition (ii) guarantees that this

rewriting is always possible. In the proof, one multiplies such “reverse” polynomi-
als from the left by powersxm

k ; Condition (iii) ensures that all arising coefficients
on the left are units and thus can be cancelled by multiplyingwith their inverse.

Theorem 4.2If (P , ⋆,≺) is an iterated polynomial algebra of solvable type over
a left Noetherian ringR, thenP is a left Noetherian ring, too.

The additional conditions in Definition 4.1 cannot be omitted, if a basis theo-
rem is to hold. McConnell and Robson [46, Example 1.2.11] provide a concrete
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counterexample of a univariate polynomial ring of solvabletype which violates
them and which is neither left nor right Noetherian.

With some complications, the central (univariate) arguments in the proof of
Theorem 4.2 can be directly generalised to multivariate polynomial rings. How-
ever, this requires again certain assumptions on the commutation relations (5) in
order to ensure that all necessary computations are possible.

Definition 4.3 The polynomial algebra of solvable type(P , ⋆,≺) hascentred com-
mutation relations, if (i) there exists a fieldk ⊆ R lying in the centre ofR, (ii) the
functionsρµ in (5a) are of the formρµ(r) = ρ̄µ(r)r with functionsρ̄µ : R → k
and (iii) we haverµν ∈ k in (5b).

Using König’s Lemma, Kredel proved in his thesis [42, Sect.3.5] the following
version of Hilbert’s Basis Theorem.

Theorem 4.4Let (P , ⋆,≺) be a polynomial algebra of solvable type with centred
commutation relations over a left Noetherian coefficient ring R. ThenP is left
Noetherian, too.

A third proof assumes that the ringP possesses afiltration Σ. Using an ap-
proach detailed in [9] for the special case of the Weyl algebra (but which does not
use any special properties of the Weyl algebra), one obtainsthe following general
result where it is not even necessary to assume thatP is a polynomial ring. Note
that it covers any polynomial algebra of solvable type whichis almost commuta-
tive and thus a large part of the algebras having appeared in the literature so far.

Theorem 4.5Let Σ be a filtration on the ringP . If the associated graded ring
grΣP is left Noetherian, thenP is left Noetherian, too.

Because of Condition (iii) in Definition 3.1 we can define Gröbner bases for
ideals in algebras of solvable type. For a (commutative) coefficient fieldR = k,
such a definition becomes trivial and from now on we will restrict to this case; the
general case will be discussed only in Section 11.

Definition 4.6 Let(P , ⋆,≺) be a polynomial algebra of solvable type over a fieldk
andI ⊆ P a left ideal. A finite setG ⊂ I is a Gröbner basisof I (for the term
order≺), if 〈le≺ G〉 = le≺ I.

For the ordinary multiplication this definition reduces to the classical one. The
decisive point, explaining the conditions imposed in Definition 3.1, is that normal
forms with respect to a finite setF ⊂ P may be computed in algebras of solvable
type in precisely the same way as in the ordinary polynomial ring. Assume we
are given a polynomialf ∈ P such thatle≺ g | le≺ f for someg ∈ G and set
µ = le≺ f − le≺ g. If we considergµ = xµ ⋆ g, then by (iii) le≺ gµ = le≺ f .
Settingd = lc≺ f/ lc≺ gµ, we find by (ii) thatle≺ (f − dgµ) ≺ le≺ f . Hence
we may use the usual algorithms for computing normal form; inparticular, they
always terminate by the same argument as in the ordinary case. Note that in general
d 6= lc≺ f/ lc≺ g, if r 6= 1 in (7), and that normal form computations are typically
more expensive due to the appearance of the additional polynomialh in (7).
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The classical Gröbner basis theory can be straightforwardly extended to poly-
nomial algebras of solvable type [2,12,13,41,42,44,45], as most proofs are based
on the computation of normal forms. The remaining argumentsmostly take place
in the monoidNn

0 and thus can be applied without changes. In particular, a trivial
adaption of the standard (commutative) proof leads to the following result crucial
for the termination of Buchberger’s algorithm.

Theorem 4.7Let (P , ⋆,≺) be a polynomial algebra of solvable type over a field.
ThenP is a left Noetherian ring and every left idealI ⊆ P possesses a Gröbner
basis with respect to≺.

Remark 4.8Even in the case of a coefficient field we cannot generally expect P
to be aright Noetherian ring, too; a concrete counterexample is provided again
by McConnell and Robson [46, Example 1.2.11]. In the proof ofTheorem 4.7
one essentially uses that in normal form computations one always multiplies with
elements ofP from the left. Because of the already above mentioned left-right
asymmetry of Definition 3.1, right ideals show in general a completely different
behaviour. In order to obtain right Noetherian rings we musteither adapt corre-
spondingly our definition of a solvable algebra or impose additional conditions on
the commutation relations (5).

The simplest possibility is to require that all the mapsρµ in (5) are automor-
phisms (by Proposition 3.4 it suffices, if the mapsρi in (8a) satisfy this condition).
In this case we havek ⋆ xi + k = xi ⋆ k+ k for all variablesxi implying that we
can rewrite any polynomialf =

∑

µ cµx
µ in the “reverse” formf =

∑

µ x
µ ⋆ c̃µ.

Now a straightforward adaption of the classical proof of Theorem 4.7 shows that
the ringP is also right Noetherian. ⊳

We do not give more details on Gröbner bases, as they can be found in the
above cited references. Instead we will present in the next section a completely
different approach leading to involutive bases.

5 Involutive Bases

We proceed to define involutive bases for left ideals in polynomial algebras of
solvable type. In principle, we could at once consider submodules of free modules
over such an algebra. As this only complicates the notation,we restrict to the ideal
case and the extension to submodules goes as for Gröbner bases.

Definition 5.1 Let(P , ⋆,≺) be a polynomial algebra of solvable type over a fieldk
andI ⊆ P a non-zero left ideal. A finite subsetH ⊂ I is a weak involutive basis
of I for an involutive divisionL onNn

0 , if its leading exponentsle≺ H form a
weak involutive basis of the monoid idealle≺ I. The subsetH is a (strong) invo-
lutive basisof I, if le≺ H is a strong involutive basis ofle≺ I and no two distinct
elements ofH have the same leading exponents.

Remark 5.2This definition of an involutive basis is different from the original one
given by Gerdt and Blinkov [20, Def. 6.2]. Firstly, the distinction into weak and
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strong bases is new. Secondly, our definition does not require that an involutive ba-
sis is involutively autoreduced as the one by Gerdt and Blinkov; this condition en-
tails that their bases are always strongly involutive. Finally, from a “philosophical”
point of view, our approach is a natural extension of Definition 4.6 of a Gröbner
basis in the ringP , whereas the approach of Gerdt and Blinkov [20] is modelled
on the equivalent characterisation of Gröbner bases by thevanishing of the normal
forms of ideal members. However, it will follow from our results below that both
approaches are essentially equivalent. ⊳

Definition 5.1 implies immediately that any weak involutivebasis is a Gröbner
basis. As in Section 2, we call any finite setF ⊂ P (weakly) involutive, if it is a
(weak) involutive basis of the ideal〈F〉 generated by it.

Definition 5.3 LetF ⊂ P \{0} be a finite set andL an involutive division onNn
0 .

We assign to each elementf ∈ F a set ofmultiplicative variables

XL,F ,≺(f) =
{

xi | i ∈ NL,le≺ F (le≺ f)
}

. (12)

Theinvolutive spanof F is then the set

〈F〉L,≺ =
∑

f∈F

k[XL,F ,≺(f)
]

⋆ f ⊆ 〈F〉 . (13)

An important aspect of Gröbner bases is the existence of standard represen-
tations for ideal elements. For (weak) involutive bases a similar characterisation
exists and in the case of strong bases we even obtain unique representations.

Theorem 5.4Let I ⊆ P be a non-zero ideal,H ⊂ I \ {0} a finite set andL an
involutive division onNn

0 . Then the following two statements are equivalent.

(i) The setH is a weak involutive basis ofI with respect toL and≺.
(ii) Every polynomialf ∈ I can be written in the form

f =
∑

h∈H

Ph ⋆ h (14)

where the coefficientsPh ∈ k[XL,H,≺(h)] satisfyle≺ (Ph ⋆ h) � le≺ f for all
polynomialsh ∈ H.

H is a strong involutive basis, if and only if the representation (14) is unique.

Proof Let us first assume that the setH is a weak involutive basis. Take an arbi-
trary polynomialf ∈ I. According to Definition 5.1, its leading exponentle≺ f
lies in the involutive coneCL,le≺ H(h) of at least one elementh ∈ H. Let µ =
le≺ f − le≺ h and setf1 = f − cxµ ⋆ h where the coefficientc ∈ k is chosen such
that the leading terms cancel. Obviously,f1 ∈ I and le≺ f1 ≺ le≺ f . Iteration
yields a sequence of polynomialsfi ∈ I. After a finite number of steps we must
reachfN = 0, as the leading exponents are always decreasing and by assumption
the leading exponent ofany polynomial inI possesses an involutive divisor in
le≺ H. But this implies the existence of a representation of the form (14).
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Now assume thatH is even a strong involutive basis and take an involutive
standard representation (14). By definition of a strong basis, there exists one and
only one generatorh ∈ H such thatle≺ (Ph ⋆ h) = le≺ f . This fact determines
uniquelyle≺ Ph. Applying the same argument tof − (lt≺ Ph)⋆h shows by recur-
sion that the representation (14) is indeed unique.

For the converse note that (ii) trivially implies thatle≺ f ∈ 〈le≺H〉L,≺ for
any polynomialf ∈ I. Thusle≺ I ⊆ 〈le≺ H〉L,≺. As the converse inclusion is
obvious, we have in fact an equality andH is a weak involutive basis.

Now let us assume that the setH is only a weak but not a strong involutive
basis ofI. This implies the existence of two generatorsh1, h2 ∈ H such that
CL,le≺ H(le≺ h2) ⊂ CL,le≺ H(le≺ h1). Hence we havelm≺ h2 = lm≺ (cxµ ⋆ h1)
for suitably chosenc ∈ k andµ ∈ Nn

0 . Consider the polynomialh2−cxµ⋆h1 ∈ I.
If it vanishes, we have found a non-trivial involutive standard representation of0.
Otherwise an involutive standard representationh2 − cxµ ⋆ h1 =

∑

h∈H Ph ⋆ h
with Ph ∈ k[XL,H,≺(h)] exists. SettingP ′

h = Ph for all generatorsh 6= h1, h2

andP ′
h1

= Ph1
+cxµ,P ′

h2
= Ph2

−1 yields again a non-trivial involutive standard
representation0 =

∑

h∈H P
′
h ⋆ h. The existence of such a non-trivial representa-

tion of 0 immediately implies that (14) cannot be unique. Thus only for a strong
involutive basis the involutive standard representation is always unique. ⊓⊔

Corollary 5.5 Let the setH be a weak involutive basis of the left idealI ⊆ P .
Then〈H〉L,≺ = I. If H is even a strong involutive basis ofI, thenI possesses ask-linear space a direct sum decompositionI =

⊕

h∈H k[XL,H,≺(h)] ⋆ h.

Proof It follows immediately from Theorem 5.4 thatI ⊆ 〈H〉L,≺. But asH is also
a Gröbner basis ofI, we have in fact equality. The direct sum decomposition for a
strong involutive basis is a trivial consequence of the uniqueness of the involutive
standard representation in this case. ⊓⊔

Example 5.6It is not true that any setF with 〈F〉L,≺ = I is a weak involutive
basis of the idealI. Consider in the ordinary polynomial ringk[x, y] the idealI
generated by the two polynomialsf1 = y2 andf2 = y2 + x2. If we order the
variables asx1 = x andx2 = y, then the setF = {f1, f2} trivially satisfies
〈F〉J,≺ = I, as with respect to the Janet division all variables are multiplicative
for each generator. However,le≺ F = {[0, 2]} doesnot generatele≺ I, as obvi-
ously [2, 0] ∈ le≺ I \ 〈{[0, 2]}〉. ThusF is not a weak Janet basis (neither is the
autoreduced setF ′ = {y2, x2}, asx2y /∈ 〈F ′〉J,≺). ⊳

Proposition 5.7Let I ⊆ P be an ideal andH ⊂ P a weak involutive basis of it
for the involutive divisionL. Then there exists a subsetH′ ⊆ H which is a strong
involutive basis ofI.

Proof If the setle≺ H is already a strong involutive basis ofle≺ I, we are done.
OtherwiseH contains polynomialsh1, h2 such thatle≺ h1 |L,le≺ H le≺ h2. Con-
sider the subsetH′ = H\{h2}. As in the proof of Proposition 2.8 one easily shows
that le≺ H′ = le≺ H \ {le≺ h2} is still a weak involutive basis ofle≺ I and thus
H′ is still a weak involutive basis ofI. After a finite number of such eliminations
we must reach a strong involutive basis. ⊓⊔
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Given this result, one may wonder why we have introduced the notion of a
weak basis. The reason is that in more general situations like computations in
local rings or polynomial algebras over coefficient rings (treated in later sections)
strong bases rarely exist.

Definition 5.8 ([20, Def. 5.2])Let F ⊂ P be a finite set andL an involutive
division. A polynomialg ∈ P is involutively reduciblewith respect toF , if it
contains a termxµ such thatle≺ f |L,le≺ F µ for somef ∈ F . It is in involutive
normal formwith respect toF , if it is not involutively reducible. The setF is
involutively autoreduced, if no polynomialf ∈ F contains a termxµ such that
another polynomialf ′ ∈ F \ {f} exists withle≺ f ′ |L,le≺ F µ.

Remark 5.9The definition of an involutively autoreduced setcannotbe formulated
more concisely by saying that eachf ∈ F is in involutive normal form with respect
to F \ {f}. If we are not dealing with a global division, the removal off from F
will generally change the assignment of the multiplicativeindices and thus affect
the involutive divisibility. ⊳

An obstruction to involutionis a polynomialg ∈ 〈F〉 \ 〈F〉L,≺ possessing
a (necessarily non-involutive) standard representation with respect toF . We will
later see that these elements make the difference between aninvolutive and an
arbitrary Gröbner basis.

Example 5.10Consider the setF = {f1, f2, f3} ⊂ k[x, y, z] with the polynomials
f1 = z2−xy, f2 = yz−x andf3 = y2−z. For any degree compatible term order,
the leading terms off2 andf3 are unique. Forf1 we have two possibilities: if we
use the degree lexicographic order (i. e. forx ≺ y ≺ z), it is z2, for the degree
inverse lexicographic order (i. e. forx ≻ y ≻ z) the leading term isxy.

