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Abstract Much of the existing literature on involutive bases concentrates on
their efficient algorithmic construction. By contrast, we are here more concerned
with their structural properties. Pommaret bases are particularly useful in this re-
spect. We show how they may be applied for determining the Krull and the projec-
tive dimension, respectively, and the depth of a polynomialmodule. We use these
results for simple proofs of Hironaka’s criterion for Cohen-Macaulay modules and
of the graded form of the Auslander-Buchsbaum formula, respectively.

Special emphasis is put on the syzygy theory of Pommaret bases and its use for
the construction of a free resolution which is generically minimal for component-
wise linear modules. In the monomial case, the arising complex always possesses
the structure of a differential algebra and it is possible toderive an explicit formula
for the differential. Here a minimal resolution is obtained, if and only if a stable
module is treated. These observations generalise results by Eliahou and Kervaire.

Using our resolution, we show that the degree of the Pommaretbasis with
respect to the degree reverse lexicographic term order is always the Castelnuovo-
Mumford regularity. This approach leads to new proofs for a number of character-
isations of this invariant proposed in the literature. Thisincludes in particular the
criteria of Bayer/Stillman and Eisenbud/Goto, respectively. We also relate Pom-
maret bases to the recent work of Bermejo/Gimenez and Trung on computing the
Castelnuovo-Mumford regularity via saturations.

It is well-known that Pommaret bases do not always exist but only in so-called
δ-regular coordinates. We show that several classical results in commutative alge-
bra, holding only generically, are true for these special coordinates. In particular,
they are related to regular sequences, independent sets of variables, saturations and
Noether normalisations. Many properties of the generic initial ideal hold also for
the leading ideal of the Pommaret basis with respect to the degree reverse lexico-
graphic term order, although the latter one is in general notBorel-fixed. We present
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a deterministic approach for the effective construction ofδ-regular coordinates that
is more efficient than all methods proposed in the literatureso far.

1 Introduction

Rees [59] introduced a combinatorial decomposition of finitely generated polyno-
mial modules and related it for graded modules to the Hilbertseries. Later, more
general decompositions ofk-algebras were studied by Stanley and several other
authors (see e. g. [7,13,68,69]), especially in the contextof Cohen-Macaulay com-
plexes but also for other applications like invariant theory or the theory of normal
forms of vector fields with nilpotent linear part. Sturmfelsand White [74] pre-
sented algorithms to compute various combinatorial decompositions.

Apparently all these authors have been unaware that similardecompositions
are implicitly contained in the Janet-Riquier theory of differential equations [48].
In fact, they represent the fundamental idea underlying this theory. Involutive bases
combine this idea with concepts from Gröbner bases. As we have seen in Part I, one
may consider (strong) involutive bases as those Gröbner bases which automatically
induce a combinatorial decomposition of the ideal they generate.

The main goal of this second part is to show that Pommaret bases possess a
number of special properties not shared by other involutivebases which makes
them particularly useful for the kind of structure analysisof polynomial modules
typically needed in algebraic geometry. A number of important invariants can be
directly read off a Pommaret basis without any further computations. One reason
for this phenomenon is that Pommaret bases induce the special type of decompo-
sition introduced by Rees [59] and which now carries his name.

In their classical works on singularities, Hironaka [44–46] and Grauert [32]
developed a concept of standard bases for ideals in rings of power series. A closer
analysis of their definitions shows that their bases correspond not to arbitrary
Gröbner bases but to Pommaret bases. Later, Amasaki [3,4] followed up these
ideas and explicitly introduced Pommaret bases for polynomial ideals under the
name Weierstraß bases because of their connection to the Weierstraß Preparation
Theorem. In his study of their properties, Amasaki obtainedto some extent results
which are similar to the ones presented here, however in a different way.

This second part is organised as follows. Section 2 discusses the problem of
δ-regularity and thus of the existence of Pommaret bases. It develops an effec-
tive method for the construction ofδ-regular coordinates for any ideal without
destroying too much sparsity. This method is based on a comparison of the Janet
and Pommaret multiplicative variables for a given basis. Asa first application,
we determine the depth of a polynomial idealI and a simple maximalI-regular
sequence.

The following section studies combinatorial decompositions of general poly-
nomial modules using involutive bases. A trivial application, already noticed by
Janet [48] and Stanley [68], is the determination of the Hilbert series and thus
of the Krull dimension. For Pommaret bases an alternative characterisation of the
dimension can be given which is related to Gröbner’s approach via maximal in-
dependent sets of variables [35,50]. Extending our previous results on the depth
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from submodules to arbitrary polynomial modules, we obtainas a simple corollary
Hironaka’s criterion for Cohen-Macaulay modules.

Section 4 discusses the relation betweenδ-regularity and Noether normalisa-
tion. It turns out that searchingδ-regular coordinates for an idealI is equivalent
to putting simultaneouslyI and all primary components oflt≺I into Noether po-
sition. As a by-product we provide a number of equivalent characterisations for
monomial ideals possessing a Pommaret basis and show how an irredundant pri-
mary decomposition of such ideals can be easily obtained. These results are heav-
ily based on recent work by Bermejo and Gimenez [12].

Section 5 develops the syzygy theory of involutive bases. Weshow that the
involutive standard representations of the non-multiplicative multiples of the gen-
erators induce a Gröbner basis (for an appropriately chosen term order) of the first
syzygy module. Essentially, this involutive form of Schreyer’s theorem follows
from the ideas behind Buchberger’s second criterion for redundantS-polynomials.
For Janet and Pommaret bases the situation is even better, asthe arising Gröbner
basis is then again a Janet and Pommaret basis, respectively.

In the next three sections we construct by iteration of this result free resolu-
tions of minimal length. We first outline the construction for arbitrary polynomial
modules with a Pommaret basis. Then we specialise to monomial modules where
one can always endow the resolution with the structure of a differential algebra
and provide an explicit formula for the differential. Most of these results are in-
spired by and generalisations of the work of Eliahou and Kervaire [27]. Finally,
we study those modules for which the obtained resolution is even minimal. It turns
out that minimality is obtained only for componentwise linear modules. As a by-
product, we develop an effective method for deciding whether or not a module is
componentwise linear.

In Section 9 we show that the degree of a Pommaret basis with respect to the
degree reverse lexicographic order equals the Castelnuovo-Mumford regularity of
the ideal. Together with our method for the construction ofδ-regular coordinates,
this result leads to a simple effective method for the computation of this important
invariant. As corollaries we recover characterisations ofthe Castelnuovo-Mumford
regularity previously proposed by Bayer/Stillman [10] andEisenbud/Goto [25]. In
the following section we discuss the relation between regularity and saturation
from the point of view of Pommaret bases. Here we make contactwith recent
works of Trung [78] and Bermejo/Gimenez [12].

Finally, we apply the previously developed syzygy theory tothe construction of
involutive bases in iterated polynomial algebras of solvable type. A rather technical
appendix clarifies the relation between Pommaret bases and the Sturmfels-White
approach [74] to the construction of Rees decompositions.

2 Pommaret Bases andδ-Regularity

We saw in Part I (Example 2.12) that not every monoid ideal inNn
0 possesses a

finite Pommaret basis: the Pommaret division is not Noetherian. Obviously, this
also implies that there are polynomial idealsI ⊆ P = k[x1, . . . , xn] without a
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finite Pommaret basis for a given term order. However, we willshow that at the
level of polynomialideals this problem may be considered as solely a question of
choosing “good” variablesx. For this purpose, we take in the sequel the following
point of view: term orders are defined for exponent vectors, i. e. on the monoidNn

0 ;
performing a linear change of variablesx̃ = Ax leads to new exponent vectors in
each polynomial which are then sorted according to the same term order as before.

Definition 2.1 The variablesx are δ-regularfor the idealI ⊆ P and the term
order≺, if I possesses a finite Pommaret basis for≺.

Given our definition of an involutive basis, it is obvious that δ-regularity con-
cerns the existence of a Pommaret basis for the monoid idealle≺I. A coordinate
transformation generally yields a new leading ideal which may possess a Pom-
maret basis. In fact, we will show in this section that for every polynomial ideal
I ⊆ P variablesx exist such thatI has a finite Pommaret basis provided that the
chosen term order≺ is class respecting.1

Besides showing the mere existence ofδ-regular variables, we will develop in
this section an effective approach to recognisingδ-singular coordinates and trans-
forming them intoδ-regular ones. It is inspired by the work of Gerdt [29] on the
relation between Pommaret and Janet bases and the key ideas have already been
used in the context of the combined algebraic-geometric completion to involution
of linear differential equations [39]. However, the approach presented in [39] con-
tains gaps2 and we develop here a modified version avoiding the problems of [39].
We begin by proving two useful technical lemmata. The numbermaxh∈H deg h is
called thedegreeof the finite setH ⊂ P and denoted bydegH.

Lemma 2.2Let the setH be a homogeneous Pommaret basis of the homogeneous
idealI ⊆ P . Then for any degreeq ≥ degH a Pommaret basis of the truncated
idealI≥q =

⊕

p≥q Ip is given by

Hq =
{

xµh | h ∈ H, |µ| + deg h = q, ∀j > clsh : µj = 0
}

. (1)

Conversely, ifI≥q possesses a finite Pommaret basis, then so doesI.

Proof According to the conditions in (1), each polynomialh ∈ H is multiplied by
termsxµ containing only variables which are multiplicative for it.Thus trivially
cls (xµh) = cls µ. Furthermore,Hq is involutively head autoreduced, asH is.
Now let f ∈ I≥q be an arbitrary homogeneous polynomial. AsH is a Pommaret
basis ofI, it has a standard representationf =

∑

h∈H Phh with polynomials
Ph ∈ k[x1, . . . , xcls h]. Hencef can be written as a linear combination of polyno-
mialsxνh where|ν| = deg f − deg h ≥ q − deg h and wherexν contains only
multiplicative variables. We decomposeν = µ + ρ with |µ| = q − deg h and
ρj = 0 for all j > clsµ. Thusxνh = xρ(xµh) with xµh ∈ Hq andxρ contains

1 Recall from the appendix of Part I that any class respecting term order coincides on
terms of the same degree with the reverse lexicographic order.

2 I am indebted to Daniel Robertz and an anonymous referee for pointing out these gaps.
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only variables multiplicative for it. But this trivially implies the existence of a stan-
dard representationf =

∑

h′∈Hq
Ph′h′ with Ph′ ∈ k[x1, . . . , xcls h′ ] and thusHq

is a Pommaret basis ofI≥q.
The converse is also very simple. LetHq be a finite Pommaret basis of the

truncated idealI≥q andHp head autoreducedk-linear bases of the components
Ip for 0 ≤ p < q. If we setH =

⋃q
p=0 Hp, then le≺H is obviously a weak

Pommaret basis of the full monoid idealle≺I and by Proposition 5.7 of Part I an
involutive head autoreduction yields a strong basis. ⊓⊔
Lemma 2.3With the same notations as in Lemma 2.2, letN = le≺Hq. If ν ∈ N
with cls ν = k, then3 ν − 1k + 1j ∈ N for all k < j ≤ n. Conversely, let
N ⊆ (Nn

0 )q be a set of multi indices of degreeq. If for eachν ∈ N with cls ν = k
and eachk < j ≤ n the multi indexν − 1k + 1j is also contained inN , then the
setN is involutive for the Pommaret division.

Proof j is non-multiplicative forν. AsN is an involutive basis ofle≺I≥q, it must
contain a multi indexµ with µ |P ν + 1j . Obviously,cls (ν + 1j) = k and thus
cls µ ≥ k. Because of|µ| = |ν|, the only possibility isµ = ν + 1j − 1k. The
converse is trivial, as each non-multiplicative multiple of ν ∈ N is of the form
ν + 1j with j > k = cls ν and hence hasν − 1k + 1j as an involutive divisor. ⊓⊔

As in concrete computations one always represents an idealI ⊆ P by some
finite generating setF ⊂ I, we also introduce a notion of regularity for such sets.
Assume that the given setF is involutively head autoreduced with respect to an
involutive divisionL and a term order≺. In general,F is not an involutive basis
of I, but its involutive span〈F〉L,≺ is only a proper subset ofI.

We consider now a linear change of coordinatesx̃ = Ax defined by a reg-
ular matrixA ∈ kn×n. It transforms eachf ∈ P into a polynomialf̃ ∈ P̃ =k[x̃1, . . . , x̃n] of the same degree. Thus a given setF ⊂ P is transformed into a
setF̃ ⊂ P̃ which generally is no longer involutively head autoreduced. Perform-
ing an involutive head autoreduction yields a setF̃△. Again F̃△ will in general
not be an involutive basis of the transformed idealĨ ⊆ P̃ .

Since we are dealing with homogeneous polynomials, we can use Hilbert func-
tions to measure the size not only of ideals but also of involutive spans. Recall
that the Hilbert function of the idealI is given byhI(r) = dim Ir for all in-
tegersr ≥ 0. For an involutively head autoreduced setF we define similarly
hF ,L,≺(r) = dim (〈F〉L,≺)r. Obviously,hF ,L,≺(r) ≤ hI(r) for all r ≥ 0 with
equality holding only, ifF is an involutive basis. The same inequality is true for
the Hilbert functionhF̃△,L,≺ defined by the transformed basis̃F△.

According to Lemma 5.12 of Part I, the setF defines a direct sum decomposi-
tion of the involutive span〈F〉L,≺. This observation allows us to provide a simple
explicit formula for the Hilbert function

hF ,L,≺(r) =
∑

f∈F

(

r − qf + kf − 1

r − qf

)

(2)

3 Recall from Part I thatℓi denotes for any numberℓ ∈ N the multi index where all
entries except theith one vanish and theith one is given byℓ.
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whereqf = deg f andkf denotes the number of multiplicative variables off (for
r < qf we understand that the binomial coefficient is zero). Indeed, the binomial
coefficient in (2) is easily seen to give the number of multiplicative multiples off
of degreer and thus the contribution off to the involutive span at this degree.

Obviously, a linear change of coordinates does not affect the Hilbert function
of an ideal and thus we findhI = hĨ . However, this is not true for the Hilbert
functions of the involutive spans〈F〉L,≺ and〈F̃△〉L,≺, respectively. We may now
measure the effect of the made coordinate transformation bycomparing the asymp-
totic behaviour ofhF ,L,≺ andhF̃△,L,≺.

Definition 2.4 Let the finite setF ⊂ P be involutively head autoreduced with re-
spect to the Pommaret division and a term order≺. The coordinatesx areasymp-
totically regularfor F and≺, if after any linear change of coordinatesx̃ = Ax the
inequalityhF ,P,≺(r) ≥ hF̃△,P,≺(r) holds for all sufficiently large valuesr ≫ 0.

Example 2.5Let us reconsider Example 2.12 of Part I. It corresponds to the set
F = {xy} ⊂ k[x, y] with the degree reverse lexicographic order. Independent of
how we order the variables, the class ofxy is 1. Hence we havehF ,P,≺(r) = 1
for all r > 1. After the change of coordinatesx = x̃ + ỹ andy = ỹ, we obtain the
setF̃ = {ỹ2 + x̃ỹ} ⊂ k[x̃, ỹ]. Its leading term is̃y2 which is of class2 implying
that hF̃,P,≺(r) =

(

r−1
r−2

)

= r − 1 for r > 1. Thus the original coordinates are
not asymptotically regular forF and we know from Part I that they are also not
δ-regular for the idealI = 〈F〉. ⊳

Note that, given variablesx, generally asymptotic regularity for a finite setF
according to Definition 2.4 andδ-regularity for the idealI = 〈F〉 according to
Definition 2.1 are independent properties. For a concrete instance where the two
concepts differ see Example 2.7 below. The main point is thatδ-regularity for the
idealI is concerned with the monoid idealle≺I whereas asymptotic regularity for
the setF depends on the ideal〈le≺F〉 ⊆ le≺I. However, in some cases the two
notions are related. A simple instance is given by the following result.

Proposition 2.6Let the coordinatesx be δ-regular for the idealI ⊆ P and the
term order≺. If the setH is a Pommaret basis ofI for ≺, then the coordinatesx
are asymptotically regular forH and≺.

Proof If the setH is a Pommaret basis ofI, then the two Hilbert functionshI

andhH,P,≺ coincide. As obviously for any generating setF of the idealI in any
coordinate system the inequalityhF ,P,≺(r) ≤ hI(r) holds for all r ≥ 0, our
coordinates are indeed asymptotically regular. ⊓⊔

δ-Regularity of the used coordinatesx represents a trivial necessary condition
for the existence of Pommaret bases for an idealI ⊆ P . From an algorithmic point
of view, their asymptotic regularity for the current basisH is equally important for
the effective construction of a Pommaret basis by the completion Algorithm 3 of
Part I. Even if the used coordinatesx are δ-regular for the idealI, it may still
happen that the algorithm will not terminate, as it tries to construct an infinite
Pommaret basis for the monoid ideal〈le≺H〉.
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Example 2.7One of the simplest instance where this termination problemoccurs
is not for an ideal but for a submodule of the freek[x, y]-module with basis
{e1, e2}. Consider the setF = {y2e1, xye1 + e2, xe2} and any term order for
which xye1 ≻ e2. The used coordinates are not asymptotically regular forF , as
any transformation of the formx = x̄ + aȳ with a 6= 0 will increase the Hilbert
function. Nevertheless, the used coordinates areδ-regular for the submodule〈F〉:
adding the generatorye2 (theS-“polynomial” of the first two generators) makes
F to a reduced Gröbner basis which is simultaneously a minimal Pommaret basis.

Note that the termination of the involutive completion algorithm depends here
on the precise form of the used term order. If we havexyke2 ≺ xy2e1 for all
exponentsk ∈ N, then the algorithm will not terminate, as in thekth iteration
it will add the generatorxyke2. Otherwise, it will treat at some stage the non-
multiplicative producty · (xye1 + e2) and thus find the decisive generatorye2.
This is in particular the case for any degree compatible order.

Another simple example is provided by the setF = {z2 − 1, yz − 1, x} ⊂k[x, y, z] together with the lexicographic term order≺lex. The involutive comple-
tion algorithm will iterate infinitely adding all monomialsof the formxyk with
k ≥ 1. Nevertheless, a finite Pommaret basis of〈F〉 for ≺lex exists and is given
byH = {z − y, y2 − 1, xy, x}. ⊳

Remark 2.8For Definition 2.4 of asymptotic regularity for a finite setF , the be-
haviour at lower degrees is irrelevant and it suffices to consider the involutive span
of F for degrees beyondq = degF . Thus we can proceed as in Lemma 2.2 and re-
placeF by the setFq defined in analogy to (1), i. e. we consider all multiplicative
multiples of degreeq of elements ofF . If we perform a coordinate transformation
and a subsequent involutive head autoreduction, then we obtain a setF̃△

q where
again all elements are of degreeq.

It is now very easy to decide which Hilbert function becomes asymptotically
larger. Letβ(k)

q denote the number of generators inFq which are of classk and

similarly β̃
(k)
q for the setF̃△

q . In our special case, it follows immediately from
(2) that both Hilbert functions are actually polynomials for r ≥ q. Furthermore,
an expansion of the binomial coefficients in (2) shows that ifwe write the Hilbert
function in the formhF ,P,≺(q + r) =

∑n−1
k=0 hir

i, then each coefficienthi is

determined by a linear combination ofβ
(i+1)
q , . . . , β

(n)
q with positive coefficients.