In the first case,〈F〉J,≺deglex = 〈F〉, so that for this term orderF is a Janet
basis, i. e. an involutive basis with respect to the Janet division, although we have
not yet the necessary tools to prove this fact. In the second case,f4 = z3 − x2 =
zf1 + xf2 ∈ 〈F〉 does not possess a standard representation andF is not even
a Gröbner basis. Addingf4 to F yields a Gröbner basisG of 〈F〉, as one may
easily check. But this makesz non-multiplicative forf2 andf5 = zf2 is now an
obstruction to involution ofG, as it is not involutively reducible with respect to the
Janet division. In fact, the setF ′ = {f1, f2, f3, f4, f5} is the smallest Janet basis
of I for this term order, as it is not possible to remove an element. Note that this
second basis is not only larger but also contains polynomials of higher degree.⊳

Remark 5.11If G is a Gröbner basis of the idealI, then any element ofI has a
standard representation. But this fact does not imply that for a given divisionL
the idealI is free of obstructions to involution. In order to obtain at least a weak
involutive basis, we must add further elements ofI to G until 〈le≺ G〉L = le≺ I.
Obviously, this observation allows us to reduce the construction of a polynomial
involutive basis to a Gröbner basis computation plus a monomial completion. But
we will see later that better possibilities exist.

It follows that in general involutive bases are not reduced Gröbner bases, as
we already observed in Example 5.10. For≺deglex the setF was simultaneously



Involution andδ-Regularity I 19

a Janet basis and a reduced Gröbner basis. But for≺deginvlex the reduced Gröbner
basis isF ∪ {f4}, whereas a Janet basis requires in addition the polynomialf5.
We will see in Part II that this “redundancy” in involutive bases is the key for their
use in the structure analysis of polynomial ideals and modules. ⊳

It often suffices, if one does not consider all terms ing but only the leading
term lt≺ g: the polynomialg is involutively head reducible, if le≺ f |L,le≺ F le≺ g
for somef ∈ F . Similarly, the setF is involutively head autoreduced, if no leading
exponent of an elementf ∈ F is involutively divisible by the leading exponent of
another elementf ′ ∈ F \ {f}. Note that the definition of a strong involutive basis
immediately implies that it is involutively head autoreduced.

As involutive reducibility is a restriction of ordinary reducibility, involutive
normal forms can be determined with trivial adaptions of thefamiliar algorithms.
The termination follows by the same argument as usual, namely that any term
order is a well-order. Ifg′ is an involutive normal form ofg ∈ P with respect to
the setF for the divisionL, then we writeg′ = NFF ,L,≺(g), although involutive
normal forms are in general not unique (like ordinary normalforms). Depending
on the order in which reductions are applied different results are obtained.

The ordinary normal form is unique, if and only if it is computed with re-
spect to a Gröbner basis; this property is often used as an alternative definition of
Gröbner bases. The situation is somewhat different for theinvolutive normal form.

Lemma 5.12The sum in (13) is direct, if and only if the finite setF ⊂ P \ {0} is
involutively head autoreduced with respect to the involutive divisionL.

Proof One direction is obvious. For the converse, letf1, f2 be two distinct ele-
ments ofF andXi = XL,F ,≺(fi) their respective sets of multiplicative variables
for the divisionL. Assume that two polynomialsPi ∈ k[Xi] exist withP1 ⋆ f1 =
P2 ⋆ f2 and hencele≺ (P1 ⋆ f1) = le≺ (P2 ⋆ f2). As the multiplication⋆ respects
the term order≺, this implies thatCL,le≺ F (le≺ f1) ∩ CL,le≺ F (le≺ f2) 6= ∅. Thus
one of the involutive cones is completely contained in the other one and either
le≺ f1 |L,le≺ F le≺ f2 or le≺ f2 |L,le≺ F le≺ f1 contradicting thatF is involutively
head autoreduced. ⊓⊔

Proposition 5.13If the finite setF ⊂ P \ {0} is involutively head autoreduced,
every polynomialg ∈ P has a unique involutive normal formNFF ,L,≺(g).

Proof If 0 is an involutive normal form ofg, then obviouslyg ∈ 〈F〉L,≺. Con-
versely, assume thatg ∈ 〈F〉L,≺, i. e. the polynomialg can be written in the
form g =

∑

f∈F Pf ⋆ f with Pf ∈ k[XL,F ,≺(f)]. As F is involutively head
autoreduced, the leading terms of the summands never cancel(see the proof of
Lemma 5.12). Thusle≺ g = le≺ (Pf ⋆ f) for somef ∈ F and any polynomial
g ∈ 〈F〉L,≺ is involutively head reducible with respect toF . Each reduction step
in an involutive normal form algorithm leads to a new polynomial g′ ∈ 〈F〉L,≺

with le≺ g
′ � le≺ g. If the leading term is reduced, we even getle≺ g

′ ≺ le≺ g. As
each terminating normal form algorithm must sooner or laterreduce the leading
term, we eventually obtain0 as unique involutive normal form of anyg ∈ 〈F〉L,≺.
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Let g1 andg2 be two involutive normal forms of the polynomialg. Obviously,
g1 − g2 ∈ 〈F〉L,≺. By definition of a normal form, neitherg1 nor g2 contain any
term involutively reducible with respect toF and the same holds forg1−g2. Hence
the differenceg1 − g2 is also in involutive normal form and by our considerations
above we must haveg1 − g2 = 0. ⊓⊔

The next result provides a slight generalisation of [20, Thm. 7.1] where only
strongly involutive sets are treated. We modify the proof given there such that it
also holds for weakly involutive sets.

Proposition 5.14The ordinary and the involutive normal form of any polynomial
g ∈ P with respect to a finite weakly involutive setF ⊂ P \ {0} are identical.

Proof Recalling the proof of the previous proposition, we see thatwe used the
assumption thatF was involutively head autoreduced only for proving the exis-
tence of a generatorf ∈ F such thatle≺ f |L,le≺ F le≺ g for every polynomial
g ∈ 〈F〉L,≺. But it follows immediately from Theorem 5.4 that this property
also holds for any weak involutive basis. Thus by the same argument as above,
we conclude that the involutive normal form with respect to aweakly involutive
set is unique. For Gröbner bases the uniqueness of the ordinary normal form is a
classical property and any weak involutive basis is also a Gröbner basis. As a poly-
nomial in ordinary normal form with respect toF is trivially in involutive normal
form with respect toF , too, the two normal forms must coincide. ⊓⊔

Finally, we extend the notion of a minimal involutive basis fromNn
0 toP . This

is done in the same manner as in the theory of Gröbner bases.

Definition 5.15 ([21, Def. 5.1])LetI ⊆ P be a non-zero ideal andL an involutive
division. An involutive basisH of I with respect toL is minimal, if le≺ H is the
minimal involutive basis of the monoid idealle≺ I for the divisionL.

By Proposition 2.11, we find that for a globally defined division like the Pom-
maret division any involutive basis is minimal. Uniquenessrequires two additional
assumptions. First of all, our definition of an involutive basis requires only that it is
involutively head autoreduced; for uniqueness we obviously need a full involutive
autoreduction. Secondly, we must normalise the leading coefficients to one, i. e.
we must take amonicbasis.

Proposition 5.16 ([21, Thm. 5.2])Let I ⊆ P be a non-zero ideal andL an in-
volutive division. ThenI possesses at most one monic, involutively autoreduced,
minimal involutive basis for the divisionL.

6 Monomial Completion

We turn to the question of the actual construction of involutive bases. Unfortu-
nately, for arbitrary involutive division no satisfying solution is known so far. In
the monomial case, one may follow a brute force approach, namely performing
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a breadth first search through the tree of all possible completions. Obviously, it
terminates only, if a finite basis exists. But for divisions satisfying some additional
properties one can design a fairly efficient completion algorithm.

The first problem in constructing an involutive completion of a finite subset
N ⊂ Nn

0 for a divisionL is to checkeffectivelywhetherN is already involutive.
The trouble is that we do not know a priori where obstructionsto involution might
lie. If we denote by1j ∈ Nn

0 the multi index where all entries are zero except the
jth one which is one, then the multi indicesν + 1j with ν ∈ N andj ∈ N̄L,N (ν)
are a natural first guess.

Definition 6.1 ([20, Def. 4.7])The finite setN ⊂ Nn
0 is locally involutive for

the involutive divisionL, if ν + 1j ∈ 〈N〉L for every non-multiplicative index
j ∈ N̄L,N (ν) of every multi indexν ∈ N .

Obviously, local involution is easy to check effectively. However, while (weak)
involution obviously implies local involution, the converse does not necessarily
hold. A concrete counterexample was given by Gerdt and Blinkov [20, Ex. 4.8].
But they also discovered that for many divisions the converse is in fact true and
thus for such divisions we can effectively decide involution.

Definition 6.2 ([20, Def. 4.9])LetL be an involutive division andN ⊂ Nn
0 a finite

set. Let furthermore(ν(1), . . . , ν(t)) be a finite sequence of elements ofN where
every multi indexν(k) with k < t has a non-multiplicative indexjk ∈ N̄L,N (ν(k))
such thatν(k+1) |L,N ν(k)+1jk

. The divisionL is continuous, if any such sequence
consists only of distinct elements, i. e. ifν(k) 6= ν(ℓ) for all k 6= ℓ.

Proposition 6.3 ([20, Thm. 4.10])For a continuous divisionL, any locally invo-
lutive setN ⊂ Nn

0 is weakly involutive.

Proof Let the setΣ contain those obstructions to involution that are of minimal
length.3 We claim that for a continuous divisionL all multi indicesσ ∈ Σ are of
the formν + 1j with ν ∈ N andj ∈ N̄L,N (ν). This observation immediately
implies our proposition: since for a locally involutive setall such multi indices are
contained in〈N〉L, we must haveΣ = ∅ and thus〈N〉 = 〈N〉L.

In order to prove our claim, we choose aσ ∈ Σ for which noν ∈ N exists
with σ = ν + 1j. We collect inNσ all divisorsν ∈ N of σ of maximal length.
Let ν(1) be an element ofNσ; by assumption the multi indexµ(1) = σ − ν(1)

satisfies|µ(1)| > 1 and at least one non-multiplicative indexj1 ∈ N̄L,N (ν(1))

exists withµ(1)
j1

> 0. By the definition ofΣ we haveν(1) + 1j1 ∈ 〈N〉L. Thus a

multi indexν(2) ∈ N exists withν(2) |L,N ν(1) + 1j1 . This impliesν(2) | σ and
we setµ(2) = σ − ν(2). By the definition of the setNσ we have|ν(2)| ≤ |ν(1)|.
Henceν(2) + 1j ∈ 〈N〉L for all j.

Choose a non-multiplicative indexj2 ∈ N̄L,N (ν(2)) with µ(2)
j2

> 0. Such an
index exists as otherwiseσ ∈ 〈N〉L. By the same arguments as above, a multi

3 The length|ν| of a multi indexν ∈ Nn
0 is the sum of its entries, i. e. the degree of the

monomialxν .
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indexν(3) ∈ N exists withν(3) |L,N ν(2) + 1j2 and|ν(3)| ≤ |ν(2)|. We can iterate
this process and produce an infinite sequence(ν(1), ν(2), . . . ) where each multi
index satisfiesν(i) ∈ N andν(i+1) |L,N ν(i) + 1ji

with ji ∈ N̄L,N (ν(i)). As N
is a finite set, the elements of the sequence cannot be all different. This contradicts
our assumption thatL is a continuous division: by taking a sufficiently large part
of this sequence we obtain a finite sequence with all properties mentioned in Def-
inition 6.2 but containing some identical elements. Hence amulti index ν ∈ N
must exist such thatσ = ν + 1j. ⊓⊔

Lemma 6.4 ([20, Cor. 4.11])The Janet and the Pommaret division are continuous.

Proof Let N ⊆ Nn
0 be a finite set and(ν(i), . . . , ν(t)) a finite sequence where

ν(i+1) |L,N ν(i) + 1j with j ∈ N̄L,N (ν(i)) for 1 ≤ i < t.
We claim that forL = J , the Janet division,ν(i+1) ≻lex ν

(i) implying that the
sequence cannot contain any identical entries. Setk = max {i | µi 6= νi}. Then
j ≤ k, as otherwisej ∈ NJ,N (ν(i+1)) entailsj ∈ NJ,N (ν(i)) contradicting our
assumption thatj is non-multiplicative for the multi indexν(i). But j < k is also
not possible, as thenν(i+1)

k < ν
(i)
k and sok cannot be multiplicative forν(i+1).

There remains as only possibilityj = k. In this caseν(i+1)
j = ν

(i)
j +1, as otherwise

j could not be multiplicative forν(i+1). Thus we conclude thatν(i+1) ≻lex ν
(i)

and the Janet division is continuous.
The proof for the caseL = P , the Pommaret division, is slightly more sub-

tle.4 The conditionj ∈ N̄P (ν(i)) implies thatcls (ν(i) + 1j) = cls ν(i) and if
ν(i+1) |P ν(i) + 1j , thencls ν(i+1) ≥ cls ν(i), i. e. the class of the elements of the
sequence is monotonously increasing. Ifcls ν(i+1) = cls ν(i) = k, then the in-
volutive divisibility requires thatν(i+1)

k ≤ ν
(i)
k , i. e. among the elements of the

sequence of the same class the corresponding entry is monotonously decreasing.
And if finally ν(i+1)

k = ν
(i)
k , then we must haveν(i+1) = ν(i) + 1j, i. e. the length

of the elements is strictly increasing. Hence all elements of the sequence are dif-
ferent and the Pommaret division is continuous. ⊓⊔

Remark 6.5In Remark 2.9 we discussed that for a global division a weak involu-
tive basis of the sumI1 + I2 of two monoid ideals is obtained by simply taking
the union of (weak) involutive bases ofI1 andI2. As a more theoretical applica-
tion of the concept of continuity, we prove now a similar statement for the product
I1 · I2 and the intersectionI1 ∩ I2 in the special case of the Pommaret division.
Let N1 be a (weak) Pommaret basis ofI1 andN2 of I2. We claim that the set
N = {µ+ ν | µ ∈ N1, ν ∈ N2} is a weak Pommaret basis ofI1 · I2 and that the
setN̂ = {lcm (µ, ν) | µ ∈ N1, ν ∈ N2} is a weak Pommaret basis ofI1 ∩ I2.

4 It is tempting to tackle the Pommaret division in the same manner as the Janet division
using≺revlex instead of≺lex; in fact, such a “proof” can be found in the literature. Unfor-
tunately, it is not correct: ifν(i+1) = ν(i) + 1j , thenν(i+1) ≺revlex ν(i) although the latter
multi index is a divisor of the former one (≺revlex is not a term order!). Thus the sequences
considered in the application of Definition 6.2 to the Pommaret division are in general not
strictly ascending with respect to≺revlex.
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By Proposition 6.3, it suffices to show that the setsN andN̂ , respectively, are
locally involutive for the Pommaret division. Thus we take ageneratorµ+ν ∈ N ,
where we assume for definiteness thatclsµ ≤ cls ν, and a non-multiplicative index
j1 > cls (µ+ ν) = clsµ of it. Thenj1 is also non-multiplicative forµ ∈ N1 alone
and the Pommaret basisN1 must contain a multi indexµ(1) which involutively
dividesµ+ 1j1 . If we are lucky, then the generatorµ(1) + ν ∈ N is an involutive
divisor ofµ+ ν + 1j1 , too, and we are done.