Thus we must simply compare firstβ
(n)
q andβ̃

(n)
q , thenβ

(n−1)
q andβ̃

(n−1)
q , and

so on, until for the first time one coordinate system leads to alarger value; the
corresponding Hilbert function is asymptotically larger. ⊳

Choosing an arbitrary reference coordinate systemx̂, we identify every system
of coordinatesx with the unique regular transformation matrixA ∈ kn×n for
which x = Ax̂. The next result says that asymptotic regularity for a setF of
polynomials is a generic property in the sense of the Zariskitopology, i. e. almost
all coordinates are asymptotically regular forF .

Proposition 2.9The coordinate systemsx which are asymptotically singular for a
finite involutively head autoreduced setF ⊂ P and a term order≺ form a Zariski
closed proper subset ofkn×n.
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Proof By the considerations in Remark 2.8, it suffices to consider the case that all
elements ofF possess the same degree. Let us now perform a coordinate transfor-
mationx̄ = Ax with an undetermined matrixA, i. e. we are treating its entries as
parameters. This obviously leads to an asymptotically regular coordinate system,
as each polynomial iñF△ will get its maximally possible class. Asymptotically
singular coordinates are defined by the vanishing of certain(leading) coefficients.
These coefficients are polynomials in the entries ofA. Thus the set of all asymptot-
ically singular coordinate systems can be described as the zero set of an ideal. ⊓⊔

Our goal is an effective criterion for recognising that coordinates are asymptot-
ically singular for a given setF and a class respecting term order. The basic idea
consists of comparing the multiplicative variables assigned by the Pommaret and
the Janet division, respectively. The definitions of these two divisions are appar-
ently quite different. Somewhat surprisingly, they nevertheless yield very similar
sets of multiplicative indices, as shown by Gerdt and Blinkov [30, Prop. 3.10].

Proposition 2.10Let the finite setN ⊂ Nn
0 be involutively autoreduced with re-

spect to the Pommaret division. ThenNP (ν) ⊆ NJ,N (ν) for all ν ∈ N .

For later use, we mention the following simple corollaries which further study
the relationship between the Janet and the Pommaret division. Recall that any set
N ⊂ Nn

0 is involutively autoreduced with respect to the Janet division. We first
note that by an involutive autoreduction ofN with respect to thePommaretdivi-
sion itsJanetspan can become only larger but not smaller.

Corollary 2.11 Let N ⊂ Nn
0 be an arbitrary finite set of multi indices and set

NP = N \
{

ν ∈ N | ∃µ ∈ N : µ |P ν
}

, i. e. we eliminate all multi indices
possessing a Pommaret divisor inN . Then〈N〉J ⊆ 〈NP 〉J .

Proof If µ(1) |P µ(2) andµ(2) |P ν, then trivially µ(1) |P ν. Thus for each elimi-
nated multi indexν ∈ N \ NP another multi indexµ ∈ NP exists withµ |P ν.
Let cls µ = k. By the proposition above{1, . . . , k} ⊆ NJ,NP

(µ). Assume that an
index j > k exists withj ∈ NJ,N (ν). By definition of the Pommaret division,
µi = νi for all i > k. Thusµ ∈ (νj+1, . . . , νn) andj ∈ NJ,N (µ). As by the
second condition on an involutive divisionNJ,N (µ) ⊆ NJ,NP

(µ) for all µ ∈ NP ,
we conclude thatj ∈ NJ,NP

(µ) andCJ,N (ν) ⊂ CJ,NP
(µ). But this immediately

implies〈N〉J ⊆ 〈NP 〉J . ⊓⊔

This observation implies that any Pommaret basis is simultaneously a Janet
basis (a similar result is contained in [29, Thm. 17]). Thus if H is a Pommaret
basis, thenXP,≺(h) = XJ,H,≺(h) for all polynomialsh ∈ H.

Corollary 2.12 Let the finite setH ⊂ P be involutive with respect to the Pommaret
division (and some term order). ThenH is also involutive for the Janet division.

Proof By the proposition above, it is obvious that the setH is at least weakly
involutive with respect to the Janet division. For the Janetdivision any weakly
involutive set is strongly involutive, if no two elements have the same leading
terms. But asH is a Pommaret basis, this cannot happen. ⊓⊔
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We show now that for an asymptotically regular coordinate system and a class
respecting term order the inclusions in Proposition 2.10 must be equalities. In other
words, if a variablexℓ exists which is multiplicative for an element ofF with
respect to the Janet division but non-multiplicative with respect to the Pommaret
division, then the used coordinates are asymptotically singular forF . Our proof
is constructive in the sense that it shows us how to find coordinates leading to a
larger Hilbert function.

Theorem 2.13Let the finite setF ⊂ P be involutively head autoreduced for the
Pommaret division and a class respecting term order≺ and the fieldk be infinite.
If the setF possesses more multiplicative variables for the Janet division than for
the Pommaret division, then the coordinatesx are asymptotically singular for it.

Proof By the proposition above, we haveXP,≺(f) ⊆ XJ,F ,≺(f) for all f ∈ F .
Assume that for a polynomialh ∈ F the strict inclusionXP,≺(h) ⊂ XJ,F ,≺(h)
holds. Thus a variablexℓ ∈ XJ,F ,≺(h) with ℓ > k = cls h exists. If we define
the setFq for q = degF as in Remark 2.8, thenFq contains in particular the
generatorxq−deg h

k h which is still of classk. It is easy to see that the variablexℓ is
also Janet multiplicative for this generator. Hence we may again assume without
loss of generality that all elements ofF are of the same degreeq.

We perform now the following linear change of variables:xi = x̃i for i 6= k
andxk = x̃k + ax̃ℓ with a yet arbitrary parametera ∈ k \ {0}. It induces the
following transformation of the termsxµ ∈ T:

xµ =

µk
∑

j=0

(

µk

j

)

aj x̃µ−jk+jℓ . (3)

x̃µ is on the right hand side the only term whose coefficient does not depend on
the parametera. All other terms appearing there are greater for a class respecting
term order (and their coefficients are different powers ofa). Let le≺h = µ. Thus
µ = [0, . . . , 0, µk, . . . , µn] with µk > 0. We consider now the multi indexν =
µ − (µk)k + (µk)ℓ; obviously,cls ν > k. Applying our transformation to the
polynomialh leads to a polynomial̃h containing the term̃xν . Note thatν cannot
be an element ofle≺F . Indeed, if it was, it would be an element of the same set
(µℓ+1, . . . , µn) asµ. But this contradicts our assumption thatℓ is multiplicative for
the multi indexµ with respect to the Janet division, as by constructionνℓ > µℓ.

Transforming all polynomialsf ∈ F yields the setF̃ on which we perform an
involutive head autoreduction in order to obtain the setF̃△. Under our assumption
on the size of the ground fieldk, we can choose the parametera such that after
the transformation each polynomialf̃ ∈ F̃ has at least the same class as the cor-
responding polynomialf ∈ F , as our term order respects classes. This is a simple
consequence of (3): cancellations of terms may occur only, if the parametera is a
zero of some polynomial (possibly one for each member ofF ) with a degree not
higher thandegF .

We know already that for the polynomialh considered above the transforma-
tion leads to a polynomial̃h of greater class. We consider now all polynomials
f ∈ F with cls f > k andh. After the change of variables all the transformed
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polynomials will thus have a class greater thank. Because of the special form
of our transformation, the old leading exponent always remains in the support of
each transformed polynomial and if exponents appear which are greater for our
term order, then they are always accompanied by a coefficientdepending ona.
Furthermore, we noted above thatν was not contained inle≺F . As all our gen-
erators are of the same degreeq, an involutive head autoreduction amounts to a
simple Gaussian elimination. For a generic choice of the parametera, it follows
from our considerations above that even after the involutive head autoreduction
each generator has at least the same class as in the original setF (and at least one
a higher class).

Taking the remaining members ofF into account may only increase the num-
ber of elements iñF△ having a class greater thank. But this implies that at least
one of the values̃β(k+1)

q , . . . , β̃
(n)
q is larger than the corresponding value for the

original setF . By Remark 2.8, the Hilbert function of̃F△ is then asymptotically
greater than the one ofF and our coordinates are not asymptotically regular.⊓⊔

Corollary 2.14 If the coordinatesx are asymptotically regular for the finite, Pom-
maret head autoreduced setF ⊂ P , then with respect to a class respecting term
order≺ we haveXP,≺(f) = XJ,F ,≺(f) for all generatorsf ∈ F .

It is important to note that this corollary provides us only with a necessary
but not with a sufficient criterion for asymptotic regularity of thecoordinatesx.
In other words, even if the Janet and the Pommaret division yield the same mul-
tiplicative variables for a given Pommaret head autoreduced setF ⊂ P , this fact
does not imply that the used coordinates are asymptoticallyregular forF .

Example 2.15LetF =
{

z2 − y2− 2x2, xz +xy, yz + y2 +x2
}

. The underlined
terms are leading for the degree reverse lexicographic order. One easily checks that
the Janet and the Pommaret division yield the same multiplicative variables. If we
perform the transformatioñx = z, ỹ = y+z andz̃ = x, then after an autoreduction
we obtain the set̃F△ =

{

z̃2 − x̃ỹ, ỹz̃, ỹ2
}

. Again the Janet and the Pommaret
division lead to the same multiplicative variables, but theHilbert functionhF ,P,≺

is asymptotically smaller thanhF̃△,P,≺, as we findβ(2)
2 = 1 < 2 = β̃

(2)
2 . Thus the

coordinates(x, y, z) are not asymptotically regular forF .
The explanation of this phenomenon is very simple. Obviously our criterion

depends only on the leading terms of the setF . In other words, it analyses the
monomial ideal〈lt≺F〉. Here〈lt≺F〉 = 〈xz, yz, z2〉 and one easily verifies that
the used generating set is already a Pommaret basis. However, for I = 〈F〉 the
leading ideal islt≺I = 〈x3, xz, yz, z2〉 (one obtains a Janet basis forI by adding
the polynomialx3 toF ) and obviously it does not possess a finite Pommaret basis,
as such a basis would have to contain all monomialsx3yk with k ∈ N (or we
exploit our criterion noting thaty is a Janet but not a Pommaret multiplicative
variable forx3). Thus we have the opposite situation compared to Example 2.7:
therelt≺I had a finite Pommaret basis but〈lt≺F〉 not; here it is the other way
round. We will show later in Proposition 4.8 that whenever the monomial ideal
〈lt≺F〉 does not possess a finite Pommaret basis, thenF possesses more Janet
than Pommaret multiplicative variables. ⊳
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Eventually, we return to the problem of the existence of a finite Pommaret basis
for every idealI ⊆ P . As the Pommaret division is not Noetherian, Theorem 7.4
of Part I cannot be directly applied. However, with a little trick due to Gerdt [29]
exploiting our above results on the relationship between the Pommaret and the
Janet division we can achieve our goal at least for infinite fields.

Theorem 2.16Let≺ be an arbitrary term order andk an infinite coefficient field.
Then every polynomial idealI ⊆ P possesses a finite Pommaret basis for≺ in
suitably chosen variablesx.

Proof As a first step we show that every ideal has aPommarethead autoreduced
Janet basis. Indeed, let us apply our polynomial completion algorithm (Algo-
rithm 3 of Part I) for the Janet division with one slight modification: in the Lines /1/
and /9/ we perform the involutive head autoreductions with respect to the Pom-
maret division. It is obvious that if the algorithm terminates, the result is a basis
with the wanted properties.

The Janet division is Noetherian (Lemma 2.14 of Part I). Thuswithout our
modification the termination is obvious. With respect to theJanet division every
set of multi indices is involutively autoreduced. Hence a Janet head autoreduction
only takes care that no two elements of a set have the same leading exponents.
But in Line /9/ we add a polynomial that is in involutive normal form so that no
involutive head reductions are possible. As the Pommaret head autoreduction may
only lead to a larger monoid idealle≺Hi, the Noetherian argument in the proof of
the termination of the algorithm remains valid after our modification.

Once the ascending ideal chain〈le≺H1〉 ⊆ 〈le≺H2〉 ⊆ · · · has become sta-
tionary, the polynomial completion algorithm essentiallyreduces to the “mono-
mial” one (Algorithm 2 of Part I). According to Corollary 2.11, the Pommaret
head autoreductions may only increase the Janet spans〈le≺Hi〉J . Thus the ter-
mination of the monomial completion is not affected by our modification and the
algorithm terminates for arbitrary input.

Let us now work with a generic coordinate system; i. e. we perform a coordi-
nate transformation̄x = Ax with an undetermined matrixA as in the proof of
Proposition 2.9. By the considerations above, the modified algorithm will termi-
nate, treating only a finite number of basesHi. According to Proposition 2.9, the
coordinate systems that are asymptotically singular for atleast one of them form a
Zariski closed set. Thus generic coordinates are asymptotically regular for all sets
lt≺Hi and by Corollary 2.144 their Janet and their Pommaret spans coincide. But
this observation implies that the result of the modified algorithm is not only a Janet
but also a Pommaret basis. ⊓⊔

The argument at the end of this proof immediately implies thefollowing ana-
logue to Proposition 2.9.

Corollary 2.17 The coordinate systemsx which areδ-singular for a given ideal
I ⊆ P and a term order≺ form a Zariski closed proper subset ofkn×n.

4 Note that it is not relevant here that the corollary assumes the use of a class respecting
term order, since our argument deals only with monomial sets.
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Remark 2.18Combining the completion Algorithm 3 of Part I (or the optimised
variants developed by Gerdt and Blinkov [31]) and the criterion for asymptotic
singularity provided by Theorem 2.13, we can effectively determineδ-regular co-
ordinates for any idealI ⊆ P . Our approach is based on the observation that if
our given coordinate systemx is notδ-regular forI, then any attempt to compute
a Pommaret basis ofI with the completion algorithm will sooner or later lead to
a basisH of I for which the coordinatesx are not asymptotically regular. Indeed,
by the considerations in the proof of Theorem 2.16, the completion with respect to
the Janet division (using Pommaret head autoreductions) terminates. Thus either
the result is simultaneously a Pommaret basis ofI (and the given coordinatesx are
alreadyδ-regular forI) or at some stage we encounter a basisH of I possessing
more Janet than Pommaret multiplicative variables implying by Theorem 2.13 that
the coordinatesx are not asymptotically regular forH.

There are (at least) two possibilities to exploit this observation in concrete
computations. The first one consists of following the completion algorithm with
the Pommaret division and checking before each iteration whether there are more
Janet than Pommaret multiplicative variables. If this is the case, then we perform
coordinate transformations of the form used in the proof of Theorem 2.13 until
the Janet and the Pommaret division yield the same multiplicative variables. Then
we continue with the completion. Alternatively, we computea Pommaret head
autoreduced Janet basis (which always exists by the considerations above) and
check whether it is simultaneously a Pommaret basis. If thisis the case, we again
conclude that our coordinatesx areδ-regular. Otherwise, we perform coordinate
transformations as above and start again.

It is easy to provide for each approach examples where it fares better than
the other one. The main disadvantage of the first approach is that it may perform
transformations even if the coordinatesx areδ-regular for the given idealI. Such
redundant transformations will always occur, if we encounter a basisH such that
the coordinatesx are notδ-regular for the monoid ideal〈le≺H〉 (this assertion
follows from Proposition 4.8 below). As one can see from Example 2.7, sometimes
the transformations are indeed necessary for the termination of the completion but
sometimes they just make the computations more expensive.

In the second approach this problem does not appear, as we only check at the
very end whether we actually have got a Pommaret basis. Thus we consider only
le≺I and not already some subideal contained in it. If the original coordinatesx
areδ-regular, then no transformation at all will be performed and we clearly fare
better than with the first approach. On the other hand, if the coordinatesx are not
δ-regular, then we will not notice this fact before the end of the Janet completion.
It will follow from our results in later sections that in sucha situation, a Janet
basis ofI will typically be larger than a Pommaret basis inδ-regular coordinates;
in particular, generally the Janet basis will contain elements of unnecessarily high
degree. Thus in such situations the first approach will typically fare better, as it
avoids a number of unnecessary normal form computations.

Note that at this point we are not able to prove that either strategy will lead
to a Pommaret basis after afinite number of coordinate transformations. With the
help of the theory developed in later sections, we will be able to provide a proof
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at least for the most important case of a class respecting order (Remark 9.11). The
basic problem is that we do not know a bound for the degree of either a Janet or
a Pommaret basis. It is clear that both every completion stepand every coordinate
transformation asymptotically increase the Hilbert function hH,P,≺ of the current
basisH. However, without a bound on the degree of the appearing bases, this
information is not sufficient to conclude that either approach terminates in a finite
number of steps. ⊳

Example 2.19Let us apply the first approach to the Pommaret completion of the
setF =

{

z2 − y2 − 2x2, xz + xy, yz + y2 + x2
}

(with respect to the degree
reverse lexicographic order). We have seen in Example 2.15 that the coordinates
are notδ-regular forI, although the Janet and the Pommaret span ofF coincide.
According to our algorithm we must first analyse the polynomial y(xz + xy). Its
involutive normal form with respect toF is−x3. If we determine the multiplicative
variables for the enlarged set, they do not change for the oldelements. For the new
polynomial the Janet division yields{x, y}. But y is obviously not multiplicative
for the Pommaret division. Thus our criterion tells us that the coordinates are not
asymptotically regular for the enlarged basis and that the Pommaret completion
may not terminate. Indeed, here it is easy to see that no matter how often we
multiply the new polynomial byy, it will never become involutively head reducible
and no finite Pommaret basis can exist for〈F〉.

In this example, the Janet completion (with or without Pommaret autoreduc-
tions) ends with the addition of this single obstruction to involution and we obtain
as Janet basis the set

FJ =
{

z2 − y2 − 2x2, xz + xy, yz + y2 + x2, x3
}

. (4)

In Example 2.15 we showed that the linear transformationx̃ = z, ỹ = y + z and
z̃ = x yields after an autoreduction the setF̃△ =

{

z̃2 − x̃ỹ, ỹz̃, ỹ2
}

. One easily
checks that it is a Pommaret and thus also a Janet basis. This example clearly
demonstrates that the Janet division also “feels”δ-singularity in the sense that in
such coordinates it typically leads to larger bases of higher degree. ⊳

In Theorems 2.13 and 2.16 we assumed that we are working over an infinite
field. A closer look at the proofs reveals that we could relax this assumption to
“sufficiently large” where the required size ofk is essentially determined by the
degree and the size of the considered setF . Thus in the case of a finite field, it may
be necessary to enlargek in order to guarantee the existence of a Pommaret basis.
This problem is similar to the situation when one tries to puta zero-dimensional
ideal in normalxn-position [51, Def. 3.7.21].

In Part I we discussed the extension of the Mora normal form toinvolutive
basis computation. Obviously, the above results remain valid, if we substitute the
ordinary normal form by Mora’s version and hence we may also apply it to Pom-
maret bases with respect to semigroup orders.

Besides being necessary for the mere existence of a finite Pommaret basis,
a second application ofδ-regular coordinates is the construction ofI-regular se-
quences for a homogeneous idealI ⊆ P . Recall that for anyP-moduleM a se-
quence(f1, . . . , fr) of polynomialsfi ∈ P is calledM-regular, if the polynomials
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generate a proper ideal,f1 is a non zero divisor forM and eachfi is a non zero
divisor forM/〈f1, . . . , fi−1〉M. The maximal length of anM-regular sequence
is thedepthof the module. While the definition allows for arbitrary polynomials in
such sequences, it suffices for computing the depth to consider only linear forms
fi ∈ P1. This fact follows, for example, from [24, Cor. 17.7] or [74,Lem. 4.1].
For this reason, the following proof treats only this case.

Proposition 2.20LetI ⊆ P be a homogeneous ideal andH a homogeneous Pom-
maret basis of it for a class respecting term order. Letd = minh∈H clsh. Then the
variables(x1, . . . , xd) form a maximalI-regular sequence and thusdepth I = d.

Proof A Pommaret basisH induces a decomposition ofI of the form

I =
⊕

h∈H

k[x1, . . . , xcls h] · h . (5)

If d = minh∈H clsh denotes the minimal class of a generator inH, then (5) triv-
ially implies that the sequence(x1, . . . , xd) is I-regular.

Let us try to extend this sequence by a variablexk with k > d. We introduce
Hd = {h ∈ H | clsh = d} and choose an elementh̄ ∈ Hd of maximal degree.
As we use a class respecting order,h̄ ∈ 〈x1, . . . , xd〉 by Lemma A.1 of Part I.
By construction,xk is non-multiplicative for̄h and for eachh ∈ H a polynomial
Ph ∈ k[x1, . . . , xcls h] exists such thatxkh̄ =

∑

h∈H Phh. No polynomialh with
cls h > d lies in 〈x1, . . . , xd〉 (obviouslylt≺h /∈ 〈x1, . . . , xd〉). As the leading
terms cannot cancel in the sum,Ph ∈ 〈x1, . . . , xd〉 for all h ∈ H\Hd. Thusxkh̄ =
∑

h∈Hd
chh+g with ch ∈ k andg ∈ 〈x1, . . . , xd〉I. AsI is a homogeneous ideal

and as the degree ofh̄ is maximal inHd, all constantsch must vanish.
It is not possible that̄h ∈ 〈x1, . . . , xd〉I, as otherwisēh would be involu-

tively head reducible by some other element ofH. Hence we have shown that any
variablexk with k > d is a zero divisor inI/〈x1, . . . , xd〉I and theI-regular
sequence(x1, . . . , xd) cannot be extended by anyxk with k > d. Obviously, the
same argument applies to any linear combination of such variablesxk.

Finally, assume that the formsy1, . . . , yd+1 ∈ P1 define anI-regular sequence
of lengthd + 1. We extend them to a basis{y1, . . . , yn} of the vector spaceP1

and perform the corresponding coordinate transformationx 7→ y. Our basisH
transforms into a setHy and after an involutive head autoreduction we obtain a
setH△

y . In general, the coordinatesy are not asymptotically regular for the latter.

But there exist coordinates̃y of the form ỹk = yk +
∑k−1

i=1 akiyi with aki ∈ k
such that if we transformH to them and perform afterwards an involutive head
autoreduction, then they are asymptotically regular for the obtained set̃H△

ỹ .

This fact implies thatH̃△
ỹ is a Pommaret basis of the idealĨ = 〈H̃△

ỹ 〉 ⊆ P̃ it

generates.5 Thusmin
h̃∈H̃△

ỹ

cls h̃ = d and, by the same argument as above,ỹd+1

5 By Definition 2.4 of asymptotic regularity, the involutive spans of the two setsH and
H̃△

ỹ
possess asymptotically the same Hilbert function. SinceH is assumed to be a Pom-

maret basis ofI, this function is simultaneously the Hilbert functionhI of I implying that
the involutive span of̃H△

ỹ
is the full idealĨ.
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is a zero divisor iñI/〈ỹ1, . . . , ỹd〉Ĩ. Because of the special form of the transfor-
mationy 7→ ỹ, we have—considering everything as forms inP1—the equality
〈ỹ1, . . . , ỹd〉 = 〈y1, . . . , yd〉 andyd+1 must be a zero divisor inI/〈y1, . . . , yd〉I.
But this observation contradicts the assumption that(y1, . . . , yd+1) is anI-regular
sequence and thus indeeddepth I = d. ⊓⊔

Remark 2.21One may wonder to what extent this result really requires thePom-
maret division. Given an arbitrary involutive basisH of I, we may introduce the
setXI =

⋂

h∈H XL,H,≺(h); obviously, for a Pommaret basisXI = {x1, . . . , xd}
with d = minh∈H cls h. Again it is trivial to conclude from the induced direct de-
composition ofI that any sequence formed by elements ofXI is I-regular. But
in general we cannot claim that these aremaximalI-regular sequences and there
does not seem to exist an obvious method to extend them. Thus only a lower bound
for the depth is obtained this way.

As a simple example we consider the idealI generated byf1 = z2 − xy,
f2 = yz − wx andf3 = y2 − wz. If we setx1 = w, x2 = x, x3 = y andx4 = z,
then it is straightforward to check that the setF = {f1, f2, f3} is a Pommaret basis
of I with respect to the degree reverse lexicographic order. By Proposition 2.20,
(w, x, y) is a maximalI-regular sequence anddepth I = 3.

If we setx1 = w, x2 = z, x3 = y andx4 = x, then no finite Pommaret basis
exists; these coordinates are notδ-regular. In order to obtain a Janet basisFJ of I
(for the degree reverse lexicographic order with respect tothe new ordering of the
variables), we must enlargeF by f4 = z3 − wx2 andf5 = yz3 − wx2z. We find
nowXI = {w, x}, as

XJ,FJ ,≺degrevlex(f1) = XJ,FJ ,≺degrevlex(f2) = {w, x} ,

XJ,FJ ,≺degrevlex(f3) = {w, z, y, x} ,

XJ,FJ ,≺degrevlex(f4) = XJ,FJ ,≺degrevlex(f5) = {w, z, x} .

(6)

ThusXI can be extended to a maximalI-regular sequence by addingy. However,
the Janet basis gives no indications, whyy should be added. One could also conjec-
ture that the minimal number of multiplicative variables for a generator gives the
depth. But clearly this is also not true for the above Janet basis. Thus no obvious
way seems to exist to deducedepth I fromFJ . ⊳

3 Combinatorial Decompositions

In the proof of Proposition 2.20 we could already see the power of the direct sum
decompositions induced by (strong) involutive bases. In this section we want to
study this aspect in more details. All results apply to arbitrary finitely generated
polynomial modules. But for notational simplicity, we restrict to gradedk-algebras
A = P/I with a homogeneous idealI ⊆ P . If we speak of a basis of the idealI,
we always assume that it is homogeneous, too.

The main motivation of Buchberger [16] for the introductionof Gröbner bases
was to be able to compute effectively in such factor spaces. Indeed given a Gröbner
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basisG of the idealI, the normal form with respect toG distinguishes a unique
representative in each equivalence class. Our goal in this section is to show that
Pommaret bases contain in addition much structural information about the alge-
braA. More precisely, we want to compute fundamental invariantslike the Hilbert
polynomial (which immediately yields the Krull dimension and the multiplicity),
the depth or the Castelnuovo-Mumford regularity (see Section 9). Our basic tools
are combinatorial decompositions of the algebraA into direct sums of polynomial
rings with a restricted number of variables.

Definition 3.1 A Stanley decompositionof the gradedk-algebraA = P/I is an
isomorphism of gradedk-linear spaces

A ∼=
⊕

t∈T

k[Xt] · t (7)

with a finite setT ⊂ T and setsXt ⊆ {x1, . . . , xn}.

The elements of the setXt are again called themultiplicative variablesof the
generatort. As a first, trivial application of such decompositions we determine the
Hilbert series and the (Krull) dimension.

Proposition 3.2 ([68])Let the graded algebraA possess the Stanley decomposi-
tion (7). Then its Hilbert series is

HA(λ) =
∑

t∈T

λqt

(1 − λ)kt
(8)

whereqt = deg t and kt = |Xt|. Thus the (Krull) dimension ofA is given by
D = maxt∈T kt and the multiplicity (or degree) by the number of termst ∈ T
with kt = D.

Vasconcelos [79, p. 23] calls Stanley decompositions“an approach that is not
greatly useful computationally but it is often nice theoretically” . One reason for
his assessment is surely that the classical algorithm for their construction works
only for monomial ideals and uses a recursion over the variablesx1, . . . , xn. Thus
for largern it becomes quite inefficient. For a general idealI one must first com-
pute a Gröbner basis ofI for some term order≺ and then, exploiting the vector
space isomorphismP/I ∼= P/lt≺I, one determines a Stanley decomposition. Its
existence is guaranteed by the following result.

Proposition 3.3LetI ⊆ Nn
0 be a monoid ideal and̄I = Nn

0 \I its complementary
set. There exists a finite set̄N ⊂ Ī and for each multi indexν ∈ N̄ a set of indices
Nν ⊆ {1, . . . , n} such that6

Ī =
⋃

ν∈N̄

(

ν +Nn
Nν

)

(9)

and(ν +Nn
Nν

) ∩ (µ +Nn
Nµ

) = ∅ for all µ, ν ∈ N̄ .

6 Recall from Part I the notationNn
N =

˘

ν ∈ Nn
0 | ∀j /∈ N : νj = 0

¯

.
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A proof of this proposition may be found in the textbook [22, pp. 417–418]
(there it is not shown that one can always construct a disjoint decomposition, but
this extension is trivial). This proof is not completely constructive, as a certain de-
greeq0 is only defined by a Noetherian argument. But it is not difficult to see that
we may takeq0 = maxν∈N νn where the setN is the minimal basis of the monoid
idealI. Now one can straightforwardly transform the proof into a recursive algo-
rithm for the construction of Stanley decompositions (see [67, Sect. 5.1] for the
details). In fact, one obtains then exactly the algorithm proposed by Sturmfels and
White [74, Lem. 2.4].

One must stress that the complementary decomposition (9) isnot unique and
different decompositions may use setsN̄ of different sizes. Given any involutive
basis of the monoid idealI, it is trivial to determine a disjoint decomposition ofI
itself (Corollary 5.5 of Part I). However, there does not seem to exist an obvious
way to obtain acomplementary decomposition(9). The situation is different for
Janet bases where already Janet himself presented a solution of this problem which
can straightforwardly be extended to an algorithm.7

Proposition 3.4 ([48,§15]) LetNJ be a Janet basis of the monoid idealI ⊆ Nn
0 .

Then the setN̄ ⊂ Nn
0 in the decomposition (9) may be chosen such that for all

ν ∈ N̄ the equalityNν = NJ,NJ∪{ν}(ν) holds.

Remark 3.5Janet did not formulate his algorithm in this algebraic language. He
considered the problem of determining a formally well-posed initial value problem
for an overdetermined system of partial differential equations [67, Sect. 9.3]. If one
identifies this system with our idealI, his problem is equivalent to computing a
Stanley decomposition ofP/I. An algorithmic approach to formally well-posed
initial value problem was also presented by Reid [60]. ⊳

According to Corollary 2.12, we may apply Janet’s algorithmto Pommaret
bases, too. But as the Pommaret division has such a simple global definition, it
is almost trivial to provide an alternative decomposition depending only on the
degreeq of a Pommaret basis of the idealI (we will see later in Sect. 9 that this
degree is in fact an important invariant ofI). In general, this decomposition is
larger than the one obtained with Janet’s algorithm, but it has some advantages in
theoretical applications.

Proposition 3.6The monoid idealI ⊆ Nn
0 has a Pommaret basis of degreeq, if

and only if the sets̄N0 = {ν ∈ Ī | |ν| < q} and N̄1 = {ν ∈ Ī | |ν| = q} yield
the disjoint decomposition

Ī = N̄0 ∪
⋃

ν∈N̄1

CP (ν) . (10)

Proof The definition of the Pommaret division implies the identity

(Nn
0 )≥q =

⋃

|ν|=q

CP (ν) (11)

7 For an alternative proof see [58].
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from which one direction of the proposition follows trivially. Here(Nn
0 )≥q denotes

the set of all multi indices of length greater than or equal toq. By the definition of
an involutive division, the union on the right hand side is disjoint.

For the converse, we claim that the setH = {µ ∈ Iq} is a Pommaret basis of
monoid idealI≥q; this immediately implies our assertion by Lemma 2.2. Assume
that µ ∈ H with clsµ = k and letk < j ≤ n be a non-multiplicative index
for it. We must show thatµ + 1j ∈ 〈H〉P . But this is trivial: we haveµ + 1j ∈
CP (µ−1k+1j) andµ−1k+1j ∈ Iq, as otherwise we encounter the contradiction
µ + 1j /∈ I by (10). ⊓⊔

Example 3.7The decomposition (10) is usually redundant. Considering for N̄1

only multi indices of lengthq makes the formulation much easier but it is not
optimal. Consider the trivial exampleNP =

{

[0, 1]
}

. According to Proposition 3.6
we should set̄N0 =

{

[0, 0]
}

andN̄1 =
{

[1, 0]
}

. But obviouslyĪ = [0, 0]+N2
{1}.

Janet’s algorithm directly yields this more compact form. ⊳

If J ⊆ P is a polynomial ideal possessing a Pommaret basis for some term
order≺, then applying Proposition 3.6 toI = le≺J yields a Stanley decomposi-
tion of a special type: all setsXt are of the formXt = {x1, x2, . . . , xcls t} where
the numbercls t is called theclass8 of the generatort. One speaks then of aRees
decompositionof A = P/J [59]. It is no coincidence that we use here the same
terminology as in the definition of the Pommaret division: ift = xµ with µ ∈ N̄1,
then indeed its class isclsµ. Elimination of the redundancy in the decomposition
(10) leads to the following result.

Corollary 3.8 LetI ⊆ P be a polynomial ideal which has for some term order≺
a Pommaret basisH such thatminh∈H cls le≺h = d. ThenP/I possesses a Rees
decomposition where the minimal class of a generator isd − 1.

Proof Obviously, it suffices to consider the monomial case and formulate the proof
therefore in the multi index language of Proposition 3.6. Furthermore, ford = 1
there is nothing to be shown so that we assume from now ond > 1. Our starting
point is the decomposition (10). For eachν ∈ N̄1 with cls ν = k < d we introduce
the multi indexν̃ = ν − (νk)k, i. e. ν̃ arises fromν by setting thekth entry to
zero. Obviously, thek-dimensional coneCν = ν̃ + Nn

{1,...,k} is still completely

contained in the complementĪ andCP (ν) ⊂ Cν .
If we replace in (10) for any suchν the coneCP (ν) by Cν , then we still have

a decomposition of̄I, but no longer a disjoint one. We now show first that in the
thus obtained decomposition all conesC with 0 < dim C < d− 1 can be dropped
without loss. Indeed, fork < d− 1 we consider the multi indexµ = ν̃ + (νk)k+1.
Obviously,|µ| = q andclsµ = k+1; hence under the made assumptionsµ ∈ N̄1.
Furthermore,̃µ = µ − (µk+1)k+1 is a divisor of ν̃ (the two multi indices can
differ at most in their(k + 1)st entries and̃µk+1 = 0) and thus the inclusion
Cν ⊂ Cµ = µ̃ +Nn

{1,...,k+1} holds.
The remaining cones withdimC ≥ d − 1 are all disjoint. This is trivially

true for all cones withdim C ≥ d, as these have not been changed. For the other

8 Some authors prefer the termlevel.
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ones, we note that ifµ andν are two multi indices withcls µ = cls ν = d − 1 and
|µ| = |ν| = q, then they must differ at some positionℓ with ℓ ≥ d. But this implies
that the conesCµ andCν are disjoint.

Thus there only remains to study the zero-dimensional conesconsisting of the
multi indicesν ∈ N̄0. If we setℓ = q − |ν|, thenµ = ν + ℓ1 ∈ N̄1, since we
assumedd > 1, and trivially ν ∈ Cµ = (µ − (µ1)1) + Nn

{1}. By our consider-
ations above the coneCµ and thusν is contained in some(d − 1)-dimensional
cone. Therefore we may also drop all zero-dimensional conesand obtain a Rees
decomposition where all cones are at least(d − 1)-dimensional. ⊓⊔

Slightly generalising the notion of Rees decompositions, we speak of aquasi-
Rees decomposition, if there exists a term̄t ∈ T such that

⋃

t∈T Xt = Xt̄, i. e.
there exists a unique maximal set of multiplicative variables containing all other
sets of multiplicative variables. Obviously, every Rees decomposition is a quasi-
Rees decomposition, but not vice versa. We will see below that such decomposi-
tions possess special properties.

Sturmfels et al. [73] introduced the notion ofstandard pairsalso leading to a
kind of combinatorial decomposition, however not a disjoint one. They consider
pairs (ν, Nν) whereν ∈ Nn

0 is a multi index andNν ⊆ {1, . . . , n} a set of
associated indices. Such a pair is calledadmissible, if supp ν ∩ Nν = ∅, i. e.
νi = 0 for all i ∈ Nν . On the set of admissible pairs one defines a partial order:
(ν, Nν) ≤ (µ, Nµ), if and only if the restricted coneµ + Nn

Nµ
is completely

contained inν +Nn
Nν

. Obviously, this is equivalent toν | µ and any indexi such
that eitherµi > νi or i ∈ Nµ is contained inNν .

Definition 3.9 Let I ⊆ Nn
0 be an arbitrary monoid ideal. An admissible pair

(ν, Nν) is calledstandardfor I, if ν +Nn
Nν

∩ I = ∅ and(ν, Nν) is minimal with
respect to< among all admissible pairs with this property.

Any monoid idealI ⊂ Nn
0 leads thus automatically to a uniquely determined

set of standard pairs. These define both a decomposition of the complementary
setI into cones (though these will overlap in general) and a decomposition of
the idealI itself as an intersection of irreducible monomial ideals. The following
result is contained in the proof of [73, Lemma 3.3].

Proposition 3.10Let I ⊆ Nn
0 be an arbitrary monoid ideal and denote the set of

all associated standard pairs bySI =
{

(ν, Nν) | (ν, Nν) standard forI
}

. Then
the complementary setI of I can be written in the form

I =
⋃

(ν,Nν)∈SI

ν +Nn
Nν

(12)

and the idealI itself can be decomposed as

I =
⋂

(ν,Nν)∈SI

〈(νi + 1)i | i /∈ Nν〉 . (13)
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According to Sturmfels et al. [73, Lemma 3.3] the number of standard pairs of
a monomial idealI equals thearithmetic degreeof I, a refinement of the classical
concept of the degree of an ideal introduced by Bayer and Mumford [9]. We further
note that the ideals on the right hand side of (13) are trivially irreducible, so that
(13) indeed represents an irreducible decomposition ofI.

In general, this decomposition is highly redundant. LetN ⊆ {1, . . . , n} be an
arbitrary subset and consider all standard pairs(ν, Nν) with Nν = N . Obviously,
among these only the ones with multi indicesν which are maximal with respect to
divisibility are relevant for the decomposition (13) and infact restricting to the cor-
responding ideals yields the irredundant irreducible decomposition ofI (which is
unique according to [57, Thm. 5.27]). Their intersection defines a possible choice
for the primary component for the prime idealpN = 〈xi | i /∈ N〉, so that we can
also extract an irredundant primary decomposition from thestandard pairs. As a
trivial corollary of these considerations the standard pairs immediately yield the
setAss (P/I) of associated prime ideals, as it consists of all prime idealspN such
that a standard pair(ν, N) exists.

Hoşten and Smith [47] discuss two algorithms for the directconstruction of the
setSI of all standard pairs given the minimal basis ofI. Alternatively,SI can eas-
ily be extracted from any complementary decomposition, as we show now. Thus
once a Janet basis ofI is known, we may use Janet’s algorithm for the construction
of a complementary decomposition and then obtain the standard pairs.