Otherwise, there exists an indexk1 > cls ν such that(µ− µ(1))k1
> 0. In this

case the Pommaret basisN2 must contain a multi indexν(1) which involutively
dividesν+1k1

. Again, if we are lucky, thenµ(1)+ν(1) ∈ N is an involutive divisor
of µ+ν+1j1 and we are done. Otherwise, there are two possibilities. There could
be an indexj2 > clsµ(1) such that(µ+ ν+1j1 −µ(1) + ν(1))j2 > 0 entailing the
existence of a further generatorµ(2) ∈ N1 which involutively dividesµ(1)+1j2 . Or
there could exist an indexk2 > cls ν(1) such that(µ+ν+1j1 −µ

(1)+ν(1))k2
> 0

implying that there is a multi indexν(2) ∈ N2 involutively dividingν(1) + 1k2
.

Continuing in this manner, one easily sees that we build up two sequences
(

µ, µ(1), µ(2), . . .
)

⊆ N1 and
(

ν, ν(1), ν(2), . . .
)

⊆ N2 as in the definition of a
continuous division. Since both Pommaret bases are finite bydefinition and the
Pommaret division is continuous by Lemma 6.4, no sequence may become infinite
and the above described process must stop with an involutivedivisor ofµ+ν+1j1 .
HenceN is locally involutive and a weak Pommaret basis ofI1 · I2. The proof
for N̂ goes completely analogously replacing at appropriate places the sum of two
multi indices by their least common multiple. ⊳

Definition 6.6 ([20, Def. 4.12])Let L be a continuous involutive division and
N ⊂ Nn

0 a finite set of multi indices. Choose a multi indexν ∈ N and a non-
multiplicative indexj ∈ N̄L,N (ν) such that:

(i) ν + 1j /∈ 〈N〉L;
(ii) if there existsµ ∈ N and k ∈ N̄L,N (µ) such thatµ + 1k | ν + 1j but

µ+ 1k 6= ν + 1j, thenµ+ 1k ∈ 〈N〉L.

The divisionL is constructive, if for any such setN and any such multi index
ν + 1j no multi indexρ ∈ 〈N〉L with ν + 1j ∈ CL,N∪{ρ}(ρ) exists.

In words, constructivity may roughly be explained as follows. The conditions
imposed onν andj ensure a kind of minimality: no proper divisor ofν + 1j is
of the formµ + 1k for a µ ∈ N and not contained in the involutive span〈N〉L.
The conclusion implies that it is useless to add multi indices toN that lie in some
involutive cone, as none of them can be an involutive divisorof ν + 1j . An effi-
cient completion algorithm for a constructive division should consider only non-
multiplicative indices.

Lemma 6.7 ([20, Prop. 4.13])Any globally defined division (and thus the Pom-
maret division) is constructive. The Janet division is constructive, too.

We present now an algorithm for determining weak involutivecompletions
of finite setsN ⊂ Nn

0 . As mentioned above, for arbitrary involutive divisions,
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nobody has so far been able to find a reasonable approach. But if we assume that
the division is constructive, then a very simple completionalgorithm exists (given
first in the proof of [20, Thm. 4.14]), the basic ideas of whichgo back to Janet.

Algorithm 2 Completion in(Nn
0 ,+)

Input: a finite setN ⊂ Nn
0 , an involutive divisionL

Output: a weak involutive completion̄N of N
/1/ N̄ ← N
/2/ loop
/3/ S ←

˘

ν + 1j | ν ∈ N̄ , j ∈ N̄L,N̄ (ν), ν + 1j /∈ 〈N̄ 〉L
¯

/4/ if S = ∅ then
/5/ return N̄
/6/ else
/7/ chooseµ ∈ S such thatS does not contain a proper divisor of it
/8/ N̄ ← N̄ ∪ {µ}
/9/ end if
/10/ end loop

The strategy behind Algorithm 2 is fairly natural given the results above. It
collects in a setS all obstructions to local involution. For a continuous divisionL,
the setN is weakly involutive, if and only ifS = ∅. Furthermore, for a construc-
tive divisionL it does not make sense to add elements of〈N〉L to N in order to
complete. Thus we add in Line /8/ an element ofS which is minimal in the sense
that the setS does not contain a proper divisor of it. The following termination
and correctness proof is essentially due to Gerdt and Blinkov [20, Thm. 4.14].

Proposition 6.8Let the finite setN ⊂ Nn
0 possess a finite (weak) involutive com-

pletion with respect to the constructive divisionL. Then Algorithm 2 terminates
with a weak involutive completion̄N of N .

Proof If Algorithm 2 terminates, its correctness is obvious underthe made as-
sumptions. The criterion for its termination,S = ∅, is equivalent to local involu-
tion of N̄ . By Proposition 6.3, local involution implies for a continuous division
weak involution. Thus the result̄N is a weak involutive completion ofN , as by
constructionN ⊆ N̄ ⊂ 〈N〉.

If the input setN is already involutive, Algorithm 2 leaves it unchanged and
thus obviously terminates. Let us assume thatN is not yet involutive. In the first
iteration of theloop a multi index of the formµ = ν + 1j is added toN . It is
not contained in〈N〉L andS does not contain a proper divisor of it. IfNL is an
arbitrary involutive completion ofN , it must contain a multi indexλ /∈ N such
thatλ |L,NL

µ. We claim thatλ = µ.
Assume on the contrary thatλ 6= µ. SinceNL ⊂ 〈N〉, the multi indexλ

must lie in the cone of a generatorν(1) ∈ N . We will show that, because of the
continuity ofL, λ ∈ 〈N〉L, contradicting the constructivity ofL. If ν(1) |L,N λ,
we are done. Otherwise we writeλ = ν(1) +ρ(1) for some multi indexρ(1) ∈ Nn

0 .
By construction, a non-multiplicative indexj1 ∈ N̄L,N (ν(1)) with ρ(1)

j1
> 0 must
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exist. Consider the multi indexν(1)+1j1 . Because ofν(1)+1j1 | λ, the multi index
ν(1) + 1j1 is a proper divisor ofµ. Since the setS does not contain any proper
divisor ofµ, we must haveν(1) +1j1 ∈ 〈N〉L. Thus a multi indexν(2) ∈ N exists
such thatν(2) |L,N ν(1) + 1j1 .

By iteration of this argument, we obtain a sequence
(

ν(1), ν(2), . . .
)

where
each elementν(i) ∈ N is a divisor ofλ and whereν(i+1) |L,N ν(i) + 1ji

with a
non-multiplicative indexji ∈ N̄L,N (ν(i)). This sequence cannot become infinite
for a continuous division, asλ possesses only finitely many different divisors and
all the multi indicesν(i) in arbitrary finite pieces of the sequence must be different.
But the sequence will only stop, if someν(i) ∈ N exists such thatν(i) |L,N λ and
hence we must have thatλ ∈ 〈N〉L.

Thuseveryweak involutive completionNL of the given setN must contain
the multi indexν + 1j. In the next iteration of theloop, Algorithm 2 treats the
enlarged setN1 = N ∪ {ν + 1j}. It follows from our considerations above that
any weak involutive completionNL of N is also a weak involutive completion of
N1 and hence we may apply the same argument again. As a completionNL is by
definition a finite set, we must reach after a finite numberk of iterations a weak
involutive basisNk of 〈N〉. ⊓⊔

Note the crucial difference between this result and the termination proof of
Buchberger’s algorithm for the construction of Gröbner bases. In the latter case,
we can show the termination for arbitrary input, i. e. the theorem provides a con-
structive proof for the existence of such a basis. Here we areonly able to prove
the termination under the assumption that a finite (weak) involutive basis exists;
the existence has to be shown separately. For example, Lemma2.15 guarantees us
that any monoid ideal possesses a finite weak Janet basis.

Recall that by Proposition 2.8 any weak involutive basis canbe made strongly
involutive by simply eliminating some redundant elements.Thus we obtain an
algorithm for the construction of a strong involutive basisof 〈N〉 by adding an in-
volutive autoreduction as last step to Algorithm 2. Alternatively, we could perform
the involutive autoreduction as first step. Indeed, if the input setN is involutively
autoreduced, then all intermediate setsN̄ constructed by Algorithm 2 are also in-
volutively autoreduced. This fact is a simple consequence of the second condition
in Definition 2.1 of an involutive division that involutive cones may only shrink, if
we add elements to the setN .

Remark 6.95 While we just stated that it suffices to perform an involutiveautore-
duction as either first or last step in Algorithm 2, we now analyse for later use
what happens, if we involutively autoreducēN every time a new element has been
added to it. The termination argument given in the proof of Proposition 6.8 does
not remain valid after this modification and we must provide an alternative proof.

Let againNL =
{

µ(1), . . . , µ(r)
}

be a weak involutive completion of the input
setN . If we denote byN̄i the value ofN̄ after theith iteration of theloop, then
it was shown in the proof of Proposition 6.8 thatNL is also a weak involutive
completion of any set̄Ni. As by definitionNL is finite and eachN̄i is a subset

5 The following considerations are joint work with Vladimir Gerdt.
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of it, the only possibility for non-termination is the appearance of a cycle, i. e. the
existence of valuesk0, ℓ such thatN̄k+ℓ = N̄k for all k ≥ k0.

Assume that in some iteration of theloop the multi indexµ(k) is added to
N̄ and that in the subsequent involutive autoreduction some elements ofN̄ are
eliminated (in order to have a cycle this must indeed happen). The first step in the
autoreduction must be that some multi indexµ(ℓ) is eliminated, becauseµ(k) is
an involutive divisor of it. Indeed, by Condition (ii) in Definition 2.1, any other
reduction would have been possible already before the insertion of µ(k) and thus
the previous involutive autoreduction would not have been finished.

Sinceµ(k) has been added tōN , there must exist some multi indexµ(a1) ∈ N
such thatµ(k) = µ(a1) + ρ. Furthermore, we know thatµ(ℓ) = µ(k) + σ̃ for some
multi index σ̃ with |σ̃| > 0 and thusµ(ℓ) = µ(a1) + σ with σ = σ̃ + ρ and
|σ| > 1. As we are in a cycle, the multi indexµ(ℓ) must have been added tōN
in a previous iteration of theloop, say when analysinḡNi. Thusµ(ℓ) cannot be
involutively divisible byµ(a1) and we must haveσj1 > 0 for a non-multiplicative
index j1 ∈ N̄L,N̄i

(µ(a1)). It cannot be thatµ(a1) + 1j1 = µ(ℓ), as |σ| > 1,
and thereforeµ(a1) + 1j1 is a proper divisor ofµ(ℓ). HenceN̄i must contain an
involutive divisorµ(a2) of µ(a1) + 1j1 , as otherwise this multi index would have
been added tōN instead ofµ(ℓ).

Obviously,µ(a2) | µ(k) and, decomposingµ(k) = µ(a2) + π, we conclude
by the same reasoning as above thatπj2 > 0 for some non-multiplicative in-
dex j2 ∈ N̄L,N̄i

(µ(a2)). Iteration of this argument yields an infinite sequence
(

µ(a1), µ(a2), . . .
)

as in Definition 6.2 of a continuous division. However, since
L is a continuous division andNL a finite set, we arrive at a contradiction. Thus
even with involutive autoreductions after each step Algorithm 2 terminates. ⊳

In some sense our description of Algorithm 2 is not complete,as we have not
specified how one should choose the multi indexµ in Line /7/, if several choices
are possible. One would expect that different involutive completions are obtained
for different choices. However, an interesting aspect of our proof of Proposition 6.8
is that it shows that this is not the case. The choice affects only the order in which
multi indices are added but not which or how many multi indices are added during
the completion. A simple method for choosingµ consists of taking an arbitrary
term order≺ (which also could be changed in each iteration of theloop) and
settingµ = min≺ S. The following two corollaries expand [20, Cor. 4.15].

Corollary 6.10 If Algorithm 2 terminates, its output̄N is independent of the man-
ner in whichµ is chosen. Furthermore, ifNL is any weak involutive completion
of N with respect to the divisionL, thenN̄ ⊆ NL.

Proof Consider the setL(N ) of all weak involutive completions ofN with respect
to the divisionL and define

Ñ =
⋂

NL∈L(N )

NL . (15)

We claim that Algorithm 2 determines this set̃N independent of the used term
order. Obviously, this implies our corollary.
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In the proof of Proposition 6.8 we showed that the multi indices added in Al-
gorithm 2 are contained ineveryweak involutive completion ofN . Thus all these
multi indices are elements of̃N . As Algorithm 2 terminates with a weak involutive
completion, its output is also an element ofL(N ) and hence must bẽN . ⊓⊔

Corollary 6.11 If the monoid idealI ⊆ Nn
0 possesses an involutive basis for the

constructive divisionL, thenI has a unique minimal involutive basis.

Proof If we apply Algorithm 2 to the unique minimal basisN of I in the usual
sense, then it follows trivially from Corollary 6.10 that the output is a minimal
involutive basis ofI and that no other involutive basis ofI can be minimal, as it
is necessarily an involutive completion ofN . ⊓⊔

7 Polynomial Completion

An obvious way to compute an involutive basis for an idealI in a polynomial
algebra(P , ⋆,≺) of solvable type goes as follows: we determine first a Gröbner
basisG of I and then with Algorithm 2 an involutive completion ofle≺ G. In fact,
a similar method is proposed by Sturmfels and White [56] for the construction of
Stanley decompositions (cf. Part II). However, we prefer toextend the ideas behind
Algorithm 2 to a direct completion algorithm for polynomialideals, as we believe
that this approach is more efficient.

First, we need two subalgorithms:involutive normal formsandinvolutive head
autoreductions. The design of an algorithmNormalFormL,≺(g,H) determining
an involutive normal form of the polynomialg with respect to the finite setH ⊂ P
is trivial. We may use the standard algorithm for normal forms in the Gröbner
theory, if we replace the ordinary divisibility by its involutive version. Obviously,
this modification does not affect the termination. Actually, for our purposes it is
not even necessary to compute a full normal form; we may stop as soon as we have
obtained a polynomial that is not involutively head reducible.

The design of an algorithmInvHeadAutoReduceL,≺(F) for an involutive
head autoreduction of a finite setF is also obvious.6 Again one may use the stan-
dard algorithm with the ordinary divisibility replaced by involutive divisibility.

Based on these two subalgorithms, we propose Algorithm 3 forthe compu-
tation of involutive bases inP .7 It follows the same strategy as the monomial
algorithm. We multiply each generator by its non-multiplicative variables. Then
we decide whether or not the result is already contained in the involutive span of
the basis; if not, it is added. This decision is effectively made via an involutive nor-
mal form computation: the involutive normal form of a polynomial is zero, if and
only if the polynomial lies in the involutive span. As our goal is a strong involutive
basis, we take care that our set is always involutively head autoreduced.

6 [20, Sect. 5] contains explicit pseudocode for both needed subalgorithms. Note, how-
ever, that there always a full autoreduction and not only a head autoreduction is performed.

7 We present here only the basic form of the involutive completion algorithm, as it makes
the simple underlying ideas more transparent. Gerdt and Blinkov [20, Sect. 8] provide an
optimised form of this algorithm which is, however, more involved.
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Algorithm 3 Completion in(P , ⋆,≺)

Input: a finite setF ⊂ P , an involutive divisionL
Output: an involutive basisH of I = 〈F〉 with respect toL and≺
/1/ H ← InvHeadAutoReduceL,≺(F)
/2/ loop
/3/ S ←

˘

xj ⋆ h | h ∈ H, xj ∈ X̄L,H,≺(h), xj ⋆ h /∈ 〈H〉L,≺

¯

/4/ if S = ∅ then
/5/ return H
/6/ else
/7/ choosēg ∈ S such thatle≺ ḡ = min≺ S
/8/ g ← NormalFormL,≺(ḡ,H)
/9/ H ← InvHeadAutoReduceL,≺(H ∪ {g})
/10/ end if
/11/ end loop

The manner in which we choose in Line /7/ the next polynomialḡ to be treated
(we briefly writemin≺ S for the minimal leading exponent of an element ofS)
corresponds to the normal selection strategy in the theory of Gröbner bases. There,
this strategy is known to work very well for degree compatible term orders but not
so well for other orders like the purely lexicographic one. Whereas for Gröbner
bases the selection strategy concerns only the efficiency ofthe computation, we
will see below that here the use of this particular strategy is important for the ter-
mination proof. With more refined and optimised versions of the basic completion
Algorithm 3 one can circumvent this restriction [5,14,19],but we will not discuss
this highly technical question here.

Definition 7.1 A finite setF ⊂ P is locally involutivefor the divisionL, if for ev-
ery polynomialf ∈ F and for every non-multiplicative variablexj ∈ X̄L,F ,≺(f)
the productxj ⋆ f has an involutive standard representation with respect toF .

If the setF is involutively head autoreduced, then we may equivalentlyde-
mand thatxj ⋆ f ∈ 〈F〉L,≺. Because of Lemma 5.12, this condition automatically
implies the existence of an involutive standard representation. In fact, the criterion
appears in this form in Line /3/ of Algorithm 3. In any case, local involution may
be effectively verified by computing an involutive normal form of xj ⋆ f in the
usual manner, i. e. always performing head reductions.

Our next result is similar to one direction of [20, Thm. 6.5] and its proof uses
essentially the same techniques. It is more general with respect to its assumptions,
as it does not require that the setF is involutively autoreduced. As a consequence
we obtain only a weaker conclusion (see, however, the subsequent corollary).

Proposition 7.2 If the finite setF ⊂ P is locally involutive for the continuous
divisionL, then〈F〉L,≺ = 〈F〉.

Proof We claim that if the setF is locally involutive (with respect to the con-
tinuous divisionL), then every productxµ ⋆ f1 of an arbitrary termxµ with a
polynomialf1 ∈ F possesses an involutive standard representation. This claim
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trivially entails our proposition, as any polynomial in〈F〉 consists of a finite lin-
ear combination of such products: adding the correspondinginvolutive standard
representations shows that the polynomial is contained in〈F〉L,≺.

In order to prove our claim, it suffices to show the existence of a representation

xµ ⋆ f1 =
∑

f∈F

(

Pf ⋆ f +
∑

ν∈Nn
0

cν,fx
ν ⋆ f

)

(16)

wherePf ∈ k[XL,F ,≺(f)] and le≺ (Pf ⋆ f) = le≺ (xµ ⋆ f1) (or Pf = 0) and
where the coefficientscν,f ∈ k vanish for all multi indicesν ∈ Nn

0 such that
le≺ (xν ⋆ f) � le≺ (xµ ⋆ f1). Our claim follows then by an obvious induction.

If xµ ∈ k[XL,F ,≺(f1)], i. e. it contains only variables that are multiplicative
for le≺ f1, nothing has to be shown. Otherwise we choose a non-multiplicative
index j1 ∈ N̄L,le≺ F(le≺ f1) such thatµj1 > 0. As F is locally involutive, an

involutive standard representationxj1 ⋆ f1 =
∑

f∈F P
(1)
f ⋆ f exists. LetF2 ⊆ F

contain all polynomialsf2 such thatle≺ (P
(1)
f2

⋆ f2) = le≺ (xj1 ⋆ f1). If we have
xµ−1j1 ∈ k[XL,F ,≺(f2)] for all polynomialsf2 ∈ F2, then we are done, as at

leastlm≺ (xµ−1j1 ⋆ P
(1)
f2

) ∈ k[XL,F ,≺(f2)].
Otherwise we consider the subsetF ′

2 ⊆ F2 of polynomialsf2 for which
xµ−1j1 /∈ k[XL,F ,≺(f2)] and iterate over it. For each polynomialf2 ∈ F ′

2 we
choose a non-multiplicative indexj2 ∈ N̄L,le≺ F (le≺ f2) such that(µ−1j1 )j2 > 0.
Again the local involution of the setF implies the existence of an involutive stan-
dard representationxj2 ⋆ f2 =

∑

f∈F P
(2)
f ⋆ f . We collect inF3 ⊆ F all poly-

nomialsf3 such thatle≺ (P
(2)
f3

⋆ f3) = le≺ (xj2 ⋆ f2). If we introduce the multi
indexν = le≺ (xj1 ⋆ f1) − le≺ f2, thenle≺ (xµ ⋆ f1) = le≺ (xµ+ν−1j1

−1j2 ⋆ f3)
for all f3 ∈ F3. If xµ+ν−1j1

−1j2 ∈ k[XL,F ,≺(f3)] for all f3 ∈ F3, we are done.
Otherwise we continue in the same manner: we collect in a subsetF ′

3 ⊆ F3

all polynomialsf3 which are multiplied by non-multiplicative variables, foreach
of them we choose a non-multiplicative indexj3 ∈ k[XL,F ,≺(f3)] such that
(µ− 1j1 − 1j2)j3 > 0, determine an involutive standard representation ofxj3 ⋆ f3
and analyse the leading terms. If they are still multiplied with non-multiplicative
variables, this leads to setsF ′

4 ⊆ F4 and so on. This process yields a whole tree
of cases and each branch leads to a sequence

(

ν(1) = le≺ f1, ν
(2) = le≺ f2, . . .

)

where all contained multi indicesν(k) are elements of the finite setle≺ F and
where to eachν(k) a non-multiplicative indexjk ∈ N̄L,le≺ F (ν(k)) exists such that
ν(k+1) |L,le≺ F ν

(k) +1jk
. By the definition of a continuous division, this sequence

cannot become infinite and thus each branch must terminate. But this implies that
we may construct for each polynomialf1 ∈ F and each non-multiplicative vari-
ablesxj ∈ X̄L,F ,≺(f1) a representation of the claimed form (16). ⊓⊔

Note that the proposition only asserts that the involutive span equals the normal
span. It doesnot say thatF is weakly involutive (indeed, the setF studied in Ex-
ample 5.6 would be a simple counterexample). Ifg =

∑

µ∈Nn
0

∑

f∈F cµ,fx
µ ⋆ f

is an arbitrary polynomial in〈F〉, then adding the involutive standard represen-
tations of all the productsxµ ⋆ f for which cµ,f 6= 0 yields a representation
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g =
∑

f∈F Pf ⋆ f wherePf ∈ k[XL,F ,≺(f)]. But in general it will not sat-
isfy the conditionle≺ (Pf ⋆ f) � le≺ g for all f ∈ F , as we cannot assume that
we started with an ordinary standard representation ofg. The satisfaction of this
condition is guaranteed only for involutively head autoreduced sets, as there it is
impossible that the leading terms cancel (Lemma 5.12). For such sets the above
proof simplifies, as all the setsFi consist of precisely one element and thus no
branching is necessary.

Corollary 7.3 For a continuous divisionL an involutively head autoreduced set
F ⊂ P is involutive, if and only if it is locally involutive.

As in the proof of Proposition 6.8, local involution ofH is obviously equivalent
to the termination conditionS = ∅ of theloop in Algorithm 3. Thus we are now
in the position to prove the following result.

Theorem 7.4LetL be a constructive Noetherian involutive division and(P , ⋆,≺)
a polynomial algebra of solvable type. Then Algorithm 3 terminates for any finite
input setF with an involutive basis of the idealI = 〈F〉.

Proof We begin by proving thecorrectnessof the algorithm under the assumption
that it terminates. The relationI = 〈H〉 remains valid throughout, althoughH
changes. But the only changes are the addition of further elements ofI and invo-
lutive head autoreductions; both operations do not affect the ideal generated byH.
When the algorithm terminates, we haveS = ∅ and thus the outputH is locally
involutive and by Corollary 7.3 involutive.

There remains the problem oftermination. Algorithm 3 produces a sequence
(H1,H2, . . . ) with 〈Hi〉 = I. The setHi+1 is determined fromHi in Line /9/.
We distinguish two cases, namely whether or not during the computation of the
involutive normal form in Line /8/ the leading exponent changes. Ifle≺ ḡ = le≺ g,
then〈le≺ Hi〉 = 〈le≺ Hi+1〉, asle≺ g = le≺ h + 1j for someh ∈ Hi. Otherwise
we claim that〈le≺ Hi〉 ( 〈le≺ Hi+1〉.

By construction,g is in involutive normal form with respect to the setHi im-
plying that le≺ g ∈ 〈le≺ Hi〉 \ 〈le≺ Hi〉L. If we had〈le≺ Hi〉 = 〈le≺ Hi+1〉, a
polynomialh ∈ Hi would exist such thatle≺ g = le≺ h + µ where the multi
index µ has a non-vanishing entryµj for at least one non-multiplicative index
j ∈ N̄L,le≺ Hi

(h). This implies thatle≺ h + 1j � le≺ g ≺ le≺ ḡ. But we choose
the polynomial̄g in Line /7/ such that its leading exponent is minimal among all
non-multiplicative productsxk ⋆h with h ∈ Hi; hencele≺ ḡ � le≺ h+1j. As this
is a contradiction, we must have〈le≺ Hi〉 ( 〈le≺ Hi+1〉.

So theloop of Algorithm 3 generates an ascending chain of monoid ideals
〈le≺ H1〉 ⊆ 〈le≺ H2〉 ⊆ · · · ⊆ le≺ I. AsNn

0 is Noetherian, the chain must be-
come stationary at some indexN . It follows from the considerations above that in
all iterations of theloop after theN th onele≺ ḡ = le≺ g in Line /8/. At this stage
Algorithm 3 reduces to an involutive completion of the monomial setle≺ HN us-
ing Algorithm 2—but with additional involutive autoreductions after each appear-
ance of a new element. Indeed, in Line /7/ we choose the polynomial ḡ such that
le≺ ḡ is a possible choice for the multi indexµ Algorithm 2 adds in Line /8/. Since
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we assume that our division is Noetherian, it follows now from Proposition 6.8
together with Remark 6.9 that Algorithm 3 terminates (and the correctness proof
above implies that in fact〈le≺ HN 〉 = le≺ I). ⊓⊔

Remark 7.5If the divisionL is not Noetherian, then it may happen that, even when
the idealI = 〈F〉 does possess a finite involutive basis with respect toL, Algo-
rithm 3 does not terminate for the inputF . We will see concrete examples for this
phenomenon in Part II for the Pommaret division.

The problem is that the existence of an involutive basis forle≺ I does not im-
ply that all subideals of it have also an involutive basis (asa trivial counterexample
consider〈xy〉 ⊂ 〈xy, y2〉 with the Pommaret division). In such a case it may hap-
pen that at some stage of Algorithm 3 we encounter a basisHi such that〈le≺ Hi〉
does not possess an involutive basis and then it is possible that the algorithm iter-
ates endlessly in an attempt to completele≺ Hi.

This observation entails that variations of Theorem 7.4 hold also for divisions
which are not Noetherian. For example, we could assume instead that all subideals
of le≺ I possess an involutive basis. Alternatively, we could restrict to term orders
of typeω. Then it suffices to assume thatle≺ I has an involutive basis. Indeed,
now it is not possible that Algorithm 3 iterates endlessly within le≺Hi, as sooner
or later an element̄g must be selected in Line /7/ withle≺ ḡ /∈ le≺ Hi. ⊳

Corollary 7.6 For a constructive Noetherian divisionL every idealI ⊆ P pos-
sesses a finite involutive basis.

Example 7.7Now we are finally in the position to prove the claims made in Ex-
ample 5.10. With respect to the degree reverse lexicographic term order the Janet
(and the Pommaret) division assigns the polynomialf1 = z2 − xy the multiplica-
tive variables{x, y, z} and the polynomialsf2 = yz − x andf3 = y2 − z the
multiplicative variables{x, y}. Thus we must check the two non-multiplicative
products:zf2 = yf1 + xf3 andzf3 = yf2 − f1. As both possess an involutive
standard representation, the setS in Line /3/ of Algorithm 3 is empty in the first
iteration and thusF is a Janet (and a Pommaret) basis of the ideal it generates.

The situation changes, if we use the degree inverse lexicographic term or-
der, as thenlt≺ f1 = xy. Now XJ,F ,≺(f1) = {x}, XJ,F ,≺(f2) = {x, y, z}
andXJ,F ,≺(f3) = {x, y}. In the first iteration we findS = {zf1}. Its involu-
tive normal form isf4 = z3 − x2 and we add this polynomial toF to obtain
H1 = {f1, f2, f3, f4} (the involutive head autoreduction does not change the set).
Forf4 all variables are multiplicative; for the other generatorsthere is one change:
z is no longer multiplicative forf2. Thus in the second iterationS = {zf2}. It
is easy to check that this polynomial is already in involutive normal form with
respect toH1 and we obtainH2 by addingf5 = yz2 − xz toH1. In the next iter-
ationS is empty, so thatH2 is indeed the Janet basis of〈F〉 for the degree inverse
lexicographic term order. ⊳

The proof of Theorem 7.4 has an interesting consequence which was first
discovered by Apel [3] for the special case of the Pommaret division (see also
[21, Prop. 5.4] where for arbitrary divisions the case of degree compatible or-
ders is considered). Assume that the term order≺ is of typeω, i. e. for any two
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multi indicesµ, ν with µ ≺ ν only finitely many multi indicesρ(i) exist with
µ ≺ ρ(1) ≺ ρ(2) ≺ · · · ≺ ν. Then even if Algorithm 3 doesnot terminate, it
determines in a finite number of steps a Gröbner basis of the idealI.

Proposition 7.8Let the term order≺ be of typeω. Then Algorithm 3 determines
for any finite input setF ⊂ P and any involutive divisionL in a finite number of
steps a Gr̈obner basis of the idealI = 〈F〉.

Proof Above we introduced the setHN such that〈le≺ HN+ℓ〉 = 〈le≺ HN 〉 for all
ℓ > 0. We claim thatHN is a Gröbner basis ofI.

Let f ∈ I be an arbitrary element of the ideal. AsHN is a basis ofI, we find
for eachh ∈ HN a polynomialgh ∈ P such that

f =
∑

h∈HN

gh ⋆ h . (17)

HN is a Gröbner basis, if and only if we can choose the coefficients gh such that
le≺ (gh ⋆ h) � le≺ f . Assume that forf no such standard representation exists
and letµ = maxh∈HN

{

le≺ gh + le≺ h
}

≻ le≺ f . If we denote byH̄N the set
of all polynomialsh̄ ∈ HN for which le≺ gh̄ + le≺ h̄ = µ, then the identity
∑

h̄∈H̄N
lc≺ (gh̄ ⋆ h̄) = 0 must hold and hencēHN contains at least two elements.