Let the finite setTI =
{

(ν, Nν) | ν ∈ Nn
0 , Nν ⊆ {1, . . . , n}

}

define a com-
plementary decomposition ofI. If the pair(ν, Nν) ∈ TI is not admissible, then
we substitute it by the pair(ν̄, Nν) whereν̄i = 0 for all i ∈ Nν andν̄i = νi else.
Obviously, this operation produces an admissible pair and the thus obtained setSI

still defines a (generally no longer disjoint) decomposition of the complementary
setI. Finally, we eliminate all pairs inSI which are not minimal with respect to
the partial order≤ and obtain a setSI .

Proposition 3.11Let TI be a finite complementary decomposition of the monoid
idealI ⊆ Nn

0 . The thus constructed setSI consists of all standard pairs ofI.

Proof It is trivial to see that the setSI contains only admissible pairs and that
ν +Nn

Nν
⊆ I for any pair(ν, Nν) ∈ SI . Thus there only remains to show that all

standard pairs are contained inSI .
Let (µ, Nµ) be an admissible pair such thatµ +Nn

Nµ
⊆ I. Since the union of

the conesν +Nn
Nν

with (ν, Nν) ∈ SI still coversI, the finiteness ofSI implies
the existence of a multi indexµ ∈ µ + Nn

Nµ
and a pair(ν, Nν) ∈ SI such that

µ +Nn
Nµ

⊆ ν +Nn
Nν

(obviously, it is not possible to coverµ +Nn
Nµ

with a finite
number of lower-dimensional cones). As both(µ, Nµ) and(ν, Nν) are admissible
pairs, this entails that in fact(ν, Nν) ≤ (µ, Nµ). Hence either(µ, Nµ) ∈ SI or it
is not a standard pair. ⊓⊔

Remark 3.12If we use the decomposition (10) derived from a Pommaret basis of
degreeq, then the determination of the setSI is completely trivial. For all pairs
(ν, Nν) ∈ TI with |ν| < q we haveNν = ∅ and hence they are trivially admissible.
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For all other pairs we find thatsupp ν ∩ Nν = {cls ν}. Thus none of them is
admissible, but they become admissible by simply setting the first non-vanishing
entry ofν to zero. ⊳

Example 3.13Consider the idealI = 〈z3, yz2 − xz2, y2 − xy〉 ⊂ k[x, y, z]. Both
a Janet and Pommaret basis ofI for the degree reverse lexicographic order is given
by the setH = {z3, yz2 − xz2, y2z − xyz, y2 − xy}. Using Janet’s algorithm, we
obtain the setT = {1, y, z, yz, z2} and the complementary decomposition

P/I ∼= k[x] ⊕ k[x] · y ⊕ k[x] · z ⊕ k[x] · yz ⊕ k[x] · z2 . (14)

It follows from (14) that a complementary decomposition of the corresponding
monoid idealle≺I = 〈[0, 0, 3], [0, 1, 2], [0, 2, 0]〉 is given by

SI =
{

(

[0, 0, 0], {1}
)

,
(

[0, 1, 0], {1}
)

,
(

[0, 0, 1], {1}
)

,

(

[0, 1, 1], {1}
)

,
(

[0, 0, 2], {1}
)

} (15)

and one easily verifies that these are all standard pairs.
The complementary decomposition constructed via Proposition 3.6 is much

larger. Besides many multi indices without any multiplicative indices, we obtain
the following six multi indices for which1 is the sole multiplicative index:[3, 0, 0],
[2, 1, 0], [2, 0, 1], [1, 1, 1], [1, 2, 0] and[1, 0, 2]. After setting the first entry to zero,
we find precisely the multi indices appearing in (15) plus themulti index[0, 2, 0].
As ([0, 1, 0], {1}) < ([0, 2, 0], {1}), the latter pair is not minimal. The same holds
for all pairs corresponding to the multi indices without multiplicative indices and
hence we also arrive at (15). ⊳

As an application of Rees decompositions, we will now show that given a
Pommaret basis of the idealI, we can easily read off the dimension and the depth
of the algebraA = P/I. In principle, the determination of the dimension is of
course already settled by Proposition 3.2 and the possibility to compute Stanley
decompositions via Janet bases. However, in the case of a Pommaret basis a further
useful characterisation ofdimA exists. It may be considered as a strengthening of
the following general observation for quasi-Rees decompositions.

Lemma 3.14Let G be a Gr̈obner basis of the homogeneous idealI ⊆ P for
some term order≺ and assume that the finite setT ⊂ T defines a quasi-Rees
decomposition ofA = P/I with the maximal setXt̄ of multiplicative variables
for some term̄t ∈ T . If q = 1 + maxt∈T deg t, then〈G, Xt̄〉q = Pq and no
smaller set of variables or other set of variables of the samesize has this property.

Proof Assume first that the termxµ ∈ Pq \ lt≺I is not contained in the leading
ideal. By definition of the degreeq, we have|µ| > deg t for all t ∈ T . Hence
xµ must be properly contained in some cone of the quasi-Rees decomposition and
can be written as a productmt with somet ∈ T and a termm in the variables
Xt ⊆ Xt̄ with deg m > 0. This presentation impliesxµ ∈ 〈Xt̄〉.

If the termxµ ∈ Pq lies in lt≺I, we compute its normal form with respect to
the Gröbner basisG. If this normal form vanishes, thenxµ ∈ 〈G〉. Otherwise, it is
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a k-linear combination of terms inPq \ lt≺I and thus lies by the considerations
above in〈Xt̄〉. Hence we may conclude that all terms of degreeq lie in 〈G, Xt̄〉.

No setX̄ ⊂ X of variables withX̄ 6= Xt and|X̄ | ≤ |Xt̄| can possess this
property, aslt≺I ∩ k[Xt̄] = {0} and hence we always find a termxµ ∈ (k[Xt̄])q

not contained in〈G, X̄〉. Indeed, assume that axν ∈ lt≺I ∩ k[Xt̄] existed. Then
obviously t̄ · xν ∈ lt≺I, contradicting the fact thatT defines a complementary
decomposition with multiplicative variablesXt̄ for t̄. ⊓⊔

Proposition 3.15Let H be a homogeneous Pommaret basis of the homogeneous
idealI ⊆ P with degH = q for some term order≺. Then the dimensionD of the
algebraA = P/I is

D = min
{

i | 〈H, x1, . . . , xi〉q = Pq

}

. (16)

Proof The Hilbert polynomials ofA and the truncationA≥q coincide. Thus it
suffice to consider the latter algebra. By Lemma 2.2, a Pommaret basis ofI≥q

is given by the setHq determined in (1). IfD is the smallest number such that
〈Hq, x1, . . . , xD〉q = Pq, then all multi indicesν with |ν| = q andcls ν > D lie
in le≺Hq but a multi indexµ exists such that|µ| = q, cls µ = D andµ /∈ le≺Hq.
By Proposition 3.6, this observation entails thatµ is a generator of classD of the
complementary decomposition (10) and that the decomposition does not contain a
generator of higher class. But this trivially implies thatdimA = D. ⊓⊔

In a terminology apparently introduced by Gröbner [35, Section 131], a subset
XI ⊆ {x1, . . . , xn} is independent modulothe idealI, if I ∩ k[XI ] = {0}. If
evenlt≺I ∩k[XI ] = {0} for some term order≺, then one speaks of astronglyin-
dependent set for≺. One can show that the maximal size of either an independent
or a strongly independent set coincides withdimA. This approach to determin-
ing the dimension of an ideal has been taken up by Kredel and Weispfenning [50]
using Gröbner bases (see also [11, Sects 6.3 & 9.3]).

Strong independence moduloI with respect to a term order≺ is easy to verify
effectively with the help of a Gröbner basisG of I for ≺: it follows immediately
from the definition of a Gröbner basis that the setXI is strongly independent, if
and only if it satisfieslt≺G ∩ k[XI ] = ∅. It is now a combinatorial (and thus
sometimes quite expensive) exercise to determine effectively all maximal strongly
independent sets moduloI and to compute their maximal size and hencedimA.
The situation becomes much simpler, ifA = P/I admits a quasi-Rees decomposi-
tion, as we will show now that in this case a unique maximal strongly independent
set moduloI exists. This observation is based on the following result which is a
variant of [62, Lemma 14].9

Lemma 3.16LetI ⊂ P be an ideal and≺ a term order. Assume that the finite set
T ⊂ T defines a quasi-Rees decomposition of the algebraA′ = P/lt≺I with the
maximal setXt̄ of multiplicative variables for a term̄t ∈ T . Then the variablexi

9 In this paper it is also shown how quasi-Rees decompositionscan be effectively com-
puted using Janet bases and coordinate transformations similar to the ones used by us for
the construction ofδ-regular coordinates.
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is not contained inXt̄, if and only if the minimal basis oflt≺I contains an element
of the formxei

i for some exponentei ∈ N.

Proof Assume first thatxi /∈ Xt̄; by definition of a quasi-Rees decomposition,
xi /∈ Xt for all t ∈ T . SinceT is a finite set, only finitely many terms of the form
t = xkt

i can be contained in it. If we choosek greater than all these valueskt, then
xk

i ∈ lt≺I and the minimal basis oflt≺I must contains an elementxei

i .
For the converse, assume thatxei

i lies in the minimal basis oflt≺I. Then for
anyt ∈ T the termt · xei

i lies in lt≺I and thusxi cannot be an element ofXt by
definition of a complementary decomposition. ⊓⊔

Proposition 3.17Under the assumptions of Lemma 3.16, the setXt̄ is the unique
maximal strongly independent set modulo the idealI.

Proof We showed already in the proof of Lemma 3.14 thatlt≺I ∩ k[Xt̄] = {0},
i. e. that the setXt̄ is strongly independent moduloI. It follows from Lemma 3.16
that no variablexi /∈ Xt̄ can be contained in a strongly independent set moduloI.
Hence any such set must be a subset ofXt̄. ⊓⊔

Corollary 3.18 Let the chosen coordinatesx be δ-regular for the idealI ⊂ P ,
i. e.I possesses a Pommaret basisH. Then{x1, . . . , xD} with D = dimA is the
unique maximal strongly independent set modulo the idealI.

Applying standard arguments of homological algebra to the exact sequence
0 → I → P → P/I → 0, one easily shows thatdepth (P/I) = depth I − 1.
Hence Proposition 2.20 immediately implies the following result (one can also
prove it directly along the lines of the proof of Proposition2.20).

Proposition 3.19Let H be a homogeneous Pommaret basis of the homogeneous
ideal I ⊆ P for a class respecting term order andd = minh∈H clsh. Then the
depth ofA = P/I is depthA = d − 1.

Since{x1, . . . , xd−1} is trivially a strongly independent set moduloI, we ob-
viously find that alwaysD ≥ d−1. Thus as a trivial corollary of Propositions 3.15
and 3.19, we find the well-known fact that for any graded algebraA = P/I the
inequalitydepthA ≤ dimA holds. In the limit casedepthA = dimA, the alge-
bra is by definitionCohen-Macaulayand we obtain the following characterisation
of such algebras.

Theorem 3.20Let H be a Pommaret basis of degreeq of the homogeneous ideal
I ⊆ P for a class respecting term order≺ and setd = minh∈H clsh. The algebra
A = P/I is Cohen-Macaulay, if and only if〈H, x1, . . . , xd−1〉q = Pq.

An alternative characterisation, which is more useful for computations, is based
on the existence of a special kind of Rees decomposition; onesometimes speaks
of a Hironaka decomposition, a terminology introduced in [72, Sect. 2.3].

Corollary 3.21 A = P/I is a Cohen-Macaulay algebra, if and only if a Rees
decomposition ofA exists where all generators have the same class.
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Proof One direction is trivial. If such a special decomposition exists with d the
common class of all generators, then obviously both the dimension and the depth
of A is d and thusA is Cohen-Macaulay.

For the converse, let us assume thatA is a Cohen-Macaulay algebra and that
dimA = depthA = d. Let H be a Pommaret basis ofI with respect to the
degree reverse lexicographic order. By Theorem 2.16, such abasis always exists
in δ-regular variablesx. Proposition 3.19 implies thatminh∈H cls h = d + 1. We
introduce the set̄N =

{

ν ∈ Nn
0 \ 〈le≺H〉 | cls ν > d} (recall that by convention

we definedcls [0, . . . , 0] = n so that[0, . . . , 0] ∈ N̄ wheneverI 6= P). N̄ is finite,
as all its elements satisfy|ν| < degH by Theorem 3.20, and we claim that

A ∼=
⊕

ν∈N̄

k[x1, . . . , xd] · xν . (17)

In fact, (17) is precisely the decomposition obtained by applying Janet’s algo-
rithm (cf. Proposition 3.4). Consider any multi indexν ∈ N̄ ; obviously, it is of the
form ν = [0, . . . , 0, νd+1, . . . , νn] with

∑n
i=d+1 νi < q = degH. If we setq′ =

q − ∑n
i=d+2 νi, then by Theorem 3.20 the multi index[0, . . . , 0, q′, νd+2, . . . , νn]

lies in the monoid ideal〈le≺H〉. But this fact implies the existence of a multi in-
dexν′ ∈ le≺H with ν′ = [0, . . . , 0, ν′

d+1, νd+2, . . . , νn] with νd+1 < ν′
d+1 ≤ q′.

Hence the set(νd+2, . . . , νn) is considered in the assignment of multiplicative
variables to the elements ofH for the Janet division and it consists only of the
multi index ν′, asH is involutively head autoreduced (with respect to the Pom-
maret division). But this observation implies that Janet’salgorithm choosesν as
an element ofN̄ and assigns to it the multiplicative variablesx1, . . . , xd.

Janet’s algorithm cannot lead to a larger setN̄ , as any further multi index
would be of class less than or equal tod and thus be contained ink[x1, . . . , xd] ·1.
But since we know that the sets are disjoint, this cannot happen and we obtain the
decomposition (17). ⊓⊔

Example 3.22Consider again the idealI = 〈z3, yz2 − xz2, y2 − xy〉 ⊂ k[x, y, z]
of Example 3.13. It follows from the Pommaret basis given there that both the
depth and the dimension ofP/I is 1. HenceA = P/I is Cohen-Macaulay and
indeed (14) is a Hironaka decomposition. ⊳

4 Noether Normalisation and Primary Decomposition

As a simple consequence of our results in the previous section, we show now that
any complementary quasi-Rees decomposition ofI induces aNoether normalisa-
tion [34, Def. 3.4.2] ofA and that its maximal setXt̄ of multiplicative variables
defines a homogeneous system of parameters forA. A slightly less general form of
the following result is contained in the proof of [62, Algo. 3] where it is exploited
for the explicit construction of Noether normalisations using Janet bases.

Proposition 4.1Under the assumptions of Lemma 3.16, the restriction of the canon-
ical projectionπ : P → A to k[Xt̄] defines a Noether normalisation forA.
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Proof By Proposition 3.17, the setXt̄ is strongly independent moduloI and thus
also independent moduloI, i. e.I∩k[Xt̄] = {0} implying that the restriction ofπ
to k[Xt̄] is injective. Furthermore, it follows immediately from thedefinition of a
complementary quasi-Rees decomposition that the algebraA is finitely generated
as a module over the ringk[Xt̄]. ⊓⊔

Remark 4.2Recall from Lemma 3.16 that for any variablexi /∈ Xt̄ the minimal
basis oflt≺I contains an element of the formxei

i for some exponentei ∈ N. Thus
any Gröbner basis ofI for the chosen term order≺ must contain an elementgi ∈ G
with lt≺gi = xei

i . Assume now that≺ is the lexicographic order. Thengi must be
of the formgi = xei

i +
∑ei−1

j=0 Pi,jx
j
i with polynomialsPi,j ∈ k[x1, . . . , xi−1].

Thus in this case we even obtain a general Noether normalisation. ⊳

Since according to [62, Algo. 3] every idealI ⊆ P admits a complemen-
tary quasi-Rees decomposition, we obtain as a trivial corollary the existence of a
Noether normalisation for every affine algebraA = P/I (alternatively, we may
employ Theorem 2.16 and Proposition 3.6 asserting the existence of even a com-
plementary Rees decomposition for every idealI). Comparing with the classi-
cal existence proof of Noether normalisations given e. g. in[34], we see that the
search for variables admitting a quasi-Rees decompositioncorresponds to putting
the idealI into Noether position[79, Def. 2.22].

However, a quasi-Rees decomposition is generally not yet a Rees decompo-
sition and thus even if the variables are chosen in such a way thatk[x1, . . . , xD]
defines a Noether normalisation ofA, this fact is not sufficient for concluding
that the idealI possesses a Pommaret basis in these variables. As we will show
now, the existence of a Pommaret basis is equivalent to a stronger property. Since
under the assumptions of Proposition 3.15k[x1, . . . , xD] also defines a Noether
normalisation ofP/lt≺I, it suffices to consider monomial ideals.

Definition 4.3 A monomial idealI ⊆ P is called quasi-stable, if it possesses a
finite Pommaret basis.

The reason for this terminology will become apparent in Section 8 when we
consider stable ideals. We now give several equivalent algebraic characterisations
of quasi-stable ideals which are independent of the theory of Pommaret bases.
They will provide us with a further criterion forδ-regularity and also lead to a
simple description of an irredundant primary decomposition of such ideals.

Proposition 4.4Let I ⊆ P be a monomial ideal withdimP/I = D. Then the
following six statements are equivalent.

(i) I is quasi-stable.
(ii) The variablex1 is not a zero divisor for10 P/Isat and for all 1 ≤ j < D the

variablexj+1 is not a zero divisor forP/〈I, x1, . . . , xj〉sat.
(iii) We haveI : x∞

1 ⊆ I : x∞
2 ⊆ · · · ⊆ I : x∞

D and for all D < j ≤ n an

exponentkj ≥ 1 exists such thatxkj

j ∈ I.

10 See Section 10 for a more detailed discussion of the saturationIsat.
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(iv) For all 1 ≤ j ≤ n the equalityI : x∞
j = I : 〈xj , . . . , xn〉∞ holds.

(v) For every associated prime idealp ∈ Ass (P/I) an integer1 ≤ j ≤ n exists
such thatp = 〈xj , . . . , xn〉.

(vi) If xµ ∈ I andµi > 0 for some1 ≤ i < n, then for each0 < r ≤ µi and
i < j ≤ n an integers ≥ 0 exists such thatxµ−ri+sj ∈ I.

Proof The equivalence of the statements (ii)–(v) was proven by Bermejo and
Gimenez [12, Prop. 3.2]; the equivalence of (iv) and (vi) wasshown by Herzog
et al. [42, Prop. 2.2] (alternatively the equivalence of (i)and (vi) is an easy con-
sequence of Lemma 2.3). Bermejo and Gimenez [12] called ideals satisfying any
of these conditionsmonomial ideals of nested type; Herzog et al. [42] spoke of
ideals of Borel type(yet another terminology used by Caviglia and Sbarra [18] is
weakly stable ideals).11 Thus it suffices to show that these concepts coincide with
quasi-stability by proving the equivalence of (i) and (iii).

Assume first that the idealI is quasi-stable with Pommaret basisH. The ex-
istence of a termx

kj

j ∈ I for all D < j ≤ n follows then immediately from
Proposition 3.15. Now consider a termxµ ∈ I : x∞

k \ I for some1 ≤ k ≤ n. By
definition of such a colon ideal, there exists an integerℓ such thatxℓ

kxµ ∈ I and
hence a generatorxν ∈ H such thatxν |P xℓ

kxµ. If cls ν > k, thenν would also
be an involutive divisor ofµ contradicting the assumptionxµ /∈ I. Thus we find
cls ν ≤ k andνk > µk.