For each element̄h ∈ H̄N we haveµ ∈ C(le≺ h̄). As by construction the setHN

is involutively head autoreduced, the involutive cones of the leading exponents do
not intersect and there must be at least one generatorh̄ ∈ H̄N such that some
non-multiplicative variablexj ∈ X̄L,HN

(h̄) divideslt≺ gh̄.
As≺ is of typeω, after a finite number of steps the non-multiplicative product

xj ⋆ h̄ is analysed in Algorithm 3. Thus for somen1 ≥ 0 the setHN+n1
contains

an element̄h′ with le≺ h̄
′ = le≺ (xj ⋆ h̄). Letµ = le≺ gh̄, xµ−1j ⋆ xj = cxµ + r1

andh̄′ = dxj ⋆ h̄+ r2. Then we may rewrite

gh̄ ⋆ h̄ =
lc≺ gh̄

cd

[

xµ−1j ⋆ (h̄′ − r2) − dr1 ⋆ h̄
]

+
(

gh̄ − lm≺ gh̄

)

⋆ h̄ . (18)

As h̄′ was determined via an involutive normal form computation applied to the
productxj ⋆ h̄ and as we know that at this stage of the algorithm the leading
exponent does not change during the computation, the leading exponent on the
right hand side of (18) isle≺ (xµ−1j ⋆ h̄′). If the termxµ−1j contains a non-
multiplicative variablexk ∈ X̄L,HN+n1

(h̄′), we repeat the argument obtaining
a polynomial̄h′′ ∈ HN+n1+n2

such thatle≺ h̄′′ = le≺ (xk ⋆ h̄
′).

Obviously, this process terminates after a finite number of steps, even if we do
it for eachh̄ ∈ H̄N . Thus afterℓ further iterations we obtain a setHN+ℓ such
that, after applying all the found relations (18),f can be expressed in the form
f =

∑

h∈HN+ℓ
g̃h ⋆ h where stillµ = maxh∈HN+ℓ

{

le≺ g̃h + le≺ h
}

. Denote

again byH̄N+ℓ ⊆ HN+ℓ the set of all polynomials̄h achieving this maximum.
By construction, no termlt≺ g̃h̄ with h̄ ∈ H̄N+ℓ contains a variable that is

non-multiplicative forh̄. Thus we must now haveµ ∈ Cle≺ (HN+ℓ),L(le≺ h̄) for
eachh̄ ∈ H̄N+ℓ implying thatH̄N+ℓ contains at most one element. But then it is
not possible thatµ ≻ le≺ f . Hence each polynomialf ∈ P possesses a standard
representation already with respect toHN and this set is a Gröbner basis. ⊓⊔
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Note that in the given form this result is only of theoreticalinterest, as in gen-
eral no efficient method exists for checking whether the current basis is already a
Gröbner basis. Using standard criteria would destroy all potential advantages of
the involutive algorithm. For the special case of Pommaret bases, Apel [3] found a
simple criterion that allows us to use a variant of Algorithm3 for the construction
of Gröbner bases independent of the existence of a finite involutive basis.

In contrast to the monomial case, one does not automaticallyobtain a minimal
involutive basis by making some minor modifications of Algorithm 3. In particu-
lar, it does not suffice to apply it to a minimal basis in the ordinary sense. Gerdt and
Blinkov [21, Sect. 5] presented an algorithm that always returns a minimal invo-
lutive basis provided a finite involutive basis exists. While it still follows the same
basic strategy of study all products with non-multiplicative variables, it requires a
more complicated organisation of the algorithm. We omit here the details.

8 Right and Two-Sided Bases

We now briefly discuss the relation between left and right involutive bases and the
computation of bases for two-sided ideals. We use in this section the following
notations: the left ideal generated byF ⊂ P is denoted by〈F〉(l), the right ideal
by 〈F〉(r) and the two-sided ideal by〈〈F〉〉 and corresponding notations for the
left, right and two-sided involutive span.

Recall from Remark 4.8 that even with a coefficient fieldk it is not guaranteed
thatP is also right Noetherian and hence generally the existence of right Gröbner
bases for right ideals is not clear. However, we also noted that the ringP is always
right Noetherian, if we assume that the mapsρi : k → k in (8a) are automor-
phisms. In the sequel of this section we will always make thisassumption.

From a computational point of view, the theory of right ideals is almost iden-
tical to the corresponding theory for left ideals. The left-right asymmetry in our
definition of polynomial algebras of solvable type leads only to one complication.
Suppose that we want to perform a right reduction of a termaxν with respect to
another termcxµ with µ | ν. This requires to find a coefficientb ∈ k such that
lc≺ (cxµ ⋆ bxν−µ) = cρµ(b)rµ,ν−µ = a. Since, according to the above made as-
sumption, all the mapsρµ are automorphisms, such ab always exists. It turns out
[42, Sect. 4.11] that under the made assumption the results of Kandry-Rodi and
Weispfenning [41, Sects. 4/5] remain valid for our larger class of non-commutative
algebras and can be straightforwardly extended to involutive bases.

Lemma 8.1A polynomialf ∈ P is (involutively) left reducible modulo a finite set
F ⊂ P (with respect to an involutive divisionL), if and only if it is (involutively)
right reducible (with respect toL).

Proof Because of the made assumptions on the mapsρµ, reducibility depends
solely on the leading exponents. ⊓⊔

Proposition 8.2LetHl be a monic, involutively left autoreduced, minimal left in-
volutive set andHr a monic, involutively right autoreduced, minimal right involu-
tive set for an involutive divisionL. If 〈Hl〉(l) = 〈Hr〉(r) = I, thenHl = Hr.
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Proof By definition of a minimal basis, the setsle≺ Hl andle≺ Hr are both min-
imal involutive bases of the monoid idealle≺ I and thus are identical. Assume
that(Hl \ Hr) ∪ (Hr \ Hl) 6= ∅ and letf be an element of this set with minimal
leading exponent with respect to≺. Without loss of generality, we assume that
f ∈ Hl \Hr. Because of the condition〈Hl〉(l) = 〈Hr〉(r), we havef ∈ 〈Hr〉

(r)
L,≺.

Thus the (by Proposition 5.13 unique) right involutive normal form of f with re-
spect toHr is 0. This implies in particular thatf is right involutively reducible
with respect to someh ∈ Hr with le≺ h � le≺ f .

If le≺ h ≺ le≺ f , thenh ∈ Hl, too, asf was chosen as a minimal element of
the symmetric difference ofHl andHr. Hence, by Lemma 8.1,f is also left invo-
lutively reducible with respect toh (because ofle≺ Hl = le≺ Hr the multiplicative
variables ofh are the same in both cases). But this contradicts the assumption that
Hl is involutively left autoreduced.

If le≺ h = le≺ f = µ, then we consider the differenceg = f−h ∈ I: both the
left involutive normal form ofg with respect toHl and the right involutive normal
form with respect toHr must vanish. By construction,le≺ g ≺ µ andsupp g ⊆
(supp f ∪ supph) \ {µ}. Since bothHl andHr are assumed to be involutively
autoreduced, no term in this set is involutively reducible by le≺Hl = le≺ Hr and
hence we must havesupp g = ∅, i. e.g = 0, a contradiction. ⊓⊔

A direct derivation of a theory of two-sided involutive bases along the lines of
Section 5 fails, as two-sided linear combinations are rather unwieldy objects. A
general polynomialf ∈ 〈〈H〉〉 for some finite setH ⊂ P is of the form

f =
∑

h∈H

nh
∑

i=1

ℓi ⋆ h ⋆ ri (19)

with polynomialsℓi, ri ∈ P , i. e. we must allow several summands with the same
generatorh. The definition of a unique involutive standard representation would
require control over the numbersnh which seems rather difficult. Therefore we
will take another approach and construct left involutive bases even for two-sided
ideals. The following proposition is an involutive versionof [41, Thm. 5.4].

Proposition 8.3Let H ⊂ (P , ⋆,≺) be a finite set andL an involutive division.
Then the following five statements are equivalent.

(i) H is a left involutive basis and〈H〉(l) = 〈〈H〉〉.
(ii) H is a right involutive basis and〈H〉(r) = 〈〈H〉〉.
(iii) H is a left involutive basis of〈H〉(l) and bothh⋆xi ∈ 〈H〉(l) andh⋆c ∈ 〈H〉(l)

for all generatorsh ∈ H, all variablesxi and all coefficientsc ∈ k.
(iv) H is a right involutive basis of〈H〉(r) and bothxi ⋆ h ∈ 〈H〉(r) andc ⋆ h ∈

〈H〉(r) for all generatorsh ∈ H, all variablesxi and all coefficientsc ∈ k.
(v) A unique generatorh ∈ H exists for every polynomialf ∈ 〈〈H〉〉 such that

le≺ h |L,le≺ H le≺ f .

Proof We begin with the equivalence of the first two statements. (i)implies that
〈H〉

(l)
L,≺ = 〈H〉(l) = 〈〈H〉〉 and hence trivially〈H〉(r) ⊆ 〈H〉(l). The same argu-

ment as in the proof of Proposition 8.2 shows that we have in fact an equality and
thus〈H〉

(r)
L,≺ = 〈H〉(r) = 〈〈H〉〉, i. e. (ii). The converse goes analogously.
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Next we consider the equivalence of (i) and (iii); the equivalence of (ii) and (iv)
follows by the same argument. (iii) is a trivial consequenceof (i). For the converse,
we note that (iii) implies thatf ⋆ (ct) ∈ 〈H〉(l) for all f ∈ 〈H〉(l), all termst ∈ T
and all constantsc ∈ k. Indeed, we may rewrite the monomialct as a polynomial
in the “terms”xi1 ⋆xi2 ⋆· · ·⋆xiq

with i1 ≤ i2 ≤ · · · ≤ iq and then apply repeatedly
our assumptions. Obviously, this entails (i).

The equivalence of (i) or (ii), respectively, with (v) is a trivial consequence of
the definition of an involutive basis. ⊓⊔

We would like to exploit Statement (iii) for the construction of a left involutive
basis for the two-sided ideal〈〈F〉〉. However, if the fieldk is infinite, then it con-
tains an infinite number of conditions. We make now one further assumption about
the algebraP . Let k0 = {c ∈ k | ∀f ∈ P : c ⋆ f = f ⋆ c} be the constant part
of the centre ofP . By analysing the productsxi ⋆ c

−1 ⋆ c for an arbitrary element
c ∈ k×0 , one easily proves thatk0 is even a subfield ofk [42, Sect. 4.11].

We make now the assumption that eitherk× = {c1, . . . , cℓ} is finite or that the
field extensionk/k0 is finite, i. e. thatk is a finite-dimensional vector space overk0 with basis{c1, . . . , cℓ}. In the latter case, it is easy to see that it suffices in (iii)
to require that only all productsh ⋆ cj lie in 〈H〉(l), as forc =

∑ℓ
j=1 λjcj with

λj ∈ k0 we haveh ⋆ c =
∑ℓ

j=1 λj(h ⋆ cj).
These considerations lead to the simple Algorithm 4 below. It first constructs

in Line /1/ a left involutive basisH of the left ideal〈F〉(l) (using Algorithm 3).
Thewhile loop in Lines /2–19/ extends the setH to a left generating set of the
two-sided ideal〈〈F〉〉 according to our simplified version of Proposition 8.3 (iii).
Finally, we complete in Line /20/ this set to an involutive basis. In Line /1/ it is not
really necessary to compute a left involutive basis; any left Gröbner basis would
suffice as well. Similarly, an ordinary left normal form could be used in Lines /6/
and /12/, respectively; the use ofInvLeftNormalFormL,≺ anticipates the final
involutive basis computation in Line /20/.

The termination of thewhile loop follows from the fact that under the made
assumptionsP is Noetherian and hence a finite generating set of〈〈F〉〉 exists. In
principle, we perform here a simple breadth-first search forit. The termination of
the involutive bases computations in Lines /1/ and /20/, respectively, depends on
the conditions discussed in the last section. Thus the termination is guaranteed, if
the divisionL is constructive and Noetherian.

9 Involutive Bases for Semigroup Orders

For many applications it is of interest to compute involutive or Gröbner bases
with respect to more general orders, namelysemigroup orders(see Appendix A).
This generalisation does not affect the basic properties ofpolynomial algebras of
solvable type as discussed in Section 3, but if1 is no longer the smallest term,
then normal form computations do no longer terminate for allinputs. So we can
no longer apply Algorithm 3 directly for the determination of involutive bases.
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Algorithm 4 Left Involutive basis for two-sided ideal in(P , ⋆,≺)

Input: finite setF ⊂ P , involutive divisionL
Output: left involutive basisH of 〈〈F〉〉
/1/ H ← LeftInvBasisL,≺(F); S ← H
/2/ while S 6= ∅ do
/3/ T ← ∅
/4/ for all f ∈ S do
/5/ for i from 1 to n do
/6/ h← InvLeftNormalFormL,≺(f ⋆ xi,H)
/7/ if h 6= 0 then
/8/ H ← H∪ {h}; T ← T ∪ {h}
/9/ end if
/10/ end for
/11/ for j from 1 to ℓ do
/12/ h← InvLeftNormalFormL,≺(f ⋆ cj ,H)
/13/ if h 6= 0 then
/14/ H← H ∪ {h}; T ← T ∪ {h}
/15/ end if
/16/ end for
/17/ end for
/18/ S ← T
/19/ end while
/20/ return LeftInvBasisL,≺(H)

Example 9.1TheWeyl algebraWn is the polynomial algebra in the2n variables
x1, . . . , xn and∂1, . . . , ∂n with the following non-commutative product⋆: for all
1 ≤ i ≤ n we have∂i ⋆ xi = xi∂i + 1 and⋆ is the normal commutative product
in all other cases. It is easy to see thatWn is a polynomial algebra of solvable
type for any monoid order. A semigroup order respects the multiplication⋆ only,
if 1 ≺ xi∂i for all i. In [54] such orders are calledmultiplicative monomial orders.

An important class of semigroup orders is defined via real weight vectors. Let
(ξ, ζ) ∈ Rn×Rn be such thatξ+ζ ∈ Rn is non-negative and let≺ be an arbitrary
monoid order. Then we definexµ∂ν ≺(ξ,ζ) x

σ∂τ , if eitherµ ·ξ+ν ·ζ < σ ·ξ+τ ·ζ
orµ · ξ+ ν · ζ = σ · ξ+ τ · ζ andxµ∂ν ≺ xσ∂τ . This yields a monoid order, if and
only if both ξ andζ are non-negative. A special case are the orders with weight
vectors(ξ,−ξ) arising from the action of the algebraic torus(k∗)n on the Weyl
algebra. They have numerous applications in the theory ofD-modules [54]. ⊳

As normal form computations do not necessarily terminate for semigroup or-
ders, we must slightly modify our definitions of (weak) involutive or Gröbner
bases. The proof of Theorem 5.4 (and consequently also the one of Corollary 5.5
showing that a weak involutive basis of an idealI is indeed a basis ofI) requires
normal form computations and thus this theorem is no longer valid. The same prob-
lem occurs for Gröbner bases. Therefore we must explicitlyinclude this condition
in our definition.

Definition 9.2 Let (P , ⋆,≺) be a polynomial algebra of solvable type where≺ is
an arbitrary semigroup order. Let furthermoreI ⊆ P be a left ideal. AGröbner
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basisof I is a finite setG such that〈G〉 = I and 〈le≺ G〉 = le≺ I. The setG
is a weak involutive basisof I for the involutive divisionL, if in addition the set
le≺ G is weakly involutive forL. It is a (strong) involutive basis, if it is furthermore
involutively head autoreduced.

In the case of Gröbner bases, a classical trick due to Lazard[43] consists of ho-
mogenising the input and lifting the semigroup order to a monoid order on the ho-
mogenised terms. One can show that computing first a Gröbnerbasis for the ideal
spanned by the homogenised input and then dehomogenising yields a Gröbner ba-
sis with respect to the semigroup order. Note, however, thatin general we cannot
expect thatreducedGröbner bases exist.

We extend now this approach to involutive bases. Here we encounter the ad-
ditional difficulty that we must lift not only the order but also the used involutive
division. In particular, we must show that properties like being Noetherian or con-
tinuity are preserved by the lift which is non-trivial. For the special case of invo-
lutive bases in the Weyl algebra, this problem was first solved in [35]. As most
arguments are independent of the actually used algebra of solvable type, we recall
here the results of [35] without proofs (all details can be found in [55, Sect. 4.5]).

Let (P , ⋆,≺) be a polynomial algebra of solvable type where≺ is any semi-
group order that respects the multiplication⋆. We setP̃ = k[x0, x1, . . . , xn] and
extend the multiplication⋆ to P̃ by defining thatx0 commutes with all other vari-
ables and the elements of the fieldk. For a polynomialf =

∑

cµx
µ ∈ P of

degreeq, we introduce as usual itshomogenisationf (h) =
∑

cµx
q−|µ|
0 xµ ∈ P̃ .

Conversely, for a polynomial̃f ∈ P̃ we denote its projection toP asf = f̃ |x0=1.
We denote bỹT the set of terms iñP ; obviously, it is in one-to-one correspon-

dence to the multi indices inNn+1
0 . We use in the sequel the following convention.

Multi indices inNn+1
0 always carry a tilde:̃µ = [µ0, . . . , µn]. The projection toNn

0 defined by dropping the first entry (i. e. the exponent of the homogenisation
variablex0) is signalled by omitting the tilde; thusµ = [µ1, . . . , µn]. For subsets
Ñ ⊂ Nn+1

0 we also simply writeN = {ν | ν̃ ∈ Ñ} ⊂ Nn
0 .

We lift the semigroup order≺ onT to a monoid order≺h on T̃ by defining
xµ̃ ≺h x

ν̃ , if either |µ̃| < |ν̃| or both|µ̃| = |ν̃| andxµ ≺ xν . It is trivial to check
that this yields indeed a monoid order and that(P̃ , ⋆,≺h) is again a polynomial
algebra of solvable type. For lifting the involutive division, we proceed somewhat
similarly to the definition of the Janet division: the homogenisation variablex0 is
multiplicative only for terms which have maximal degree inx0.

Proposition 9.3 ([35, Prop. 5.1])LetL be an involutive division onNn
0 . For any

finite setÑ ⊂ Nn+1
0 and every multi index̃µ ∈ Ñ , we defineNL̃,Ñ (µ̃) by:

– 0 ∈ NL̃,Ñ (µ̃), if and only if µ0 = maxν̃∈Ñ {ν0},
– 0 < i ∈ NL̃,Ñ (µ̃), if and only if i ∈ NL,N (µ).

This determines an involutive divisioñL onNn+1
0 .

Now we must check to what extent the properties ofL are inherited by the
lifted division L̃. As the definition ofL̃ is very similar to the one of the Janet
division, the proofs of the following results reuse many techniques from the corre-
sponding proofs for the Janet division.



38 Werner M. Seiler

Proposition 9.4 ([35, Prop. 5.2])If L is a Noetherian division, then so is̃L.

Proposition 9.5 ([35, Prop. 5.3])If L is a continuous division, then so is̃L.

Unfortunately, it is much harder to show that constructivity is preserved. So
far, a proof is known only for globally defined divisions and the Janet division.

Proposition 9.6 ([35, Prop. 5.4])If the continuous divisionL is either globally
defined or the Janet division, then the lifted divisionL̃ is constructive.

Based on these results, Algorithm 3 can be extended to semigroup orders.
Given a finite setF ∈ P , we first determine its homogenisationF (h) ∈ P̃ and then
compute an involutive basis of〈F (h)〉 with respect tõL and≺h. What remains to
be done is first to show that the existence of a finite involutive basis is preserved
under the lifting toP̃ and then to study the properties of the dehomogenisation of
this basis.

Proposition 9.7 ([35, Prop. 6.1])If the left idealI = 〈F〉 ⊆ P possesses an invo-
lutive basis with respect to the Noetherian divisionL and the semigroup order≺,
then the left ideal̃I = 〈F (h)〉 ⊆ P̃ generated by the homogenisations of the el-
ements in the finite setF possesses an involutive basis with respect to the lifted
divisionL̃ and the monoid order≺h.

Hence our lifting leads to a situation where we can apply Theorem 7.4. Unfor-
tunately, the dehomogenisation of the strong involutive basis computed iñP does
not necessarily lead to astronginvolutive basis inP , but we obtain always at least
a weak involutive basis and thus in particular a Gröbner basis. Note also that the
dehomogenised basis is in general smaller than the basis inP̃ , as some elements
of the latter one may differ only in powers of the homogenisation variablex0.

Theorem 9.8 ([35, Thm. 6.1])Let H̃ be a strong involutive basis of the left ideal
Ĩ ⊆ P̃ with respect tõL and≺h. Then the dehomogenisationH is a weak involu-
tive basis of the left idealI ⊆ P with respect toL and≺.

Remark 9.9For the Pommaret divisionP the situation is considerably simpler.
There is no need to define a lifted divisioñP according to Proposition 9.3. Instead
we renumberx0 to xn+1 and then use the standard Pommaret division onNn+1

0 .
This approach implies that for all multi indices̃µ ∈ Nn+1

0 with µ 6= 0 the equality
NP (µ̃) = NP (µ) holds, as obviouslyn+1 is multiplicative only for multi indices
of the formµ̃ = ℓn+1, i. e. for whichµ = 0. One easily sees that the above proof
of Theorem 9.8 is not affected by this change of the division used inNn+1

0 and
hence remains true. ⊳

It is not a shortcoming of our proof that in general we do not get a strong
involutive basis, but actually some ideals do not possess strong involutive bases. In
particular, there is no point in invoking Proposition 5.7 for obtaining a strong basis.
While we may surely obtain by elimination a subsetH′ ⊆ H such thatle≺ H′ is a
strong involutive basis of〈le≺ H〉, in general〈H′〉 ( I.
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Example 9.10Consider in the Weyl algebraW2 = k[x, y, ∂x, ∂y] the left ideal
generated by the setF = {1 + x + y, ∂y − ∂x}. We take the semigroup order
induced by the weight vector(−1,−1, 1, 1) and refined by a term order for which
∂y ≻ ∂x ≻ y ≻ x. Then the underlined terms are the leading ones. One easily
checks thatF is a Gröbner basis for this order. Furthermore, all variables are mul-
tiplicative for each generator with respect to the Pommaretdivision and thusF is
a weak Pommaret basis, too.

Obviously, the setF is neither a reduced Gröbner basis nor a strong Pommaret
basis, as1 is a (multiplicative) divisor of∂y. However, it is easy to see that the left
idealI = 〈F〉 does not possess a reduced Gröbner basis or a strong Pommaret
basis. Indeed, we havele≺ I = N4

0 and thus such a basis had to consist of only a
single generator; butI is not a principal ideal. ⊳

A special situation arises for the Janet division. Recall from Remark 2.6 that
any finite setN ⊂ Nn

0 is automatically involutively autoreduced with respect to
the Janet division. Thus any weak Janet basis is a strong basis, if all generators
have different leading exponents. If we follow the above outlined strategy of ap-
plying Algorithm 3 to a homogenised basis and then dehomogenising the result,
we cannot generally expect this condition to be satisfied. However, with a minor
modification of the algorithm we can achieve this goal.

Theorem 9.11 ([35, Thm. 6.2])Let (P , ⋆,≺) be a polynomial algebra of solv-
able type where≺ is an arbitrary semigroup order. Then every left idealI ⊆ P
possesses a strong Janet basis for≺.

Proof Assume that at some intermediate stage of Algorithm 3 the basis H̃ con-
tains two polynomials̃f andg̃ such thatle≺h

(g̃) = le≺h
(f̃)+ 10, i. e. the leading

exponents differ only in the first entry. If̃g = x0f̃ , we will find f = g after de-
homogenisation and no obstruction to a strong basis appears. Otherwise we note
that, by definition of the lifted Janet divisionJh, the homogenisation variablex0

is non-multiplicative forf̃ . Thus at some later stage the algorithm must consider
the non-multiplicative productx0f̃ (if it was already treated,̃H would not be in-
volutively head autoreduced).

In the usual algorithm, we then determine the involutive normal form of the
polynomialx0f̃ ; the first step of this computation is to replacex0f̃ by x0f̃ − g̃.
Alternatively, we may proceed instead as follows. The polynomial g̃ is removed
from the basisH̃ and replaced byx0f̃ . Then we continue by analysing the invo-
lutive normal form ofg̃ with respect to the new basis. Note that this modification
concerns only the situation that a multiplication byx0 has been performed and
that the basisH̃ contains already an element with the same leading exponent as
the obtained polynomial.

If the final outputH̃ of the thus modified completion algorithm contains two
polynomialsg̃ andf̃ such thatle≺h

(g̃) andle≺h
(f̃) differ only in the first entry,

then either̃g = xk
0 f̃ or f̃ = xk

0 g̃ for somek ∈ N. Thus the dehomogenisation
yields a basisH where all elements possess different leading exponents andH
is a strong Janet basis. Looking at the proof of Theorem 7.4, it is easy to see
that this modification does not affect the correctness and the termination of the
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algorithm. As the Janet division is Noetherian, these considerations prove together
with Proposition 9.4 the assertion. ⊓⊔

Note that our modification only achieves its goal, if we really restrict in Algo-
rithm 3 to head reductions. Otherwise some other terms than the leading term in
x0f̃ might be reducible but not the corresponding terms inf̃ . Then we could still
find after dehomogenisation two generators with the same leading exponent.

Example 9.12Consider in the Weyl algebraW3 with the three variablesx, y, z the
left ideal generated by the setF = {∂z−y∂x, ∂y}. If we apply the usual involutive
completion Algorithm 3 (to the homogenisationF (h)), we obtain for the weight
vector(−1, 0, 0, 1, 0, 0) refined by the degree reverse lexicographic order and the
Janet division the following weak basis with nine generators:

H1 =
{

∂x, ∂y, ∂z, ∂x∂z, ∂y∂z, y∂x, y∂x + ∂z, y∂x∂z, y∂x∂z + ∂2
z

}

. (20)

As one easily sees from the last four generators, it is not a strong basis.
Applying the modified algorithm for the Janet division yields the following

basis with only seven generators:

H2 =
{

∂x + ∂y∂z, ∂y, ∂z, ∂x∂z , ∂y∂z , y∂x + ∂z , y∂x∂z + ∂2
z

}

. (21)

Obviously, we now have a strong basis, as all leading exponents are different.
This example also demonstrates the profound effect of the homogenisation.

A strong Janet or Pommaret basis of〈F〉 is simply given byH = {∂x, ∂y, ∂z}
which is simultaneously a reduced Gröbner basis. In〈F (h)〉 many reductions are
not possible because the terms contain different powers oft. However, this is a
general problem of all approaches to Gröbner bases for semigroup orders using
homogenisation and not specific for the involutive approach.

In this particular case, one could have applied the involutive completion algo-
rithm directly to the original setF and it would have terminated with the minimal
basisH, although we are using an order which is not a monoid order. Unfortu-
nately, it is not clear how to predict when infinite reductionchains appear in nor-
mal form computations with respect to such orders, so that one does not know in
advance whether one may dispense with the homogenisation. ⊳

10 Involutive Bases for Semigroup Orders II: Mora’s Normal Form

One computational disadvantage of the approach outlined inthe previous section
is that the basis̃H in the homogenised algebrãP is often much larger than the
final basisH in the original algebraP , as upon dehomogenisation generators may
become identical. Furthermore, we have seen that it is difficult to prove the con-
structivity of the lifted divisionLh which limits the applicability of this technique.
Finally, for most divisions we are not able to determine strong bases.

An alternative approach for Gröbner bases computations inthe ordinary poly-
nomial ring was proposed first by Greuel and Pfister [29] and later independently
by Gräbe [27,28]; extensive textbook discussions are contained in [16, Chapt. 4]
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and [30, Sect. 1.6]. It allows us to dispense completely withcomputing in the ho-
mogenised algebrãP . Two ideas are the core of this approach: we modify the
normal form algorithm using ideas developed by Mora [49] forthe computation of
tangent cones and we work over a ring of fractions ofP . We will now show that a
generalisation to arbitrary polynomial algebras of solvable type and to involutive
normal forms is possible and removes all the mentioned problems.

The central problem in working with semigroup orders is thatthey are no
longer well-orders and hence normal form computations in the classical form do
not necessarily terminate. Mora [49] introduced the notionof the écartof a poly-
nomialf as the difference between the lowest and the highest degree of a term inf
and based a new normal form algorithm on it which always terminates. The main
differences between it and the usual algorithm lie in the possibility to reduce also
with respect to intermediate results (see Line /9/ in Algorithm 5 below) and that it
computes only a “weak” normal form (cf. Proposition 10.1 below).

Mora’s approach is valid only for tangent cone orders where the leading term is
always of minimal degree. Greuel and Pfister [29] noticed that a slight modification
of the definition of the écart allows us to use it for arbitrary semigroup orders. So
we set for any polynomialf ∈ P \ {0} and any semigroup order≺

écart f = deg f − deg lt≺ f . (22)

The extension of the Mora normal form to an involutive normalform faces
one problem. As already mentioned, one allows here also reductions with respect
to some intermediate results and thus one must decide on the assignment of mul-
tiplicative variables to these. However, it immediately follows from the proof of
the correctness of the Mora algorithm how this assignment must be done in or-
der to obtain in the end an involutive standard representation with respect to the
setG (one should stress that this assignment isnot performed according to some
involutive division in the sense of Definition 2.1).

In Algorithm 5 below we use the following approach. To each memberg of the
setĜ with respect to which we reduce we assign a setN [g] of multiplicative in-
dices. We writele≺ g |N le≺ h, if the multi indexle≺ h lies in the restricted cone of
le≺ g defined byN [g]. The setS collects all generatorsg ∈ G which have already
been used for reductions and the setN is the intersection of the corresponding
sets of multiplicative indices. If a new polynomialh is added toĜ, it is assigned
as multiplicative indices the current value ofN .