Next we consider for arbitrary exponentsm > 0 the non-multiplicative prod-
uctsxm

k+1x
ν ∈ I. For eachm a generatorxρ(m) ∈ H exists which involutively

dividesxm
k+1x

ν . By the same reasoning as above,cls xρ(m)

> k+1 is not possible,
as the Pommaret basisH is by definition involutively autoreduced. This yields the
estimatecls ν ≤ cls xρ(m) ≤ k + 1.

We claim now that there exists an integerm0 such thatρ(m) = ρ(m0) for all
m ≥ m0 andcls xρ(m0)

= k + 1. Indeed, ifcls xρ(m)

< k + 1, then we must
haveρ

(m)
k+1 = vk+1 + m, sincexk+1 is not multiplicative forxρ(m)

. Hencexρ(m)

cannot be an involutive divisor ofxm+1
k+1 xν andρ(m+1) /∈ {ρ(1), . . . , ρ(m)}. As

the Pommaret basisH is a finite set,clsxρ(m0)

= k + 1 for some valuem0 > 0.
But thenxk+1 is multiplicative forxρ(m0)

and thusxρ(m0)

is trivially an involutive
divisor ofxm

k+1x
ν for all valuesm ≥ m0.

Note that, by construction, the generatorxρ(m0)

is also an involutive divisor of
xm0

k+1x
µ, asxk is multiplicative for it. Hence this term must lie inI and conse-

quentlyxµ ∈ I : x∞
k+1. Thus we may conclude thatI : x∞

k ⊆ I : x∞
k+1 for all

1 ≤ k < n. This proves (iii).
For the converse assume that (iii) holds and letB be the minimal basis of the

ideal I. Let xµ ∈ B be an arbitrary term of classk. Thenxµ/xk ∈ I : x∞
k .

By assumption, this means that alsoxµ/xk ∈ I : x∞
ℓ for any non-multiplicative

indexℓ. Hence for each termxµ ∈ B and for each valuecls (xµ) < ℓ ≤ n there
exists an integerqµ,ℓ such thatxqµ,ℓ

ℓ xµ/xk /∈ I but xqµ,ℓ+1
ℓ xµ/xk ∈ I. For the

11 As usual, one must revert the ordering of the variablesx1, . . . , xn in order to recover
the results of the given references.
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values1 ≤ ℓ ≤ clsxµ we setqµ,ℓ = 0. Observe that ifxν ∈ B is a minimal
generator dividingxqµ,ℓ+1

ℓ xµ/xk, then we find for the inverse lexicographic order
thatxν ≺invlex xµ, sincecls (xν) ≥ cls (xµ) andνk < µk.

Consider now the set

H =
{

xµ+ρ | xµ ∈ B ∧ ∀1 ≤ ℓ ≤ n : 0 ≤ ρℓ ≤ qµ,ℓ

}

. (18)

We claim thatH is a weak involutive completion ofB and thus a weak Pommaret
basis ofI. In order to prove this assertion, we must show that each termxλ ∈ I
lies in the involutive cone of a member ofH.

Asxλ is assumed to be an element ofI, we can factor it asxλ = xσ(1)

xρ(1)

xµ(1)

wherexµ(1) ∈ B is a minimal generator,xσ(1)

contains only multiplicative vari-
ables forxµ(1)

andxρ(1)

only non-multiplicative ones. Ifxµ(1)+ρ(1) ∈ H, then
we are done, as obviouslycls

(

xµ(1)+ρ(1))

= cls
(

xµ(1))

and hence all variables

contained inxσ(1)

are multiplicative forxµ(1)+ρ(1)

, too.
Otherwise there exists at least one non-multiplicative variablesxℓ such that

ρ
(1)
ℓ > qµ(1),ℓ. Any minimal generatorxµ(2) ∈ B dividing x

q
µ(1) ,ℓ

+1

ℓ xµ(1)

/xk is

also a divisor ofxλ and we find a second factorisationxλ = xσ(2)

xρ(2)

xµ(2)

where
againxσ(2)

consists only of multiplicative andxρ(2)

only of non-multiplicative
variables forxµ(2)

. If xµ(2)+ρ(2) ∈ H, then we are done by the same argument as
above; otherwise we iterate.

According to the observation made above, the sequence(xµ(1)

, xµ(2)

, . . . ) of
minimal generators constructed this way is strictly descending with respect to the
inverse lexicographic order. However, the minimal basisB is a finite set and thus
the iteration cannot go on infinitely. As the iteration only stops, if there exists an
involutive cone containingxλ, the involutive span ofH is indeedI and thus the
idealI quasi-stable. ⊓⊔
Remark 4.5Note that our considerations about standard pairs and the induced pri-
mary decomposition in the last section imply a simple directproof of the implica-
tion “(i) ⇒ (v)” in Proposition 4.4. If the idealI is quasi-stable, thenI admits a
complementary Rees decomposition according to Proposition 3.6. Together with
Propositions 3.10, 3.11 and Remark 3.12, this observation trivially implies that all
associated prime ideals are of the formp = 〈xj , . . . , xn〉. ⊳

Lemma 4.6LetI1, I2 ⊆ P be two quasi-stable ideals. Then the sumI1 + I2, the
productI1 · I2 and the intersectionI1 ∩ I2 are quasi-stable, too. IfI ⊆ P is
a quasi-stable ideal, then the quotientI : J is again quasi-stable for arbitrary
monomial idealsJ ⊆ P .

Proof For the sumI1 + I2 the claim follows immediately from Remark 2.9 of
Part I which states that the unionH1 ∪H2 of (weak) Pommaret basesHk of Ik is
a weak Pommaret basis of the sumI1 +I2. Similarly, the case of both the product
I1 · I2 and the intersectionI1 ∩ I2 was settled in Remark 6.5 of Part I where for
both ideals weak Pommaret bases were constructed.

For the last assertion we use Part (vi) of Proposition 4.4. IfJ is minimally
generated by the monomialsm1, . . . , mr, thenI : J =

⋂r
k=1 I : mk and thus it
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suffice to consider the case thatJ is a principal ideal with generatorxν . Assume
that xµ ∈ I : xν and thatµi > 0. Sincexµ+ν lies in the quasi-stable idealI,
we find for each0 < r ≤ µi andi < j ≤ n and integers ≥ 0 exists such that
xµ+ν−ri+sj ∈ I. As r ≤ µi, this trivially implies thatxµ−ri+sj ∈ I : xν . ⊓⊔

Remark 4.7Alternative proofs for Lemma 4.6 were given by Cimpoeaş [21]. There
it was also noted that its final statement trivially implies Part (v) of Proposition 4.4,
as any associated prime idealp of a quasi-stable idealI is of the formp = I : xν

for some monomialxν and thus is also quasi-stable. But the only quasi-stable
prime ideals are obviously the ideals〈xj , . . . , xn〉.

Above we actually proved that Part (iii) of Proposition 4.4 may be replaced
by the equivalent statementI : x∞

1 ⊆ I : x∞
2 ⊆ · · · ⊆ I : x∞

n which does
not require a priori knowledge ofD (the dimensionD arises then trivially as the
smallest valuek such thatI : x∞

k = P , i., e, for whichI contains a minimal
generatorxℓ

k for some exponentℓ > 0). In this formulation it is straightforward
to verify (iii) effectively: bases of the colon idealsI : x∞

k are easily obtained by
settingxk = 1 in any basis ofI and for monomial ideals it is trivial to check
inclusion, as one must only compare their minimal bases.

We furthermore note that if we have for some value1 ≤ k ≤ n an ascending
chainI : x∞

1 ⊆ I : x∞
2 ⊆ · · · ⊆ I : x∞

k , then for each1 ≤ j ≤ k the minimal
basisBj of I : x∞

j lies ink[xj+1, . . . , xn]. Indeed, no element ofBj can depend
onxj . Now assume thatxν ∈ Bj satisfiescls ν = ℓ < j. Thenxm

j xν is a minimal
generator ofI for some suitable exponentm ∈ N0. This in turn implies that
xm

j xν/xνℓ

ℓ ∈ I : x∞
ℓ ⊆ I : x∞

j and hencexν/xνℓ

ℓ ∈ I : x∞
j which contradicts

our assumption thatxν was a minimal generator. ⊳

The above mentioned version of Proposition 4.4 (iii) provides us with a new,
simple and effective criterion forδ-regularity of a monomial ideal. The follow-
ing converse to Theorem 2.13 shows that for monomial ideals the notion ofδ-
regularity and asymptotic regularity (for Pommaret autoreduced bases) are equiv-
alent. Obviously, this observation entails their equivalence for Pommaret autore-
ducedGröbnerbases of arbitrary ideals.

Proposition 4.8LetI ⊆ P be a monomial ideal andB a finite, Pommaret autore-
duced monomial basis of it. IfI is not quasi-stable, then for at least one generator
in the basisB a variable exists which is Janet but not Pommaret multiplicative.

Proof As the idealI is not quasi-stable, there exists a minimal valuek such that
I : x∞

k * I : x∞
k+1. Let xµ be a minimal generator ofI : x∞

k which is not
contained inI : x∞

k+1. Then for a suitable exponentm ∈ N0 the termxµ̄ = xm
k xµ

is a minimal generator ofI and hence contained inB.
We claim now thatB contains a generator for whichxk+1 is Janet but not

Pommaret multiplicative. Ifxk+1 ∈ XJ,B(xµ̄), then we are done, as according to
Remark 4.7cls µ̄ = k and hencexk+1 /∈ XP (xµ̄). OtherwiseB contains a termxν

such thatνℓ = µℓ for k + 1 < ℓ ≤ n andνk+1 > µk+1. If several generators with
this property exist inB, we choose one for whichνk+1 takes a maximal value so
that we havexk+1 ∈ XJ,B(xν) by definition of the Janet division. Ifcls ν < k+1,
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we are again done, as thenxk+1 /∈ XP (xν). Now assume thatcls ν = k + 1 and
consider the termxρ = xν/x

νk+1

k+1 . Obviously,xρ ∈ I : x∞
k+1 contradicting our

assumptionxµ /∈ I : x∞
k+1 sincexρ | xµ. Hence this case cannot arise. ⊓⊔

We mentioned above that whileδ-regular coordinates ensure thatI is in Noether
position the converse is not true. Based on Proposition 4.4 (v), one can formulate
a converse for monomial ideals stating that a Pommaret basisof a monomial ideal
induces not only a Noether normalisation of the ideal itselfbut simultaneously of
all its primary components.

Corollary 4.9 ([12, Prop. 3.6])Let I be a monomial ideal withdimP/I = D.
Furthermore, letI = q1 ∩ · · · ∩ qr be an irredundant monomial primary decom-
position withDj = dimP/qj for 1 ≤ j ≤ r. ThenI is quasi-stable, if and only
if k[x1, . . . , xD] defines a Noether normalisation ofP/I andk[x1, . . . , xDj

] one
of P/qj for each primary componentqj.

We may also exploit Proposition 4.4 for actually deriving anirredundant pri-
mary decompositionI = q1 ∩ · · · ∩ qt with monomial idealsqj for an arbitrary
quasi-stable idealI.12 Bermejo and Gimenez [12, Rem. 3.3] noted that their proof
of the implication “(v)⇒ (iv)” in Proposition 4.4 has some simple consequences
for the primary idealsqj. Let againD = dimP/I. Thenp = 〈xD+1, . . . , xn〉
is the unique minimal prime ideal associated toI and the corresponding unique
primary component is given byI : x∞

D (if D = 0, then obviouslyI is already a
primary ideal). More generally, we find for any1 ≤ k ≤ D that

I : x∞
k =

⋂

pj⊆〈xk+1,...,xn〉

qj (19)

wherepj =
√

qj is the corresponding associated prime ideal. Based on theseob-
servations, an irredundant primary decomposition can be constructed by working
backwards through the sequenceI ⊆ I : x∞

1 ⊆ I : x∞
2 ⊆ · · · ⊆ I : x∞

n .
Let d = depthP/I, i. e. d + 1 is the minimal class of a generator in the

Pommaret basisH of I according to Proposition 3.19.13 For 1 ≤ k ≤ D we set
sk = min {s | I : xs

k = I : xs+1
k }, i. e. sk is the highestxk-degree of a minimal

generator ofI. Then we introduce the idealsJk = I + 〈xsk+1

k+1 , . . . , xsD

D 〉 and

qk = Jk : x∞
k = I : x∞

k + 〈xsk+1

k+1 , . . . , xsD

D 〉 . (20)

It is easy to see that all the idealsJk are again quasi-stable provided the idealI
is quasi-stable (this follows immediately from Proposition 4.4 and the fact that in
this case(I : x∞

i ) : x∞
j = I : x∞

j for i < j). For notational simplicity we
formally defineI : x∞

0 = I andq0 = J0 = I + 〈xs1
1 , . . . , xsD

D 〉. Since obviously
dimP/Jk = k for 0 ≤ k ≤ D, it follows from the considerations above thatqk

is an〈xk+1, . . . , xn〉-primary ideal.

12 The following construction is joint work with M. Hausdorf and M. Sahbi and has al-
ready appeared in [38].

13 Note that for determining the depthd in the case of a quasi-stable ideal, it is not neces-
sary to compute the Pommaret basis: since multiplication with a non-multiplicative variable
never decreases the class,d + 1 is also the minimal class of a minimal generator.
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Proposition 4.10 ([38, Prop. 4.6])Let I ⊆ P be a quasi-stable ideal. Then a
monomial primary decomposition is given byI =

⋂D
k=d qk. Eliminating all pri-

mary idealsqk whereI : x∞
k = I : x∞

k+1 makes it an irredundant decomposition.

Proof We first show that the equalityI : x∞
k =

⋂D
ℓ=k qℓ holds or equivalently

thatI : x∞
k = qk ∩ (I : x∞

k+1) for 0 ≤ k ≤ n; for k = d this represents the first
statement of the proposition, since obviouslyI : x∞

0 = · · · = I : x∞
d = I. By

definition of the valuesk+1, we have that [34, Lemma 3.3.6]

I : x∞
k =

(

I : x∞
k + 〈xsk+1

k+1 〉
)

∩
(

(I : x∞
k ) : x∞

k+1

)

. (21)

The second factor obviously equalsI : x∞
k+1. To the first one we apply the same

construction and decompose

I : x∞
k + 〈xsk+1

k+1 〉 =

=
(

I : x∞
k + 〈xsk+1

k+1 , x
sk+2

k+2 〉
)

∩
(

(I : x∞
k + 〈xsk+1

k+1 〉) : x∞
k+2

)

=
(

I : x∞
k + 〈xsk+1

k+1 , x
sk+2

k+2 〉
)

∩
(

I : x∞
k+2 + 〈xsk+1

k+1 〉
)

.

(22)

Continuing in this manner, we arrive at a decomposition

I : x∞
k = qk ∩ · · · ∩ (I : x∞

k+1) (23)

where the dots represent factors of the formI : x∞
ℓ + 〈xsk+1

k+1 , . . . , x
sℓ−1

ℓ−1 〉 with
ℓ ≥ k + 2. Since we assume thatI is quasi-stable,I : x∞

k+1 is contained in each
of these factors and we may omit them which proves our claim.

In the thus obtained primary decomposition ofI the radicals of all appearing
primary ideals are pairwise different. Furthermore, it is obvious thatqk is redun-
dant wheneverI : x∞

k = I : x∞
k+1. Thus there only remains to prove that all the

other primary idealsqk are indeed necessary. Assume thatI : x∞
k ( I : x∞

k+1

(which is in particular the case fork < d). Then there exists a minimal generator
xµ of I : x∞

k+1 which is not contained inI : x∞
k . Consider the monomialxsk

k xµ.
It cannot lie inI : x∞

k , as otherwise alreadyxµ ∈ I : x∞
k , and thus it also cannot

be contained inqk (since we showed above thatI : x∞
k = qk ∩ (I : x∞

k+1)). On
the other hand we find thatxsk

k xµ ∈ qℓ for all ℓ > k since thenI : x∞
k+1 ⊆ qℓ and

for all ℓ < k since then〈xsk

k 〉 ⊆ qℓ. Henceqk is not redundant. ⊓⊔

According to Lemma 4.6, the quotient idealsI : x∞
k are again quasi-stable. It

is straightforward to obtain Pommaret bases for them. We disjointly decompose the
monomial Pommaret basisH = H1 ∪ · · · ∪ Hn whereHk contains all generators
of classk. Furthermore, we writeH′

k for the set obtained by settingxk = 1 in
each generator inHk.

Lemma 4.11For any 1 ≤ k ≤ n the setH′ = H′
k ∪ ⋃n

ℓ=k+1 Hℓ is a weak
Pommaret basis of the colon idealI : x∞

k .

Proof We first show thatH′ is an involutive set. By definition of the Pommaret
division, it is obvious that the subset

⋃n
ℓ=k+1 Hℓ is involutive. Thus there only

remains to consider the non-multiplicative products of themembers ofH′
k. Take
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xµ ∈ H′
k and letxℓ be a non-multiplicative variable for it. Obviously, there exists

an m > 0 such thatxm
k xµ ∈ Hk and hence a generatorxν ∈ ⋃n

ℓ=k Hℓ such
that xℓx

m
k xµ lies in the involutive coneCP (xν). Writing xℓx

m
k xµ = xρ+ν , we

distinguish two cases. Ifcls ν > k, thenρk = m and we can divide byxm
k in

order to obtain an involutive standard representation ofxℓx
µ with respect toH′.

If cls ν = k, then the multi indexρ is of the formrk, i. e. only thekth entry is
different from zero, and we even find thatxℓx

µ = xν/xr
k ∈ H′

k.
Thus there only remains to prove thatH′ is actually a generating set forI : x∞

k .
For this we first note that the Pommaret basis of a quasi-stable ideal contains a
generator of classk only, if there is a minimal generator of classk, as applying
the monomial completion Algorithm 2 of Part I to the minimal basis adds only
non-multiplicative multiples of the minimal generators (and these are trivially of
the same class). By Remark 4.5, all minimal generators ofI : x∞

k have at least
classk + 1. Thus settingxk = 1 in any member of

⋃k−1
ℓ=1 Hℓ can never produce

a minimal generator ofI : x∞
k and thusH′ is a weak involutive completion of

the minimal basis ofI : x∞
k . According to Proposition 2.8 of Part I, an involutive

autoreduction yields a strong basis. ⊓⊔

The ideals〈xsk+1

k+1 , . . . , xsD

D 〉 are obviously irreducible and fork ≥ d exactly
of the form that they possess a Pommaret basis as discussed inRemark 2.13 of
Part I. There we also gave an explicit Pommaret basis for suchan ideal. Since
according to Remark 2.9 of Part I the union of two (weak) Pommaret bases of
two monomial idealsI1, I2 yields a weak Pommaret basis ofI1 + I2, we obtain
this way easily weak Pommaret bases for all primary idealsqk appearing in the
irredundant decomposition of Proposition 4.10.

Thus the crucial information for obtaining an irredundant primary decomposi-
tion of a quasi-stable idealI is where “jumps” are located, i. e. whereI : x∞

k (
I : x∞

k+1. Since these ideals are quasi-stable, the positions of the jumps are de-
termined by their depths. A chain with all the jumps is obtained by the following
simple recipe: setI0 = I and defineIk+1 = Ik : x∞

dk
wheredk = depth Ik. This

construction leads to the so-calledsequential chainof I:

I0 = I ( I1 ( · · · ( Ir = P ; . (24)

Remark 4.12With the help of the sequential chain (24) one can also show straight-
forwardly that any quasi-stable ideal issequentially Cohen-Macaulay[42, Cor. 2.5]
(recall that the algebraA = P/I is sequentially Cohen-Macaulay [70], if a chain
I0 = I ⊂ I1 ⊂ · · · ⊂ Ir = P exists such that all quotientsIk+1/Ik are Cohen-
Macaulay and their dimensions are ascending:dim (Ik/Ik−1) < dim (Ik+1/Ik)).

Indeed, consider the idealJk = Ik ∩ k[xdk
, . . . , xn]. By Remark 4.7, the

minimal generators ofJk are the same as the minimal ones ofIk; furthermore, by
Proposition 4.4(iv)J sat

k = Jk : x∞
dk

. Hence we find thatIk+1 = 〈J sat
k 〉P and

Ik+1/Ik
∼= (J sat

k /Jk)[x1, . . . , xdk−1] . (25)

Since the factor ringJ sat
k /Jk is trivially finite (as ak-linear space), the quotient

Ik+1/Ik is thus a(dk − 1)-dimensional Cohen-Macaulay module. ⊳
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5 Syzygies for Involutive Bases

Gröbner bases are a very useful tool in syzygy theory. A central result isSchreyer’s
Theorem[1,64] that the standard representations of theS-polynomials between the
elements of a Gröbner basis directly determine a Gröbner basis of the first syzygy
module with respect to an appropriately chosen term order. Now we study the use
of involutive bases in this context.

In Part I we introduced involutive bases only for ideals, butthe extension to
submodules of free modulesPm is trivial. We represent elements ofPm as vectors
f = (f1, . . . , fm) with fα ∈ P . The standard basis ofPm consists of the unit
vectorseα with eαβ = δαβ and1 ≤ α ≤ m; thusf = f1e1 + · · ·+ fmem. Now a
termt is a vector of the formt = teα for someα and witht ∈ T a term inP . We
denote the set of all terms byTm; it is a monoid module overT.

LetH ⊂ Pm be a finite set,≺ a term order onTm andL an involutive division
onNn

0 . We divideH into m disjoint setsHα =
{

h ∈ H | lt≺h = teα, t ∈ T}

.
This leads naturally tom setsNα =

{

µ ∈ Nn
0 | xµeα ∈ lt≺Hα

}

. If h ∈ Hα,
we assign the multiplicative variablesXL,H,≺(h) =

{

xi | i ∈ NL,Nα
(le≺h)

}

.
The involutive span〈H〉L,≺ is defined by an obvious generalisation of the old
definition in Part I.

Let H = {h1, . . . ,hs} be an involutive basis of the submoduleM ⊆ Pm.
Take an arbitrary elementhα ∈ H and choose an arbitrary non-multiplicative
variablexk ∈ X̄L,H,≺(hα) of it. By the results of Part I, we can determine with an
involutive normal form algorithm for each generatorhβ ∈ H a unique polynomial

P
(α;k)
β ∈ k[XL,H,≺(hβ)] such thatxkhα =

∑s
β=1 P

(α;k)
β hβ . To this relation

corresponds the syzygy

Sα;k = xkeα −
s

∑

β=1

P
(α;k)
β eβ ∈ Ps . (26)

We denote the set of all thus obtained syzygies by

HSyz =
{

Sα;k | 1 ≤ α ≤ s; xk ∈ X̄L,H,≺(hα)
}

. (27)

Lemma 5.1LetH be an involutive basis for the involutive divisionL and the term
order ≺. If S =

∑s
β=1 Sβeβ is an arbitrary syzygy in the moduleSyz(H) with

Sβ ∈ k[XL,H,≺(hβ)] for all 1 ≤ β ≤ s, thenS = 0.

Proof By definition of a syzygy,
∑s

β=1 Sβhβ = 0. As the involutive basisH is in-
volutively head autoreduced, each elementf ∈ 〈H〉 possesses a unique involutive
standard representation. In particular, this holds for0 ∈ 〈H〉. Thus eitherS = 0 or
Sβ /∈ k[XL,H,≺(hβ)] for at least oneβ. ⊓⊔

A fundamental ingredient of Schreyer’s Theorem is the term order≺F onTs

induced by an arbitrary finite setF = {f1, . . . , fs} ⊂ Pm and an arbitrary term
order≺ onTm: given two termss = seσ andt = teτ , we sets ≺F t, if either
lt≺(sfσ) ≺ lt≺(tfτ ) or lt≺(sfσ) = lt≺(tfτ ) andτ < σ.



Involution andδ-Regularity II 33

Corollary 5.2 If H ⊂ P is an involutive basis, then the setHSyz generates the
syzygy moduleSyz(H).

Proof Let S =
∑s

β=1 Sβeβ by an arbitrary non-vanishing syzygy inSyz(H). By
Lemma 5.1, at least one of the coefficientsSβ must contain a termxµ with a non-
multiplicative variablexj ∈ X̄L,H,≺(hβ). Let cxµeβ be the maximal such term
with respect to the term order≺H and j the maximal non-multiplicative index
with µj > 0. Then we eliminate this term by computingS′ = S − cxµ−1j Sβ;j . If
S′ 6= 0, we iterate. Since all new terms introduced by the subtraction are smaller
than the eliminated term with respect to≺H, we must reach zero after a finite
number of steps. Thus this computation leads to a representation of S as a linear
combination of elements ofHSyz. ⊓⊔

Let H = {h1, · · · ,hs} be an involutive basis and thus a Gröbner basis for
the term order≺. Without loss of generality we may assume thatH is a monic
basis. Settα = lt≺hα andtαβ = lcm(tα, tβ). We have for everyS-polynomial
a standard representationS≺(hα,hβ) =

∑s
γ=1 fαβγhγ where the polynomials

fαβγ ∈ P satisfy lt≺
(

S≺(hα,hβ)
)

� lt≺(fαβγhγ) for 1 ≤ γ ≤ s. Setting
fαβ =

∑s
γ=1 fαβγeγ , we introduce forα 6= β the syzygy

Sαβ =
tαβ

tα

eα − tαβ

tβ

eβ − fαβ . (28)

Schreyer’s Theorem asserts that the setHSchreyer = {Sαβ | 1 ≤ α < β ≤ s}
of all these syzygies is a Gröbner basis of the first syzygy moduleSyz(H) for the
induced term order≺H.

We denote bỹSαβ =
tαβ

tα
eα − tαβ

tβ
eβ the syzygy of the leading terms corre-

sponding toSαβ and ifS ⊆ HSchreyer is a set of syzygies,̃S contains the corre-
sponding syzygies of the leading terms.

Lemma 5.3Let S ⊆ HSchreyer be such thatS̃ generatesSyz(lt≺H). ThenS
generatesSyz(H). Assume furthermore that the three pairwise distinct indices
α, β, γ are such that14 Sαβ ,Sβγ ,Sαγ ∈ S and tγ | tαβ . Then the smaller set
S \ {Sαβ} still generatesSyz(H).

Proof It is a classical result in the theory of Gröbner bases thatS̃ \ {S̃αβ} still
generatesSyz(lt≺H). In fact, this is the basic property underlying Buchberger’s
second criterion for avoiding redundantS-polynomials. Thus it suffices to show
the first assertion; the second one is a simple corollary.

Let R =
∑s

α=1 Rαeα ∈ Syz(H) be an arbitrary syzygy of the full generators
and settR = max≺

{

lt≺(Rαhα) | 1 ≤ α ≤ s
}

. Then

R̃ =
∑

lt≺(Rαhα)=tR

lt≺(Rαhα) ∈ Syz(lt≺H) . (29)

According to our assumptioñS is a generating set ofSyz(lt≺H), so that we may
write R̃ =

∑

S̃∈S̃ aS̃S̃ for some coefficientsaS̃ ∈ P . Let us now consider the

14 If α > β, then we understand thatSβα ∈ S etc.



34 Werner M. Seiler

syzygyR′ = R − ∑

S∈S aS̃S. Obviously,tR′ ≺ tR. By iteration we obtain thus
in a finite number of steps a representationR =

∑

S∈S bSS and thusS generates
the moduleSyz(H). ⊓⊔

As a consequence of this simple lemma, we can now show that each involutive
basis yields immediately a Gröbner basis of the first syzygymodule. In fact, this
basis is automatically computed during the determination of the involutive basis
with the completion Algorithm 3 of Part I. This is completelyanalogously to the
automatic determination ofHSchreyer with the Buchberger algorithm.

Theorem 5.4Let H be an involutive basis for the involutive divisionL and the
term order≺. Then the setHSyz is a Gröbner basis of the syzygy moduleSyz(H)
for the term order≺H.

Proof Without loss of generality, we may assume thatH is a monic basis, i. e. all
leading coefficients are1. LetSα;k ∈ HSyz. AsH is an involutive basis, the unique

polynomialsP (α;k)
β in (26) satisfylt≺(P

(α;k)
β hβ) � lt≺(xkhα) and there exists

only one indexβ̄ such thatlt≺(P
(α;k)

β̄
hβ̄) = lt≺(xkhα). It is easy to see that we

haveSα;k = Sαβ̄ . ThusHSyz ⊆ HSchreyer.
Let Sαβ ∈ HSchreyer \ HSyz be an arbitrary syzygy. We prove first that the set

HSchreyer \ {Sαβ} still generatesSyz(H). Any syzygy inHSchreyer has the form
Sαβ = xµeα − xνeβ + Rαβ. By construction, one of the monomialsxµ andxν

must contain a non-multiplicative variablexk for hα or hβ , respectively. Without
loss of generality, we assume thatxk ∈ X̄L,H,≺(hα) andµk > 0. This implies
thatHSyz contains the syzygySα;k. As shown above, a unique indexγ 6= β exists
such thatSα;k = Sαγ .

Let Sαγ = xkeα − xρeγ + Rαγ . By construction,xρtγ = xktα divides
xµtα = tαβ . Thustγ | tαβ and by Lemma 5.3 the setHSchreyer \ {Sαβ} still
generatesSyz(H). If we try to iterate this argument, we encounter the following
problem. In order to be able to eliminateSαβ we need bothSαγ andSβγ in the
remaining set. ForSαγ ∈ HSyz, this is always guaranteed. But we know nothing
aboutSβγ and, if it is not an element ofHSyz, it could have been removed in an
earlier iteration.

We claim that with respect to the term order≺H the termlt≺H
Sαβ is greater

than bothlt≺H
Sαγ andlt≺H

Sβγ . Without loss of generality, we may assume for
simplicity thatα < β < γ, as the syzygiesSαβ andSβα differ only by a sign.
Thuslt≺H

Sαβ =
tαβ

tα
eα and similarly forSαγ andSβγ . Furthermore,tγ | tαβ

trivially implies tαγ | tαβ and hencetαγ ≺ tαβ for any term order≺. Obviously,
the same holds fortβγ . Now a straightforward application of the definition of the
term order≺H proves our claim.

Thus if we always remove the syzygySαβ ∈ HSchreyer \ HSyz whose leading
term is maximal with respect to the term order≺H, it can never happen that the
syzygySβγ required for the application of Lemma 5.3 has already been eliminated
earlier andHSyz is a generating set ofSyz(H).

It is a simple corollary of Schreyer’s theorem thatHSyz is even a Gröbner basis
of Syz(H). Indeed, we know thatHSchreyer is a Gröbner basis ofSyz(H) for the
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term order≺H and it follows from our considerations above that whenever we
remove a syzygySαβ we still have in the remaining set at least one syzygy whose
leading term divideslt≺H

Sαβ . Thus we find

〈lt≺H
(HSyz)〉 = 〈lt≺H

(HSchreyer)〉 = lt≺H
Syz(H) (30)

which proves our assertion. ⊓⊔
This result is not completely satisfying, as it only yields aGröbner and not an

involutive basis of the syzygy module. The latter seems to behard to achieve for
arbitrary divisionsL. For some divisions it is possible with a little effort. The key
idea is that in the order≺H the numbering of the generators inH is important and
we must choose the right one. For this purpose we generalise aconstruction of
Plesken and Robertz [58] for the special case of a Janet basis.

We associate a directed graph with each involutive basisH. Its vertices are
given by the elements inH. If xj ∈ X̄L,H,≺(h) for some generatorh ∈ H, then,
by definition of an involutive basis,H contains a unique generatorh̄ such that
le≺h̄ is an involutive divisor ofle≺(xjh). In this case we include a directed edge
from h to h̄. The thus defined graph is called theL-graphof the basisH.

Lemma 5.5 If the divisionL is continuous, then theL-graph of any involutive set
H ⊂ P is acyclic.

Proof The leading exponents of the vertices of a path in anL-graph define a se-
quence as in the definition of a continuous division. If the path is a cycle, then the
sequence contains identical elements contradicting the continuity of L. ⊓⊔

We order the elements ofH as follows: whenever theL-graph ofH contains
a path fromhα to hβ , then we must haveα < β. Any ordering satisfying this
condition is called anL-ordering. Note that by the lemma above for a continuous
divisionL-orderings always exist (although they are in general not unique).

For the Pommaret divisionP it is easy to describe explicitly aP -ordering
without using theP -graph: we require that if eitherclshα < clshβ or clshα =
clshβ = k and and the last non-vanishing entry ofle≺hα − le≺hβ is negative,
then we must haveα < β. Thus we sort the generatorshα first by their class and
within each class lexicographically (according to our definition in Appendix A of
Part I). It is straightforward to verify that this defines indeed aP -ordering.

Example 5.6Let us consider the idealI ⊂ k[x, y, z] generated by the six polyno-
mialsh1 = x2, h2 = xy, h3 = xz−y, h4 = y2, h5 = yz−y andh6 = z2−z+x.
One easily verifies that they form a Pommaret basisH for the degree reverse lexi-
cographic order. The correspondingP -graph has the following form

h1

h2??�������

h4
//

h5

��

h6

��

h5

��?
??

??
??

h3

��?
??

??
??

h5??�������
h6

//

(31)
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One clearly sees that the generators are alreadyP -ordered, namely according to
the description above. ⊳

The decisive observation about anL-ordering is that we can now easily deter-
mine the leading terms of all syzygiesSα;k ∈ HSyz for the Schreyer order≺H.

Lemma 5.7Let the elements of the involutive basisH ⊂ P be ordered according
to anL-ordering. Then the syzygiesSα;k satisfylt≺H

Sα;k = xkeα.

Proof By the properties of the involutive standard representation, we have in (26)
lt≺(P

(α;k)
β hβ) � lt≺(xkhα) for all β and only one index̄β exists for which

lt≺(P
(α;k)

β̄
hβ̄) = lt≺(xkhα). Thusle≺hβ̄ is an involutive divisor ofle≺(xkhα)

and theL-graph ofH contains an edge fromhα to hβ̄ . In an L-ordering, this
impliesα < β̄. Now the assertion follows immediately from the definition of the
term order≺H. ⊓⊔

There remains the problem of controlling the multiplicative variables associ-
ated to these leading terms by the involutive divisionL. For arbitrary divisions it
does not seem possible to make any statement. Thus we simply define a class of
involutive divisions with the desired properties and show afterwards that at least
the Janet and the Pommaret division belong to this class.

Definition 5.8 An involutive divisionL is of Schreyer typefor the term order≺, if
for any setH which is involutive with respect toL and≺ all setsX̄L,H,≺(h) with
h ∈ H are again involutive.

Lemma 5.9Both the Janet and the Pommaret division are of Schreyer typefor any
term order≺.

Proof For the Janet division any set of variables, i. e. monomials of degree one, is
involutive. Indeed, letF be such a set andxk ∈ F , then

XJ,F (xk) = {xi | xi /∈ F ∨ i ≤ k} (32)

which immediately implies the assertion. For the Pommaret division sets of non-
multiplicative variables are always of the formF = {xk, xk+1, . . . , xn} and such
a set is trivially involutive. ⊓⊔

An example of an involutive division which is not of Schreyertype is the
Thomas divisionT [76] defined as follows: letN ⊂ Nn

0 be a finite set andν ∈ N
an arbitrary element; theni ∈ NT,N (ν), if and only if νi = maxµ∈N µi (obvi-
ously, one may consider the Janet division as a kind of refinement of the Thomas
division). One easily sees that no set consisting only of variables can be involutive
for the Thomas division so that it cannot be of Schreyer type.

Theorem 5.10Let L be a continuous involutive division of Schreyer type for the
term order≺ andH an L-ordered involutive basis of the polynomial moduleM
with respect toL and≺. ThenHSyz is an involutive basis ofSyz(H) with respect
to L and the term order≺H.
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Proof By Lemma 5.7, the leading term ofSα;k ∈ HSyz is xkeα and we have one
such generator for each non-multiplicative variablexk ∈ X̄L,H,≺(hα). Since we
assume thatL is of Schreyer type for≺, these leading terms form an involutive set.
As we know already from Theorem 5.4 thatHSyz is a Gröbner basis ofSyz(H),
the assertion follows trivially. ⊓⊔

Note that under the made assumptions it follows immediatelyfrom the simple
form of the leading terms thatHSyz is a minimal Gröbner basis ofSyz(H).

Example 5.11We continue with Example 5.6. As all assumption of Theorem 5.10
are satisfied, the eight syzygies

S1;3 = ze1 − xe3 − e2 , (33a)

S2;3 = ze2 − xe5 − e2 , (33b)

S3;3 = ze3 − xe6 + e5 − e3 + e1 , (33c)

S4;3 = ze4 − ye5 − e4 , (33d)

S5;3 = ze5 − ye6 + e2 , (33e)

S1;2 = ye1 − xe2 , (33f)

S2;2 = ye2 − xe4 , (33g)

S3;2 = ye3 − xe5 + e4 − e2 (33h)

form a Pommaret basis of the syzygy moduleSyz(H) with respect to the induced
term order≺H. Indeed, as

zS1;2 = yS1;3 − xS2;3 + xS4;2 + S2;2 , (34a)

zS2;2 = yS2;3 − xS4;3 + S2;2 , (34b)

zS3;2 = yS3;3 − xS5;3 − S2;3 + S4;3 + S3;2 − S1;2 , (34c)

all products of the generators with their non-multiplicative variables possess an
involutive standard representation. ⊳

6 Free Resolutions I: The Polynomial Case

As Theorem 5.10 yields again an involutive basis of the syzygy module, we may
apply it repeatedly and construct this way a resolution for any polynomial submod-
uleM ⊆ Pm given an involutive basis of it for an involutive division ofSchreyer
type. We specialise now to Pommaret bases where one can even make a number of
statements about the size of the resolution. In particular,we immediately obtain a
stronger form of Hilbert’s Syzygy Theorem as a corollary (infact, we will see later
that we get the strongest possible form, as the arising free resolution is always of
minimal length).

Theorem 6.1LetH be a Pommaret basis of the polynomial submoduleM ⊆ Pm.
If we denote byβ(k)

0 the number of generatorsh ∈ H such thatcls le≺h = k and

setd = min {k | β
(k)
0 > 0}, thenM possesses a finite free resolution

0 −→ Prn−d −→ · · · −→ Pr1 −→ Pr0 −→ M −→ 0 (35)
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of lengthn − d where the ranks of the free modules are given by

ri =

n−i
∑

k=1

(

n − k

i

)

β
(k)
0 . (36)

Proof According to Theorem 5.10,HSyz is a Pommaret basis ofSyz(H) for the
term order≺H. Applying the theorem again, we can construct a Pommaret basis
of the second syzygy moduleSyz2(H) and so on. In the proof of Theorem 5.10
we showed thatle≺H

Sα;k = xkeα. HenceclsSα;k = k > clshα and if d is the
minimal class of a generator inH, then the minimal class inHSyz is d + 1. This
yields the length of the resolution (35), as a Pommaret basiswith d = n generates
a free submodule.