Proposition 10.1Algorithm 5 always terminates. Let(P = k[X ], ⋆,≺) be a poly-
nomial algebra of solvable type (for an arbitrary semigrouporder ≺) such thatk[X ′] is a subring ofP for any subsetX ′ ⊂ X . Then the outputh is a weak
involutive normal formof the inputf with respect to the setG in the sense that
there exists a polynomialu ∈ P with le≺ u = 0 such that the differenceu ⋆ f − h
possesses an involutive standard representation

u ⋆ f − h =
∑

g∈G

Pg ⋆ g (23)

and none of the leading exponentsle≺ g involutively dividesle≺ h. If ≺ is a
monoid order, thenu = 1 andh is an involutive normal form in the usual sense.
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Algorithm 5 Involutive Mora normal form for a semigroup order≺ onP
Input: polynomialf ∈ P , finite setG ⊂ P , involutive divisionL
Output: involutive Mora normal formh of f with respect toG
/1/ h← f ; Ĝ ← G
/2/ for all g ∈ G do
/3/ N [g]← NL,le≺ G(le≺ g)
/4/ end for
/5/ N ← {1, . . . , n}; S ← ∅
/6/ while (h 6= 0) ∧ (∃ g ∈ Ĝ : le≺ g |N le≺ h) do
/7/ chooseg with écart g minimal among allg ∈ Ĝ such thatle≺ g |N le≺ h
/8/ if (g ∈ G) ∧ (g /∈ S) then
/9/ S ← S ∪ {g}; N ← N ∩N [g]
/10/ end if
/11/ if écart g > écart h then
/12/ Ĝ ← Ĝ ∪ {h}; N [h]← N
/13/ end if
/14/ µ← le≺ h− le≺ g; h← h− lc≺ h

lc≺ (xµ⋆g)
xµ ⋆ g

/15/ end while
/16/ return h

Proof As the proof is almost identical to the one for the non-involutive version
of the Mora normal form given by Greuel and Pfister [29,30], weonly sketch the
required modifications; full details are given in [55, Sect.4.51]. For the termina-
tion proof no modifications are needed. For the existence of the involutive standard
representation one uses the same induction as in the non-involutive case and keeps
track of the multiplicative variables. The key point is thatif a reduction with re-
spect to a polynomial̂g ∈ Ĝ \ G is performed, then it is multiplied only with terms
which are multiplicative for allg ∈ G appearing in̂g. This fact ensures that in the
end indeed each non-zero coefficientPg is contained ink[XL,G,≺(g)]. ⊓⊔

Remark 10.2The assumption aboutP in Proposition 10.1 is necessary, because
the coefficientsPg in (23) are the result of multiplications. While the above con-
siderations ensure that each factor lies ink[XL,G,≺(g)], it is unclear in a general
polynomial algebra whether this remains true for their product. Simple examples
for polynomial algebras of solvable type satisfying the made assumption are rings
of linear difference or differential operators. In the caseof the Pommaret division,
the assumption can be weaken a bit and every iterated polynomial algebra of solv-
able type in the sense of Definition 4.1 is permitted, too. ⊳

We move now to a larger ring of fractions where all polynomials with leading
exponent0 are units. In such a ring it really makes sense to callh a (weak) normal
form of f , as we multiplyf only by a unit.

Proposition 10.3Let (P , ⋆,≺) be a polynomial algebra of solvable type where≺
is a semigroup order. Then the subset

S≺ = {f ∈ P | le≺ f = 0} . (24)
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is multiplicatively closed and the left localisationP≺ = S−1
≺ ⋆P is a well defined

ring of left fractions.

Proof Obviously,1 ∈ S≺. If 1 + f and1 + g are two elements inS≺, then the
compatibility of the order≺ with the multiplication⋆ ensures that their product
is of the form(1 + f) ⋆ (1 + g) = 1 + h with le≺ h ≺ 0. Hence the setS≺ is
multiplicatively closed.

As polynomial algebras of solvable type do not possess zero divisors, a suf-
ficient condition for the existence of the ring of left fractionsS−1

≺ ⋆ P is that for
all f ∈ S≺ andg ∈ P the intersection(P ⋆ f) ∩ (S≺ ⋆ g) is not empty [15,
Sect. 12.1]. But this fact can be shown using minor modifications of our proof of
Proposition 3.5 on the existence of Ore multipliers.

We first choose coefficientsr0, s0 ∈ R such that in̄h1 = r0g ⋆ f − s0f ⋆ g
the leading terms cancel, i. e. we havele≺ h̄1 ≺ le≺ f + le≺ g = le≺ g. Then
we compute with (the non-involutive form of) Algorithm 5 a weak normal form
h1 of h̄1 with respect to the setF0 = {f, g}. By Proposition 10.1 this yields a
standard representationu1 ⋆ h̄1−h1 = φ0 ⋆ f +ψ0 ⋆ g wherele≺ u1 = 0. Assume
that le≺ ψ0 � 0. Then we arrive at the contradictionle≺ (ψ0 ⋆ g) � le≺ g ≻
le≺ h̄1 = le≺ (u1 ⋆ h̄1). Thusle≺ ψ0 ≺ 0. If h1 = 0, then(u1 ⋆ r0g − φ0) ⋆ f =
(u1 ⋆ s0f + ψ0) ⋆ g and by the considerations above on the leading exponents
u1 ⋆ s0f + ψ0 ∈ S≺ so that indeed(P ⋆ f) ∩ (S≺ ⋆ g) 6= ∅.

If h1 6= 0, we proceed as in the proof of Proposition 3.5. We introduceF1 =
F0 ∪ {h1} and chooser1, s1 ∈ R such that in̄h2 = r1h1 ⋆ f − s1f ⋆ h1 the
leading terms cancel. If we compute a weak Mora normal formh2 of h̄2, then
we obtain a standard representationu2 ⋆ h̄2 − h2 = φ1 ⋆ f + ψ1 ⋆ g + ρ1 ⋆ h1

where againle≺ u2 = 0. The properties of a standard representation imply now
that le≺ ψ1 + le≺ g � le≺ h̄2 and le≺ ρ1 + le≺ h1 � le≺ h̄2. Together with the
inequalitiesle≺ h̄2 ≺ le≺ f + le≺ h1 = le≺ h1 ≺ le≺ g this entails that both
le≺ ψ1 ≺ 0 andle≺ ρ1 ≺ 0. Thus forh2 = 0 we have foundφ ∈ P andψ ∈ S≺

such thatφ ⋆ f = ψ ⋆ g. If h2 6= 0, similar inequalities in the subsequent iterations
ensure that we always haveψ ∈ S≺. ⊓⊔

As any localisation of a Noetherian ring is again Noetherian,P≺ is Noetherian,
if P is so. One sees immediately that the units inP≺ are all those fractions where
not only the denominator but also the numerator is containedin S≺. Given an ideal
I ⊆ P≺, we may always assume without loss of generality that it is generated
by a setF ⊂ P of polynomials, as multiplication of a generator by a unit does
not change the span. Hence in all computations we will exclusively work with
polynomials and not with fractions.

As all elements ofS≺ are units inP≺, we may extend the notions of leading
term, monomial or exponent: iff ∈ P≺, then we can choose a unitu ∈ S≺ with
lc≺ u = 1 such thatu⋆f ∈ P is a polynomial; now we definele≺ f = le≺ (u ⋆ f)
etc. One easily verifies that this definition is independent of the choice ofu.

Following Greuel and Pfister [30], one can now construct a complete theory of
involutive bases overP≺. Definition 9.2 of Gröbner and involutive bases can be
extended without changes from the ringP to the localisationP≺. Theorem 4.7 on
the existence of Gröbner bases generalises toP≺, as its proof is only based on the
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leading exponents and a simple normal form argument remaining valid due to our
considerations above.

Note that even if the setG is involutively head autoreduced, we cannot con-
clude in analogy to Proposition 5.13 that the involutive Mora normal form is
unique, as we only consider the leading term in Algorithm 5 and hence the lower
terms inhmay still be involutively divisible by the leading term of some generator
g ∈ G. However, Theorem 5.4 remains valid.

Theorem 10.4Let (P = k[X ], ⋆,≺) be a polynomial algebra of solvable type
(for an arbitrary semigroup order≺) such thatk[X ′] is a subring ofP for any
subsetX ′ ⊂ X . Furthermore, letL be a constructive Noetherian division. For a
finite setF ⊂ P of polynomials, letI = 〈F〉 be the left ideal generated by it in
the localisationP≺. If we apply Algorithm 3 with the involutive Mora normal form
instead of the usual one to the setF , then it terminates with an involutive basis of
the idealI.

Proof The termination of Algorithm 3 under the made assumptions was shown
in Proposition 7.2 and Theorem 7.4. One easily verifies that their proofs are not
affected by the substitution of the normal form algorithm, as they rely mainly
on Theorem 5.4 and on the fact that the leading term of the normal form is not
involutively divisible by the leading term of any generator. Both properties remain
valid for the Mora normal form. ⊓⊔

Remark 10.5Note that Theorem 10.4 guarantees the existence ofstronginvolutive
bases. Due to the extension toP≺, Example 9.10 is no longer a valid counterex-
ample. As the first generator inF is now a unit, we find that〈F〉 = P≺ and{1} is
a trivial strong Pommaret basis. ⊳

Example 10.6We continue Example 9.12. Following the approach given by The-
orem 10.4, we immediately compute as Janet basis of〈F〉 (overP≺) the minimal
basisH3 = {∂x, ∂y, ∂z}. Obviously, it is considerably smaller than the bases ob-
tained with Lazard’s approach (overP). This effect becomes even more profound,
if we look at the sizes of the bases in the homogenised Weyl algebra: bothH̃1 and
H̃2 consist of21 generators. ⊳

11 Involutive Bases over Rings

Finally, we consider the case thatP = R[x1, . . . , xn] is a polynomial algebra of
solvable type over a (left) Noetherian ringR. For commutative products, Gröbner
bases for such algebras have been studied in [25,59] (see [1,Chapt. 4] for a more
extensive textbook discussion); forPBWextensions a theory of Gröbner bases was
developed in [26]. We will follow the basic ideas developed in these references and
assume that linear equations are solvable in the coefficientring R which means
that the following two operations can be effectively performed:

(i) given elementss, r1, . . . , rk ∈ R, we can decide whethers ∈ 〈r1, . . . , rk〉R
(the left ideal inR generated byr1, . . . , rk);
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(ii) given elementsr1, . . . , rk ∈ R, we can construct a finite basis of the module
Syz(r1, . . . , rk) of left syzygiess1r1 + · · · + skrk = 0.

The first operation is obviously necessary for the algorithmic reduction of poly-
nomials with respect to a setF ⊂ P . The necessity of the second operation will
become evident later. Compared with the commutative case, reduction is a more
complicated process, in particular due to the possibility that in the commutation
relations (5) for the multiplication inP the mapsρµ may be different from the
identity onR and the coefficientsrµν unequal one.

Let G ⊂ P be a finite set. We introduce for any polynomialf ∈ P the sets
Gf = {g ∈ G | le≺ g | le≺ f} and

Ḡf =
{

xµ ⋆ g | g ∈ Gf ∧ µ = le≺ f − le≺ g ∧ le≺ (xµ ⋆ g) = le≺ f
}

(25)

Note that the last condition in the definition ofḠf is redundant only, if the coef-
ficient ringR is an integral domain. Otherwise it may happen that|Ḡf | < |Gf |,
namely ifρµ(r)rµν = 0 wherelm≺ g = rxν . The polynomialf is head reducible
with respect toG, if lc≺ g ∈ 〈lc≺ Ḡf 〉R (note that we usēGf here so that the re-
duction comes only from the leading terms and is not due to some zero divisors as
leading coefficients).Involutive head reducibilityis defined analogously via sets
Gf,L andḠf,L where only involutive divisors with respect to the divisionL onNn

0

are taken into account, i. e. we set

Gf,L = {g ∈ G | le≺ f ∈ CL,le≺ G(le≺ g)} . (26)

Thus the setG is involutively head autoreduced, if lc≺ g /∈ 〈lc≺ (Ḡg,L \ {g})〉R for
all polynomialsg ∈ G. This notion is now much weaker than before; in particular,
Lemma 5.12 is no longer valid.

Definition 11.1 Let I ⊆ P be a left ideal in the polynomial algebra(P , ⋆,≺)
of solvable type over a ringR in which linear equations can be solved. A finite
setG ⊂ P is a Gröbner basisof I, if for every polynomialf ∈ I the condition
lc≺ f ∈ 〈lc≺ Ḡf 〉R is satisfied. The setG is aweak involutive basisfor the involu-
tive divisionL, if for every polynomialf ∈ I the conditionlc≺ f ∈ 〈lc≺ Ḡf,L〉R
is satisfied. A weak involutive basis is astrong involutive basis, if every setḠf,L

contains precisely one element.

It is easy to see that the characterisation of (weak) involutive bases via the exis-
tence of involutive standard representations (Theorem 5.4) remains valid. Indeed,
only the first part of the proof requires a minor change: the polynomialf1 is now
of the formf1 = f −

∑

h∈Hf,L
rhh where the coefficientsrh ∈ R are chosen

such thatle≺ f1 ≺ le≺ f .
Clearly, a necessary condition for the existence of Gröbner and thus of (weak)

involutive bases for arbitrary left idealsI ⊂ P is that the algebraP is a (left)
Noetherian ring. As we have seen in Section 4, this assumption becomes non-
trivial, if the coefficient ringR is not a field. In this section, we will assume
throughout thatP is a polynomial algebra of solvable type over a left Noetherian
ringR with centred commutation relations (cf. Definition 4.3) so that Theorem 4.4
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asserts thatP is left Noetherian, too.8 A very useful side effect of this assumption
is that the scalars appearing in the commutation relations (5) are units and thus not
zero divisors which is important for some arguments.

Example 11.2As in the previous two sections, we cannot generally expect strong
involutive bases to exist. As a simple concrete example, also demonstrating the
need of the second assumption onR, we consider ink[x, y][z] (with the ordinary
multiplication) the idealI generated by the setF = {x2z−1, y2z+1}. Obviously,
both generators have the same leading exponent[1]; nevertheless none is reducible
by the other one due to the relative primeness of the coefficients. Furthermore, the
syzygyS = x2

e2 − y2
e1 ∈ k[x, y]2 connecting the leading coefficients leads to

the polynomialx2 + y2 ∈ I. It is easy to see that a Gröbner and weak Janet basis
of I is obtained by adding it toF . A strong Janet basis does not exist, as none of
these generators may be removed from the basis. ⊳

This example shows that simply applying the completion Algorithm 3 will
generally not suffice. Obviously, with respect to the Janet division z is multiplica-
tive for both elements ofF so that no non-multiplicative variables exist and thus
it is not possible to generate the missing generator by multiplication with a non-
multiplicative variable. We must substitute in Algorithm 3the involutive head au-
toreduction by a more comprehensive operation.9

Definition 11.3 Let F ⊂ P be a finite set andL an involutive division. We con-
sider for eachf ∈ F the syzygies

∑

f̄∈F̄f,L
sf̄ lc≺ f̄ = 0 connecting the leading

coefficients of the elements of the setF̄f,L. The setF is involutively R-saturated
for the divisionL, if for any such syzygyS the polynomial

∑

f̄∈F̄f,L
sf̄ f̄ possesses

an involutive standard representation with respect toF .

For checking involutiveR-saturation, it obviously suffices to consider a finite
basis of each of the finitely many syzygy modulesSyz(lc≺ F̄f,L) so that such
a check can easily be performed effectively. An elementf ∈ F is involutively
head reducible by the other elements ofF , if and only if Syz(lc≺ F̄f,L) contains
a syzygy withsf = 1. For this reason it is easy to combine an involutiveR-
saturation with an involutive head autoreduction leading to Algorithm 6.