The ranks of the modules follow from a rather straightforward combinatorial
calculation. Letβ(k)

i denote the number of generators of classk of theith syzygy

moduleSyzi(H). By definition of the generatorsSα;k, we findβ
(k)
i =

∑k−1
j=1 β

(j)
i−1,

as each generator of class less thank in the Pommaret basis ofSyzi−1(H) con-
tributes one generator of classk to the basis ofSyzi(H). A simple induction allows

us to express theβ(k)
i in terms of theβ(k)

0 :

β
(k)
i =

k−i
∑

j=1

(

k − j − 1

i − 1

)

β
(j)
0 . (37)

The ranks of the modules in (35) are given byri =
∑n

k=1 β
(k)
i ; entering (37)

yields via a classical identity for binomial coefficients (36). ⊓⊔

Remark 6.2Theorem 6.1 remains valid for any involutive basisH with respect to
a continuous division of Schreyer type, if we defineβ

(k)
0 (respectivelyβ(k)

i in the
proof) as the number of generators withk multiplicative variables, since Theo-
rem 5.10 holds for any such basis. Indeed, after the first stepwe always analyse
monomial sets of the form{xi1 , xi2 , . . . , xin−k

} with i1 < i2 < · · · < in−k. By
assumption, these sets are involutive and this is only possible, if one of the gener-
ators possessesn multiplicative variables, another onen − 1 and so on until the
last generator which has onlyn − k multiplicative variables (this fact follows for
example from Proposition 3.2 on the form of the Hilbert series). Hence the basic
recursion relationβ(k)

i =
∑k−1

j=1 β
(j)
i−1 and all subsequent combinatorial computa-

tions remain valid for any division of Schreyer type.
For the special case of the Janet division, Plesken and Robertz [58] proved di-

rectly the corresponding statement. Here it is straightforward to determine explic-
itly the multiplicative variables for any syzygy: ifhα is a generator in the Janet ba-
sisH with the non-multiplicative variables̄XJ,H,≺(hα) = {xi1 , xi2 , . . . , xin−k

}
wherei1 < i2 < · · · < in−k, then

XJ,HSyz,≺(Sα;ij
) = {x1, . . . , xn} \ {xij+1 , xij+2 , . . . , xin−k

} , (38)

as one easily verifies. ⊳
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As in general the resolution (35) is not minimal, the ranksri appearing in
it cannot be identified with the Betti numbers of the moduleM. However, they
obviously represent an upper bound for them. With a little bit more effort one can
easily derive similar bounds even for the multigraded Bettinumbers; we leave this
task as an exercise for the reader.

We may explicitly write the syzygy resolution (35) as a complex. LetW be a
freeP-module with basis{w1, . . . , wp}, i. e. its rank is given by the size of the
Pommaret basisH. Let V be a further freeP-module with basis{v1, . . . , vn},
i. e. its rank is determined by the number of variables inP , and denote byΛV the
exterior algebra overV . We setCi = W⊗PΛiV for 0 ≤ i ≤ n. If k = (k1, . . . , ki)
is a sequence of integers with1 ≤ k1 < k2 < · · · < ki ≤ n andvk denotes the
wedge productvk1 ∧ · · · ∧ vki

, then a basis of this freeP-module is given by the
set of all tensor productswα ⊗ vk. Finally, we introduce the submoduleSi ⊂ Ci

generated by all those basis elements wherek1 > clshα. Note that the rank ofSi

is preciselyri as defined by (36).
We denote the elements of the Pommaret basis ofSyzi(H) by Sα;k with the

inequalitiesclshα < k1 < · · · < ki. An involutive normal form computation
determines for every non-multiplicative indexn ≥ ki+1 > ki = clsSα;k unique

polynomialsP (α;k,ki+1)
β;ℓ ∈ k[x1, . . . , xℓi

] such that

xki+1Sα;k =

p
∑

β=1

∑

ℓ

P
(α;k,ki+1)
β;ℓ Sβ;ℓ (39)

where the second sum is over all integer sequencesℓ = (ℓ1, . . . , ℓi) satisfying
clshβ < ℓ1 < · · · < ℓi ≤ n. Now we define theP-module homomorphisms
ǫ : S0 → M andδ : Si+1 → Si by ǫ(wα) = hα and

δ(wα ⊗ vk,ki+1) = xki+1wα ⊗ vk −
∑

β,ℓ

P
(α;k,ki+1)
β;ℓ wβ ⊗ vℓ . (40)

We extend the differentialδ to a mapCi+1 → Ci as follows. Ifki ≤ clshα, then
we setδ(wα⊗vk) = 0. Otherwise letj be the smallest value such thatkj > clshα

and set (by slight abuse of notation)

δ(wα ⊗ vk1 ∧ · · · ∧ vki
) = vk1 ∧ · · · ∧ vkj−1 ∧ δ(wα ⊗ vkj

∧ · · · ∧ vki
) . (41)

Thus the factorvk1 ∧ · · · ∧ vkj−1 remains simply unchanged and does not affect
the differential. This definition makes, by construction,(C∗, δ) to a complex and
(S∗, δ) to an exact subcomplex which (augmented by the mapǫ : S0 → M) is
isomorphic to the syzygy resolution (35).

Example 6.3We continue with the ideal of Example 5.6 and 5.11, respectively. As
hered = 1, the resolution has length2 in this case. Using the notation introduced
above, the moduleS0 is then generated by{w1, . . . , w6}, the moduleS1 by the
eight elements{w1 ⊗ v3, . . . , w5 ⊗ v3, w1 ⊗ v2, . . . , w3 ⊗ v2} (the first three
generators in the Pommaret basisH are of class1, the next two of class2 and
the final one of class3) and the moduleS2 by {w1 ⊗ v2 ∧ v3, . . . , w3 ⊗ v2 ∧ v3}
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corresponding to the three first syzygies of class2. It follows from the expressions
(33) and (34), respectively, for the first and second syzygies that the differentialδ
is here defined by the relations

δ(w1 ⊗ v3) = zw1 − xw3 − w2 , (42a)

δ(w2 ⊗ v3) = zw2 − xw5 − w2 , (42b)

δ(w3 ⊗ v3) = zw3 − xw6 + w5 − w3 + w1 , (42c)

δ(w4 ⊗ v3) = zw4 − yw5 − w4 , (42d)

δ(w5 ⊗ v3) = zw5 − yw6 + w2 , (42e)

δ(w3 ⊗ v2) = yw3 − xw5 + w4 − w2 , (42f)

δ(w2 ⊗ v2) = yw2 − xw4 , (42g)

δ(w1 ⊗ v2) = yw1 − xw2 , (42h)

δ(w1 ⊗ v2 ∧ v3) = zw1 ⊗ v2 − yw1 ⊗ v3 + xw2 ⊗ v3 −
xw3 ⊗ v2 − w2 ⊗ v2 .

(42i)

δ(w2 ⊗ v2 ∧ v3) = zw2 ⊗ v2 − yw2 ⊗ v3 + xw4 ⊗ v3 − w2 ⊗ v2 , (42j)

δ(w3 ⊗ v2 ∧ v3) = zw3 ⊗ v2 − yw3 ⊗ v3 + xw5 ⊗ v3 +

w2 ⊗ v3 − w4 ⊗ v3 − w3 ⊗ v2 + w1 ⊗ v2 ,

(42k)

It represents a straightforward albeit rather tedious taskto verify explicitly the
exactness of the thus constructed complex(S∗, δ). ⊳

In the case thatm = 1 and thusM is actually an ideal inP , it is tempting to
try to equip the complex(C∗, δ) with the structure of a differential algebra. We first
introduce a multiplication× onW . If hα andhβ are two elements of the Pommaret
basisH, then their product possesses a unique involutive standardrepresentation
hαhβ =

∑p
γ=1 Pαβγhγ and we define

wα × wβ =

p
∑

γ=1

Pαβγwγ (43)

and continueP-linearly onW . This multiplication can be extended to the whole
complexC∗ by defining for arbitrary elementsw, w̄ ∈ W andω, ω̄ ∈ ΛV

(w ⊗ ω) × (w̄ ⊗ ω̄) = (w × w̄) ⊗ (ω ∧ ω̄) . (44)

The distributivity of× is obvious from its definition. For obtaining a differen-
tial algebra, the product× must furthermore be associative and satisfy the graded
Leibniz ruleδ(a × b) = δ(a) × b + (−1)|a|a × δ(b) where|a| denotes the form
degree ofa. While in general both conditions are not met, a number of special
situations exist where one indeed obtains a differential algebra.
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Let us first consider the associativity. It suffices to study it at the level ofW
where we find that

wα × (wβ × wγ) =

p
∑

δ,ǫ=1

PβγδPαδǫwǫ , (45a)

(wα × wβ) × wγ =

p
∑

δ,ǫ=1

PαβδPγδǫwǫ . (45b)

One easily checks that both
∑p

δ,ǫ=1 PβγδPαδǫhǫ and
∑p

δ,ǫ=1 PαβδPγδǫhǫ are stan-
dard representations of the producthαhβhγ for the Pommaret basisH. However,
we cannot conclude that they are involutive standard representations, as we do not
know whetherPβγδ andPαβδ, respectively, are multiplicative forhǫ. If this was
the case, then the associativity would follow immediately from the uniqueness of
involutive standard representations.

For the graded Leibniz rule the situation is similar but moreinvolved. In the
next section we will discuss it in more details for the monomial case. In the end, it
boils down to analysing standard representations for products of the formxkhαhβ .
Again there exist two different ways for obtaining them and asufficient condition
for the satisfaction of the Leibniz rule is that both lead always to the unique invo-
lutive standard representation.

Example 6.4Let us analyse the by now familiar idealI ⊂ k[x, y, z] generated by
h1 = y2 − z, h2 = yz − x andh3 = z2 − xy. We showed already in Part I
(Example 5.10) that these polynomials form a Pommaret basisof I for the degree
reverse lexicographic term order. The Pommaret basis of thefirst syzygy module
consists ofS1;3 = ze1−ye2+e3 andS2;3 = ze2−ye3−xe1. As both generators
are of class3, this is a free module and the resolution stops here.

In a straightforward calculation one obtains for the multiplication × the fol-
lowing defining relations:

w2
1 = w3 − yw2 + y2w1 , w1 × w2 = −yw3 + y2w2 − xw1 , (46a)

w1 × w3 = (y2 − z)w3 , w2
2 = y2w3 − xw2 + xyw1 , (46b)

w2 × w3 = (yz − x)w3 , w2
3 = (z2 − xy)w3 . (46c)

Note that all coefficients ofw1 andw2 are contained ink[x, y] and are thus mul-
tiplicative for all generators. This observation immediately implies that our multi-
plication is associative, as any way to evaluate the productwα ×wβ ×wγ leads to
the unique involutive standard representation ofhαhβhγ .

As furthermore in the only two non-multiplicative productszh2 = yh3 + xh1

andzh1 = yh2 + h3 all coefficients on the right hand sides lie ink[x, y], too, it
follows from the same line of reasoning that the differential satisfies the Leibniz
rule and we have a differential algebra. ⊳

The situation is not always as favourable as in this example.The next example
shows that in general we cannot expect to obtain a differential algebra (in fact, not
even an associative algebra).
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Example 6.5We continue with the ideal of Examples 5.6, 5.11 and 6.3. Evaluation
of the defining relation (43) is particularly simple for the products of the form
wi × w6 = hiw6, as all variables are multiplicative for the generatorh6. Two
further products arew2

5 = y2w6−yw5−xw4 andw3×w5 = xyw6−yw5−xw2.
In a straightforward computation one finds

(w3 × w5) × w5 − w3 × w2
5 = x2w4 − xyw2 , (47)

so that the multiplication is not associative. Note that thedifference corresponds
to the syzygyx2h4 − xyh2 = 0. This result is not surprising, as it encodes the
difference between two standard representations ofh3h

2
5. The reason for the non-

associativity lies in the coefficienty of w5 in the powerw2
5 ; it is non-multiplicative

for h2 and the generatorw2 appears in the productw3 × w5. Hence computing
w3 × w2

5 does not lead to an involutive standard representation ofh3h
2
5 whereas

the product(w3 × w5) × w5 does. ⊳

7 Free Resolutions II: The Monomial Case

For monomial modules it is possible to obtain a closed form ofthe differential (40)
based only on the setH and thus to generalise results by Eliahou and Kervaire [27]
for stable ideals. The existence of a Pommaret basis is now a non-trivial assump-
tion, as the property of being monomial is not invariant under coordinate transfor-
mations. Thus we always assume in the sequel that we are dealing with a quasi-
stable submoduleM ⊆ Pm. LetH = {h1, . . . ,hp} with hα ∈ Tm be its mono-
mial Pommaret basis (by Proposition 2.11 of Part I, it is unique). Furthermore, we
introduce the function∆(α, k) determining the unique generator in the Pommaret
basisH such thatxkhα = tα,kh∆(α,k) with a termtα,k ∈ k[XP (h∆(α,k))].

Lemma 7.1The function∆ and the termstα,k satisfy the following relations.

(i) The inequalityclshα ≤ clsh∆(α,k) ≤ k holds for all non-multiplicative in-
dicesk > clshα.

(ii) Let k2 > k1 > clshα be two non-multiplicative indices. Ifclsh∆(α,k2) ≥ k1,
then∆

(

∆(α, k1), k2

)

= ∆(α, k2) and xk1 tα,k2 = tα,k1t∆(α,k1),k2
. Other-

wise we have the two equations∆
(

∆(α, k1), k2

)

= ∆
(

∆(α, k2), k1

)

and
tα,k1t∆(α,k1),k2

= tα,k2t∆(α,k2),k1
.

Proof Part (i) is trivial. The inequalityclshα ≤ clsh∆(α,k) follows from the
definition of∆ and the Pommaret division. Ifclsh∆(α,k) > k, thenh∆(α,k) would
be an involutive divisor ofhα which contradicts the fact that any involutive basis
is involutively head autoreduced.

For Part (ii) we compute the involutive standard representation of xk1xk2hα.
There are two ways to do it. We may either write

xk1xk2hα = xk2tα,k1h∆(α,k1) = tα,k1t∆(α,k1),k2
h∆(∆(α,k1),k2) , (48)

which is an involutive standard representation by Part (i),or start with

xk1xk2hα = xk1tα,k2h∆(α,k2) (49)
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requiring a case distinction. Ifclsh∆(α,k2) ≥ k1, this is an involutive standard rep-
resentation and its uniqueness implies our claim. Otherwise we rewrite multiplica-
tively xk1h∆(α,k2) = t∆(α,k2),k1

h∆(∆(α,k2),k1) in order to obtain the involutive
standard representation. Again our assertion follows fromits uniqueness. ⊓⊔

Using this lemma, we can now provide a closed form for the differentialδ
which does not require involutive normal form computationsin the syzygy mod-
ulesSyzi(H) (which are of course expensive to perform) but is solely based on in-
formation already computed during the determination ofH. For its proof we must
introduce some additional notations and conventions. If againk = (k1, . . . , ki) is
an integer sequence with1 ≤ k1 < · · · < ki ≤ n, then we writekj for the same
sequence of indices but withkj eliminated. Its first entry is denoted by(kj)1;
hence(kj)1 = k1 for j > 1 and (kj)1 = k2 for j = 1. The syzygySα;k is
only defined forclshα < k1. We extend this notation by settingSα;k = 0 for
clshα ≥ k1. This convention will simplify some sums in the sequel.

Theorem 7.2Let M ⊆ Pm be a quasi-stable submodule andk = (k1, . . . , ki).
Then the differentialδ of the complexC∗ may be written in the form

δ(wα ⊗ vk) =

i
∑

j=1

(−1)i−j
(

xkj
wα − tα,kj

w∆(α,kj)

)

⊗ vkj
. (50)

Proof All summands wherekj is multiplicative forhα vanish which trivially im-
plies (41). Thus we restrict to the caseclshα < k1 where (50) is equivalent to

Sα;k =

i
∑

j=1

(−1)i−j
(

xkj
Sα;kj

− tα,kj
S∆(α,kj);kj

)

. (51)

Some of the termsS∆(α,k);kj
might vanish by our above introduced convention.

The equation (51) is trivial fori = 1 (with Sα = hα) and a simple corollary of
Lemma 7.1 (ii) fori = 2.

Fori > 2 things become messy. We proceed by induction oni. In our approach,
the syzygySα;k arises from the non-multiplicative productxki

Sα;ki
. Thus we

must compute now the involutive normal form of this product.By our induction
hypothesis we may write

xki
Sα;ki

=

i−1
∑

j=1

(−1)i−1−j
(

xkj
xki

Sα;kji
− xki

tα,kj
S∆(α,kj);kji

)

. (52)

As xki
is always non-multiplicative, using again the induction hypothesis, each

summand may be replaced by the corresponding syzygy—but only at the expense
of the introduction of many additional terms. The main task in the proof will be
to show that most of them cancel. However, the cancellationsoccur in a rather
complicated manner with several cases, so that no simple wayfor proving (51)
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seems to exist. We obtain the following lengthy expression:

xki
Sα;ki

=

i−1
∑

j=1

(−1)i−1−j
[

xkj
S

�

�

�

�1
α;kj

− tα,kj
S

�

�

�

�2
∆(α,kj);kj

]

+

i−1
∑

j=1

xkj

[

j−1
∑

ℓ=1

(−1)ℓ+j+1xkℓ
S

�

�

�

�3
α;kℓj

−
i−1
∑

ℓ=j+1

(−1)ℓ+j+1xkℓ
S

�

�

�

�4
α;kjℓ

]

−
i−1
∑

j=1

[

j−1
∑

ℓ=1

(−1)ℓ+j+1xkj
tα,kℓ

S
�

�

�

�5
∆(α,kℓ);kℓj

−

i−1
∑

ℓ=j+1

(−1)ℓ+j+1xkj
tα,kℓ

S
�

�

�

�6
∆(α,kℓ);kjℓ

]

+

i−2
∑

j=1

(−1)i−1−jxkj
tα,ki

S
�

�

�

�7
∆(α,ki);kji

+ xki−1tα,ki
S

�

�

�

�8
∆(α,ki);ki−1,i

−
i−1
∑

j=1

tα,kj

[

j−1
∑

ℓ=1

(−1)ℓ+j+1xkℓ
S

�

�

�

�9
∆(α,kj);kℓj

−

i−1
∑

ℓ=j+1

(−1)ℓ+j+1xkℓ
S

�

�

�

�10
∆(α,kj);kjℓ

]

+
i−1
∑

j=1

tα,kj

[

j−1
∑

ℓ=1

(−1)ℓ+j+1t∆(α,kj),kℓ
S

�

�

�

�11
∆(∆(α,kj),kℓ);kℓj

−

i−1
∑

ℓ=j+1

(−1)ℓ+j+1t∆(α,kj),kℓ
S

�

�

�

�12
∆(∆(α,kj),kℓ);kjℓ

]

−
i−1
∑

j=1

(−1)i−1−jtα,kj
t∆(α,kj),ki

S
�

�

�

�13
∆(∆(α,kj),ki);kji

.

(53)

Note that the terms
�

�

�

�7 ,
�

�

�

�8 and
�

�

�

�13 , respectively, correspond to the special caseℓ = i
(andj = i−1) in the sums

�

�

�

�6 and
�

�

�

�12 , respectively. We list them separately, as they
must be treated differently. The existence of any summand where the coefficient
contains a termt·,· is bound on conditions.