8 The case of an iterated polynomial algebra of solvable type (cf. Definition 4.1) will be
considered in Part II, after we have developed a syzygy theory for involutive bases.

9 In the classical case of commutative variables over a coefficient field, it is not difficult to
show that for any finite setF the syzygy moduleSyz(lm≺F) of the leadingmonomialscan
be spanned by binomial generators corresponding to theS-polynomials in the Buchberger
algorithm. In Part II we will show that in any such syzygy at least one component contains
a non-multiplicative variable, so that implicitly the involutive completion algorithm also
runs over a generating set of this syzygy module. When we moveon to coefficient rings,
it is well-known that additional, more complicated syzygies coming from the coefficients
must be considered. For these we can no longer assume that onecomponent contains a non-
multiplicative variable. Hencepartially we must follow the same approach as in the gen-
eralisation of the Buchberger algorithm and this leads to the notion ofR-saturation where
some syzygies not reachable via non-multiplicative variables are explicitly considered.
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Thefor loop in Lines /5-13/ takes care of the involutive head autoreduction
(the callHeadReduceL,≺(f,H) involutively head reducesf with respect to the
setH \ {f} but with multiplicative variables determined with respectto the full
setH—cf. Remark 5.9). Thefor loop in Lines /17-22/ checks the involutiveR-
saturation. Each iteration of the outerwhile loop analyses from the remaining
polynomials (collected inS) those with the highest leading exponent. The setS is
reset to the full basis, whenever a new element has been put into H; this ensures
that all new reduction possibilities are taken into account. In Line /15/ it does not
matter which elementf ∈ Sν we choose, as the setH′

f,L depends only onle≺ f
and all elements ofSν possess by construction the same leading exponentν.

Algorithm 6 InvolutiveR-saturation (and head autoreduction)
Input: finite setF ⊂ P , involutive divisionL onNn

0

Output: involutivelyR-saturated and head autoreduced setH with 〈H〉 = 〈F〉
/1/ H ← F ; S ← F
/2/ while S 6= ∅ do
/3/ ν ← max≺ le≺ S ; Sν ← {f ∈ H | le≺ f = ν}
/4/ S ← S \ Sν ; H′ ←H
/5/ for all f ∈ Sν do
/6/ h← HeadReduceL,≺(f,H)
/7/ if f 6= h then
/8/ Sν ← Sν \ {f}; H′ ←H′ \ {f}
/9/ if h 6= 0 then
/10/ H′ ←H′ ∪ {h}
/11/ end if
/12/ end if
/13/ end for
/14/ if Sν 6= ∅ then
/15/ choosef ∈ Sν and determine the set̄H′

f,L

/16/ compute basisB of Syz(lc≺ H̄
′
f,L)

/17/ for all S =
P

f̄∈H̄′
f,L

sf̄ef̄ ∈ B do

/18/ h← NormalFormL,≺(
P

f̄∈H̄′
f,L

sf̄ f̄ ,H′)

/19/ if h 6= 0 then
/20/ H′ ←H′ ∪ {h}
/21/ end if
/22/ end for
/23/ end if
/24/ if H′ 6= H then
/25/ H ← H′; S ← H
/26/ end if
/27/ end while
/28/ return H

Proposition 11.4Under the made assumptions about the polynomial algebraP ,
Algorithm 6 terminates for any finite input setF ⊂ P with an involutivelyR-
saturated and head autoreduced setH such that〈H〉 = 〈F〉.
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Proof The correctness of the algorithm is trivial. The termination follows from the
fact that bothR andNn

0 are Noetherian. Whenever we add a new polynomialh
to the setH′, we have either thatle≺ h /∈ 〈le≺H′〉Nn

0
or lc≺ h /∈ 〈lc≺ H′

h,L〉R.
As neither inNn

0 nor in R infinite ascending chains of ideals are possible, the
algorithm must terminate after a finite number of steps. ⊓⊔

An obvious idea is now to substitute in the completion Algorithm 3 the involu-
tive head autoreduction by an involutiveR-saturation. Recall that Proposition 7.2
(and Corollary 7.3) was the crucial step for proving the correctness of Algorithm 3.
Our next goal is thus to show that under the made assumptions for involutivelyR-
saturated sets local involution implies weak involution.

Proposition 11.5Under the made assumptions about the polynomial algebraP ,
a finite, involutivelyR-saturated setF ⊂ P is weakly involutive, if and only if it
is locally involutive.

Proof We first note that Proposition 7.2 remains true under the madeassumptions.
Its proof only requires a few trivial modifications, as all appearing coefficients
(for example, when we rewritexµ → xµ−1j ⋆ xj) are units in the case of centred
commutation relations and thus we may proceed as for a field. Hence ifF is locally
involutive, thenI = 〈F〉 = 〈F〉L,≺ implying that any polynomialg ∈ I may be
written in the formg =

∑

f∈F Pf ⋆ f with Pf ∈ R[XL,F ,≺(f)]. Furthermore,
it follows from this proof that for centred commutation relations we may assume
that the polynomialsPf satisfyle≺ (Pf ⋆ f) = le≺ Pf +le≺ f . We are done, if we
can show that they can be chosen such that additionallyle≺ (Pf ⋆ f) � le≺ g, i. e.
such that we obtain an involutive standard representation of g.

If the representation coming out of the proof of Proposition7.2 already satisfies
this condition on the leading exponents, nothing has to be done. Otherwise we set
ν = max≺

{

le≺ (Pf ⋆ f) | f ∈ F
}

andFν = {f ∈ F | le≺ (Pf ⋆ f) = ν}. As by
constructionν ∈

⋂

f∈Fν
CL,le≺ F(le≺ f), the properties of an involutive division

imply that we can writeFν = {f1, . . . , fk} with le≺ f1 | le≺ f2 | · · · | le≺ fk and
henceFν ⊆ Ffk,L. Since we have assumed thatle≺ (Pf ⋆ f) = le≺ Pf + le≺ f ,
we even findFν ⊆ F̄fk,L.

By construction, the equality
∑

f∈Fν
lc≺ (Pf ⋆ f) = 0 holds. If we now set

lm≺ f = rfx
νf andlm≺ Pf = sfx

µf , then we obtain under the made assump-
tions: lc≺ (Pf ⋆ f) = sfρµf

(rf )rµf νf
=

[

sf ρ̄µf
(rf )rµf νf

]

rf and hence the
above equality corresponds to a syzygy of the setlc≺ Ffk,L. As the setF is invo-
lutively R-saturated, there exists an involutive standard representation

k
∑

i=1

[

sfi
ρ̄µfi

(rfi
)rµfi

νfi

]

f̄i =
∑

f∈F

Qf ⋆ f (27)

with Qf ∈ k[XL,F ,≺(f)] andle≺ (Qf ⋆ f) = le≺Qf + le≺ f ≺ νfk
.

Introducing now the polynomialsQ′
f = Qf −

[

sf ρ̄µf
(rf )rµf νf

]

xνfk
−νf for

f ∈ Fν andQ′
f = Qf otherwise, we get the syzygy

∑

f∈F Q
′
f ⋆ f = 0. If we set

P ′
f = Pf − c−1

f xν−νfk ⋆ Q′
f with cf = ρ̄ν−νfk

(

sf ρ̄µf
(rf )rµf νf

)

ρ̄µf
(rf )rµf νf

,
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then, by construction,g =
∑

f∈F P
′
f ⋆ f is another involutive representation of

the polynomialg with ν′ = max≺

{

le≺ (P ′
f ⋆ f) | f ∈ F

}

≺ ν.
Repeating this procedure for a finite number of times obviously yields an invo-

lutive standard representation of the polynomialg. As g was an arbitrary element
of the idealI = 〈F〉, this implies thatF is indeed weakly involutive. ⊓⊔

Theorem 11.6LetP be a polynomial algebra of solvable type satisfying the made
assumptions. If the subalgorithmInvHeadAutoReduceL,≺ is substituted in Algo-
rithm 3 by Algorithm 6, then the completion will terminate with a weak involutive
basis ofI = 〈F〉 for any finite input setF ⊂ P such that the monoid idealle≺ I
possesses a weak involutive basis.

Proof The correctness of the modified algorithm follows immediately from Propo-
sition 11.5. For the termination we may use the same argumentas in the proof of
Theorem 7.4, as it depends only on the leading exponents. ⊓⊔

12 Conclusions

We studied involutive bases for a rather general class of non-commutative poly-
nomial algebras. Our approach was closely modelled on that of Kandry-Rody and
Weispfenning [41] and subsequently Kredel [42]. We believethat the third condi-
tion in Definition 3.1 (compatibility between term order≺ and non-commutative
product⋆) is more natural than the stricter axioms in [41]. It is unclear where
Kandry-Rody and Weispfenning actually needed these stricter conditions, as all
their main results hold in our more general situation, as shown by Kredel.

Comparing with [2,13,42,45], one must say that the there used approach is
more constructive than ours. More precisely, all these authors specify the non-
commutative product via commutation relations and thus have automatically a
concrete algorithm for evaluating any product. As we have seen in the proof of
Proposition 3.4, the same data suffices to fix our axiomatically described product,
but it does not provide us with an algorithm. However, we showed that we can
always map to their approach via a basis transformation.

We showed that the polynomial algebras of solvable type forma natural frame-
work for involutive bases. This fact does not come as a surprise, if one takes into
account that the main part of the involutive theory happens in the monoidNn

0 and
the decisive third condition in Definition 3.1 of a polynomial algebra of solvable
type ensures that its product⋆ does not interfere with the leading exponents.

We extended the theory of involutive bases to semigroup orders and to poly-
nomials over coefficient rings. It turned out that the novel concept of aweakin-
volutive basis is crucial for such generalisations, as in both cases strong bases
rarely exist. These weak bases are still Gröbner bases and involutive standard rep-
resentations still exist (though they are no longer unique). It seems that in such
computations the Janet division has a distinguished position, as by Theorem 9.11
strong Janet bases always exist. If one is only interested inusing Algorithm 3 as an
alternative to Buchberger’s algorithm, weak bases are sufficient. However, most of
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the more advanced applications of involutive bases studiedin Part II will require
strong involutive bases.

Concerning involutive bases over rings, we will study in Part II the special
case that the coefficient ring is again a polynomial algebra of solvable type. Using
the syzygy theory that will be developed there, we will be able to obtain stronger
results and a “purely involutive” completion algorithm. The current approach con-
tains hidden in the concept ofR-saturation parts of the Buchberger algorithm for
the construction of Gröbner bases over rings.

Definition 2.1 represents the currently mainly used definition of an involutive
division. While it appears quite natural, one problem is that in some sense too many
involutive divisions exist, in particular rather weird ones with unpleasant proper-
ties (a concrete example can be found in [20, Ex. 4.8]). This effect has lead to
the introduction of such technical concepts like continuity and constructivity. One
could imagine that there should exist a stricter definition of involutive divisions
that automatically ensures that Algorithm 2 terminates without having to resort to
these technicalities.

Most of these weird divisions are globally defined and multiplicative indices
are assigned only to finitely many multi indices. Such divisions are obviously of
no interest, as more or less no monoid ideal possesses an involutive basis for them.
One way to eliminate these divisions would be to require thatfor every degree
q ∈ N0 the monoid ideal(Nn

0 )≥q = {ν ∈ Nn
0 | q ≤ |ν|} has an involutive basis.

All the involutive divisions used in practice satisfy this condition, but it is still a
long way from this simple condition to the termination of Algorithm 2.

We did not discuss the efficiency of the here presented algorithms. Much of the
literature on involutive bases is concerned with their use as an alternative approach
to the construction of Gröbner bases. In particular, experiments by Gerdt et al. [23]
comparing a specialisedC/C++ program for the construction of Janet bases with
the Gröbner bases package of SINGULAR [31] indicate that the involutive approach
is highly competitive. This fact is quite remarkable, if onetakes into account that
SINGULAR is based on the results of many years of intensive research onGröbner
bases by many groups, whereas involutive bases are still very young and only a few
researchers have actively worked on them. The results in Part II will offer some
heuristic explanations for this observation.

Finally, we mention that most of the algorithms discussed inthis article have
been implemented (for general polynomial algebras of solvable type) by M. Haus-
dorf [33,34] in the computer algebra systemMuPAD.10 The implementation does
not use the simple completion Algorithm 3 but a more optimised version yielding
minimal bases developed by Gerdt and Blinkov [21]. It also includes the modified
algorithm for determining strong Janet bases in local rings.

A Term Orders

We use in this article non-standard definitions of some basicterm orders. More
precisely, we revert the order of the variables: our definitions become the standard

10 For more information seewww.mupad.de.
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ones, if one transforms(x1, . . . , xn) → (xn, . . . , x1). The reason for this reversal
is that this way the definitions fit better to the conventions in the theory of invo-
lutive systems of differential equations. Furthermore, they appear more natural in
some applications like the determination of the depth in Part II.

A term order≺ is for us a total order on the setT of all termsxµ satisfying
the following two conditions: (i)1 � t for all termst ∈ T and (ii) s � t implies
r · s � r · t for all termsr, s, t ∈ T. If a term order fulfils in addition the condition
thats ≺ t wheneverdeg s < deg t, it is calleddegree compatible. AsT andNn

0

are isomorphic as monoids, we may also speak of term orders onNn
0 . In fact, most

term orders are defined via multi indices.

A more appropriate name for term orders might bemonoid orders, as the two
conditions above say nothing but that these orders respect the monoid structure
of T. A more general class of (total) orders aresemigroup orderswhere we skip
the first condition, i. e. we only take the semigroup structure ofT into account. It
is a well-known property of such orders that they are no longer well-orders. This
implies in particular the existence of infinite descending sequences so that normal
form algorithms do not necessarily terminate.

The lexicographicorder is defined byxµ ≺lex x
ν , if the last non-vanishing

entry of µ − ν is negative. Thusx2
2x3 ≺lex x1x

2
3. With respect to thereverse

lexicographicorderxµ ≺revlex x
ν , if the first non-vanishing entry ofµ − ν is

positive. Now we havex1x
2
3 ≺revlex x

2
2x3. However,≺revlex is only a semigroup

order, as it violates the first condition:x1 ≺revlex 1. Degree compatible versions of
these orders exist, too.xµ ≺deglex x

ν , if |µ| < |ν| or if |µ| = |ν| andxµ ≺lex x
ν .

Similarly,xµ ≺degrevlexx
ν , if |µ| < |ν| or if |µ| = |ν| andxµ ≺revlex x

ν . Obviously
≺degrevlexis a term order. It possesses the following useful characterisation which
is easy to prove.

Lemma A.1 Let ≺ be a degree compatible term order such that the condition
lt≺ f ∈ 〈x1, . . . , xk〉 is equivalent tof ∈ 〈x1, . . . , xk〉 for every homogeneous
polynomialf ∈ P . Then≺ is the degree reverse lexicographic order≺degrevlex.

We say that a term orderrespects classes, if for multi indicesµ, ν of the same
lengthclsµ < cls ν impliesxµ ≺ xν . It is now easy to see that by Lemma A.1 on
terms of the same degree any class respecting term order onT coincides with the
degree reverse lexicographic order. If we consider free polynomial modules, class
respecting orders have the same relation toTOP lifts [1] of ≺degrevlex.
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