With the exception of the coefficientxki−1 in the term
�

�

�

�8 , all coefficients are
already multiplicative. Thus this term must be further expanded using the induction
hypothesis for the last time:

xki−1tα,ki
S∆(α,ki);ki−1,i

= tα,ki
S

�

�

�

�14
∆(α,ki);ki

−
i−2
∑

j=1

(−1)i−1−jxkj
tα,ki

S
�

�

�

�15
∆(α,ki);kji

+
i−1
∑

j=1

(−1)i−1−jtα,ki
t∆(α,ki),kj

S
�

�

�

�16
∆(∆(α,ki),kj);kji

.

(54)
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The left hand side of (53) and the terms
�

�

�

�1 ,
�

�

�

�2 and
�

�

�

�14 represent the syzygy
Sα,k we are looking for. We must thus show that all remaining termsvanish. In
order to simplify the discussion of the double sums, we swapj andℓ in

�

�

�

�3 ,
�

�

�

�5 ,
�

�

�

�9
and

�

�

�

�11 so that everywherej < ℓ. It is now easy to see that
�

�

�

�3 and
�

�

�

�4 cancel; each
summand of

�

�

�

�3 also appears in
�

�

�

�4 but with the opposite sign. Note, however, that
the same argument does not apply to

�

�

�

�11 and
�

�

�

�12 , as the existence of these terms is
bound to different conditions!

For the other cancellations, we must distinguish several cases depending on
the classes of the generators in the Pommaret basisH. We first study the double
sums and thus assume that1 ≤ j < i.

– If clsh∆(α,kj) < (kj)1, the terms
�

�

�

�5 and
�

�

�

�10 are both present and cancel each
other. We must now make a second case distinction on the basisof h∆(α,kℓ).
– If clsh∆(α,kℓ) < (kj)1, then the terms

�

�

�

�6 and
�

�

�

�9 are also present and cancel
each other. Furthermore, both

�

�

�

�11 and
�

�

�

�12 exist and cancel due to the second
case of Lemma 7.1 (ii).

– If clsh∆(α,kℓ) ≥ (kj)1, then none of the four terms
�

�

�

�6 ,
�

�

�

�9 ,
�

�

�

�11 and
�

�

�

�12
exists. For the latter two terms, this fact is a consequence of the first case
of Lemma 7.1 (ii).

– If clsh∆(α,kj) ≥ (kj)1, then neither
�

�

�

�5 nor
�

�

�

�10 nor
�

�

�

�12 exists. For the remaining
double sums, we must again consider the class ofh∆(α,kℓ).
– If clsh∆(α,kℓ) < (kj)1, then the terms

�

�

�

�6 and
�

�

�

�9 exist and cancel each
other. The term

�

�

�

�11 does not exist, as Lemma 7.1 implies the inequalities
clsh∆(∆(α,kℓ),kj) = clsh∆(∆(α,kj),kℓ) ≥ clsh∆(α,kj) ≥ (kj)1.

– If clsh∆(α,kℓ) ≥ (kj)1, then neither
�

�

�

�6 nor
�

�

�

�9 exist and the term
�

�

�

�11 is not
present either; this time the application of Lemma 7.1 (ii) yields the chain
of inequalitiesclsh∆(∆(α,kℓ),kj) ≥ clsh∆(α,kℓ) ≥ (kj)1.

For the remaining terms everything depends on the class ofh∆(α,ki) control-
ling in particular the existence of the term

�

�

�

�8 .

– If clsh∆(α,ki) < k1 ≤ (kj)1, then the term
�

�

�

�8 exists and generates the terms
�

�

�

�15 and
�

�

�

�16 . Under this condition, the term
�

�

�

�7 is present, too, and because of
Lemma 7.1 (ii) it cancels

�

�

�

�15 . Again by Lemma 7.1 (ii), the conditions for the
existence of

�

�

�

�13 and
�

�

�

�16 are identical and they cancel each other.
– If clsh∆(α,ki) ≥ k1, then

�

�

�

�8 and consequently
�

�

�

�15 and
�

�

�

�16 are not present. The
analysis of

�

�

�

�7 and
�

�

�

�13 requires a further case distinction.
– Under the made assumption, the caseclsh∆(α,ki) < (kj)1 can occur only

for j = 1 as otherwise(kj)1 = k1. Because of Lemma 7.1 (ii), the terms
�

�

�

�7 and
�

�

�

�13 exist forj = 1 and cancel each other.
– If clsh∆(α,ki) ≥ (kj)1, then

�

�

�

�7 does not exist. The term
�

�

�

�13 is also not
present, but there are two different possibilities: depending on which case
of Lemma 7.1 (ii) applies, we either findclsh∆(∆(α,kj),ki) = clsh∆(α,ki)

or clsh∆(∆(α,kj),ki) = clsh∆(∆(α,ki),kj) ≥ clsh∆(α,ki); but in any case
the class is too high.

Thus we have shown that indeed all terms vanish with the exception of
�

�

�

�1 ,
�

�

�

�2
and

�

�

�

�14 which are needed for the syzygySα,k. This proves our claim. ⊓⊔
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Remark 7.3In the last section we introduced for any involutive basisH with re-
spect to a divisionL its L-graph. We augment now this graph by weights for the
edges. Recall that we have a directed edge fromh to h̄, if le≺h̄ is an involutive
divisor of le≺(xkh) for some non-multiplicative variablexk ∈ X̄H,L,≺(h). If
le≺(xkh) = le≺h̄ + µ, then we assign the weightxµ to this edge. For a mono-
mial Pommaret basis the correspondingP -graph has then a directed edge fromhα

to h∆(α,k) with weighttα,k for every non-multiplicative variablexk ∈ X̄P (hα).
Thus we may say that by Theorem 7.2 the whole complex(C∗, δ) (and the isomor-
phic syzygy resolution of〈H〉) is encoded in the weightedP -graph ofH. ⊳

As in the previous section, we may introduce for monomial ideals, i. e. for
m = 1, the product×. The right hand side of its defining equation (43) simplifies
for a monomial basisH to

wα × wβ = mα,βwΓ (α,β) (55)

where the functionΓ (α, β) determines the unique generatorhΓ (α,β) such that
hαhβ = mα,βhΓ (α,β) with a termmα,β ∈ k[XP (hΓ (α,β))]. Corresponding to
Lemma 7.1, we obtain now the following result.

Lemma 7.4The functionΓ and the termsmα,β satisfy the following relations.

(i) cls hΓ (α,β) ≥ max {clshα, clshβ}.
(ii) Γ

(

Γ (α, β), γ
)

= Γ
(

α, Γ (β, γ)
)

andmα,βmΓ (α,β),γ = mβ,γmΓ (β,γ),α.
(iii) Γ

(

∆(α, k), β
)

= ∆
(

Γ (α, β), k
)

andtα,km∆(α,k),β = tΓ (α,β),kmα,β .

Proof Part (i) is obvious from the definition of the functionΓ . Part (ii) and (iii),
respectively, follow from the analysis of the two differentways to compute the
involutive standard representation ofhαhβhγ andxkhαhβ, respectively. We omit
the details, as they are completely analogous to the proof ofLemma 7.1. ⊓⊔
Theorem 7.5LetH be the Pommaret basis of the quasi-stable idealI ⊆ P . Then
the product× defined by (55) makes the complex(C∗, δ) to a differential algebra.

Proof This is a straightforward consequence of Lemma 7.4. Writingout the rela-
tions one has to check, one easily finds that Part (ii) ensuresthe associativity of×
and Part (iii) the satisfaction of the graded Leibniz rule. ⊓⊔

8 Minimal Resolutions and Projective Dimension

Recall that for a graded polynomial moduleM a graded free resolution ismini-
mal, if all entries of the matrices corresponding to the mapsφi : Pri → Pri−1 are
of positive degree, i. e. no constant coefficients appear. Upto isomorphisms, the
minimal resolution is unique and its length is an important invariant, theprojective
dimensionproj dimM of the module. If the moduleM is graded, then the res-
olution (35) is obviously graded, too. However, in general,it is not minimal. Our
first goal consists of finding conditions under which (35) is minimal. A simple cri-
terion for minimality that can be directly checked on the Pommaret basisH of M
is provided by the next result.



Involution andδ-Regularity II 47

Lemma 8.1The resolution (35) is minimal, if and only if all first syzygiesSα;k are
free of constant terms.

Proof One direction is of course trivial. Since (35) was obtained by iterating The-
orem 5.10, it suffices for proving the converse to show that under the made as-
sumption all second syzygiesSα;k1,k2 are free of constant terms. But this is easy
to see: we haveSα;k1,k2 = xk2eα;k1 − xk1eα;k2 +

∑

γ,ℓ cγ;ℓeγ,ℓ where every

non-vanishing coefficientcγ;ℓ is divisible by a coefficientP (α;k)
β with k = k1 or

k = k2 appearing in the first syzygySα;k and thus is of positive degree. ⊓⊔
A minimal resolution of the graded moduleM is linear, if all maps appearing

in it are linear in the sense that the entries of the matrices describing them are zero
or homogeneous polynomials of degree1. The graded moduleM is calledcom-
ponentwise linear, if for every degreed ≥ 0 the moduleM〈d〉 = 〈Md〉 generated
by the componentMd of degreed has a linear resolution (in other words, if the
only non-vanishing Betti numbers ofM〈d〉 areβi,i+d for i = 0, 1, . . . ) [41].

Theorem 8.2If the resolution (35) is minimal, then the graded moduleM ⊆ Pm

is componentwise linear.

Proof Let H be the Pommaret basis ofM andd ≥ 0 an arbitrary degree. As in
Lemma 2.2, it is easy to see that the set

Gd =
{

xµh | h ∈ H ∧ |µ| + deg h = d ∧ ∀j > clsh : µj = 0
}

(56)

defines ak-linear basis of the homogeneous componentMd and thus generates
the moduleM〈d〉. Consider now a productxj ḡ for some generator̄g = xµh̄ ∈ Gd

wherej > k = cls ḡ so thatxj is non-multiplicative for̄g. If j ≤ cls h̄, thenGd

also contains the generatorg̃ = xµ−1k+1j h̄ and we havexj ḡ = xk g̃ where the
latter product is multiplicative.

Otherwise, the variablexj is non-multiplicative for̄h, too, and the resolution
(35) contains a first syzygy corresponding to an involutive standard representation
xj h̄ =

∑

h∈H Phh. If |µ| > 0, then we can lift this equation to a standard repre-
sentationxj ḡ =

∑

h∈H Phxµh. However, in general it will no longer be an invo-
lutive one, as the termxµ may depend on variables which are non-multiplicative
for some generatorsh ∈ H. In this case, we must rewrite the right hand side using
further first syzygies from (35). It is not difficult to see that after a finite number
of such steps we also arrive at an involutive standard representation

xj ḡ =
∑

h∈H

Phh (57)

where for notational simplicity we still denote the coefficients byPh.
Assume now that the resolution (35) is minimal. Obviously, all first syzygies

and thus also the coefficientsPh in (57) are then free of constant terms. But this
observation implies that we can transform (57) into an involutive standard repre-
sentationxj ḡ =

∑

g∈Gd
Qgg with respect toGd and hence this set is a Pommaret

basis of the moduleM〈d〉 by Corollary 7.3 of Part I. As all elements ofGd are of
degreed, it follows immediately from the form of (35) evaluated forGd thatM〈d〉

has a linear resolution and thusM is componentwise linear. ⊓⊔
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Example 8.3The converse of Theorem 8.2 is not true, as the following trivial coun-
terexample demonstrates. Consider the monomial idealI = 〈x, y2〉 ⊂ k[x, y]. It
is componentwise linear:I〈1〉 = 〈x〉 is as principal ideal a free module; all ide-
als I〈d〉 for d > 1 are simply generated by all monomials of degreed and thus
possess trivially a linear resolution. For the natural ordering of variablesx1 = x
andx2 = y, the Pommaret basis ofI is H = {x, xy, y2} and since the arising
resolution contains the first syzygyye1 − e2, it is not minimal. Comparing with
the proof above, we see thatG1 = {x} is not a Pommaret basis ofI〈1〉 (actually,
I〈1〉 does not even possess a finite Pommaret basis, as it is not quasi-stable).

Note, however, that the situation is different, if we changethe ordering of the
variables tox1 = y andx2 = x. In this case the minimal basisH′ = {x, y2} is
already a Pommaret basis ofI and the arising resolution is trivially minimal, as the
only syzygy isy2e1−xe2. We will see later (Theorem 9.12) that this observation is
no accident but thatgenericallythe resolution (35) is minimal for componentwise
linear modules (and thus generically (36) yields the Betti numbers of component-
wise linear modules). ⊳

For quasi-stable monomial modulesM a simple combinatorial characterisa-
tion exists when our resolution is minimal. We will also provide a simple alterna-
tive characterisation via Pommaret bases.

Definition 8.4 ([27]) A (possibly infinite) setN ⊆ Nn
0 is calledstable, if for each

multi indexν ∈ N all multi indicesν − 1k + 1j with k = cls ν < j ≤ n are also
contained inN . A monomial submoduleM ⊆ Pm is stable, if each of the sets
Nα =

{

µ | xµeα ∈ M
}

⊆ Nn
0 with 1 ≤ α ≤ m is stable.

Remark 8.5The stable modules are of considerable interest, as they contain as a
subset theBorel-fixedmodules, i. e. modulesM ⊆ Pm which remain invariant un-
der the natural action of the Borel group.15 Indeed, one can show that (for a ground
field of characteristic0) a module is Borel-fixed, if and only if it can be generated
by a setS of monomials such that wheneverxνej ∈ S then alsoxν−1k+1jej ∈ S
for all cls ν ≤ k < j ≤ n [24, Thm. 15.23]. Generically, the leading terms of any
polynomial module form a Borel-fixed module [28] [24, Thm. 15.20]. Note that
while stability is obviously independent of the characteristic of the ground field,
the same does not hold for the notion of a Borel-fixed module. ⊳

Any monomial submodule has a unique minimal basis. For stable submodules
it must coincide with its Pommaret basis. This result represents a very simple
and effective characterisation of stable submodules. Furthermore, it shows that
any stable submodule is trivially quasi-stable and thus explains the terminology
introduced in Definition 4.3.

Proposition 8.6 ([54, Lem. 2.13]16) LetM ⊆ Pm be a monomial submodule.M
is stable, if and only if its minimal basisH is simultaneously a Pommaret basis.

15 Classically, the Borel group consists of upper triangular matrices. In our “inverse” con-
ventions we must take lower triangular matrices.

16 See also the remark after [27, Lem. 1.2].
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Mall [54, Thm. 2.15] proved that for any idealI ⊆ P the reduced Gröbner
basis is simultaneously a Pommaret basis, if and only if the leading ideallt≺I is
stable. Combining this result with the above mentioned factthat the generic initial
ideal is always Borel-fixed and thus stable, one obtains the following theorem.

Theorem 8.7LetM ⊆ Pm be a graded submodule in generic position andG the
reduced Gr̈obner basis ofM for an arbitrary term order≺. If chark = 0, then
G is also the minimal Pommaret basis ofM for ≺.

Remark 8.8It follows from Lemma 2.3, that ifH is a Pommaret basis of the sub-
moduleM ⊆ Pm of degreeq, then(lt≺M)≥q is a stable monomial submodule,
aslt≺Hq is obviously its minimal basis and simultaneously a Pommaret basis. ⊳

Our next result implies that for stable modules the resolution (35) is isomorphic
to the minimal resolution constructed by Eliahou and Kervaire [27, Thm. 2.1]. In
fact, if one formulates (35) as a complex as described in Section 6, then one finds
that in this special case the two resolutions are identical.

Theorem 8.9LetM ⊆ Pm be a quasi-stable module. Then the syzygy resolution
given by (35) is minimal, if and only ifM is stable.

Proof According to Lemma 8.1, the resolution (35) is minimal, if and only if all
first syzygies are free of constant terms. For a monomial module this is the case,
if and only if already the minimal basis is the Pommaret basis, since otherwise
the Pommaret basis contains generatorsh1, h2 related byh2 = xjh1 for some
non-multiplicative variablexj leading to a first syzygyxje1 − e2 with a constant
term. Now our claim follows from Proposition 8.6. ⊓⊔

Example 8.10One might be tempted to conjecture that this result extendedto poly-
nomial modules, i. e. that (35) was minimal for polynomial modulesM with stable
leading modulelt≺M. Unfortunately, this is not true. Consider the homogeneous
idealI ⊂ k[x, y, z] generated byh1 = z2 + xy, h2 = yz − xz, h3 = y2 + xz,
h4 = x2z andh5 = x2y. One easily checks that these elements form a Pommaret
basisH for the degree reverse lexicographic term order and thatlt≺M is a stable
module. A Pommaret basis ofSyz(H) is given by

S2;3 = ze2 + (x − y)e1 + xe3 − e4 − e5 , (58a)

S3;3 = ze3 − xe1 − (x + y)e2 − e4 + e5 , (58b)

S4;3 = ze4 − x2e1 + xe5 , (58c)

S5;3 = ze5 − x2e2 − xe4 , (58d)

S4;2 = (y − x)e4 − x2e2 , (58e)

S5;2 = ye5 − x2e3 + xe4 . (58f)

As the first two generators show, the resolution (35) is not minimal. ⊳

Given an arbitrary graded free resolution, it is a standard task to reduce it to the
minimal resolution using just some linear algebra (see for example [23, Chapt. 6,
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Theorem 3.15] for a detailed discussion). Thus for any concrete moduleM it is
straightforward to obtain from (35) the minimal resolution. However, even in the
monomial case it seems highly non-trivial to find a closed form description of the
outcome of the minimisation process. Nevertheless, the resolution (35) contains so
much structure that certain statements are possible.

Theorem 8.11LetH be a Pommaret basis of the graded moduleM ⊆ Pm for a
class respecting term order and setd = minh∈H clsh. Thenproj dimM = n−d.

Proof Consider the resolution (35) which is of lengthn − d. The last map in it is
defined by the syzygiesSα;(d+1,...,n) originating in the generatorshα ∈ H with
clshα = d. Choose now among these generators an elementhγ of maximal de-
gree (recall that the same choice was crucial in the proof of Proposition 2.20).
Then the syzygySγ;(d+1,...,n) cannot contain any constant coefficient, as the coef-
ficients of all basis vectorseβ;k where the last entry ofk is n must be contained in
〈x1, . . . , xn−1〉 and the coefficients of the basis vectorseα;(d+1,...,n−1) cannot be
constant for degree reasons.

If we start now a minimisation process at the end of the resolution, then it
will never introduce a constant term into the syzygySγ;(d+1,...,n) and thus it will
never be eliminated. It is also not possible that it is reduced to zero, as the last map
in a free resolution is obviously injective. This implies that the last term of the
resolution will not vanish during the minimisation and the length of the minimal
resolution, i. e.proj dimM, is still n − d. ⊓⊔

The gradedAuslander-Buchsbaum formula[24, Exercise 19.8] is now a trivial
corollary of this theorem and Proposition 2.20 on the depth.Note that, in contrast
to other proofs, our approach is constructive in the sense that we automatically
have an explicit regular sequence of maximal length and a (partially) explicit free
resolution of minimal length.

Corollary 8.12 (Auslander-Buchsbaum)LetM ⊆ Pm be a graded polynomial
module withP = k[x1, . . . , xn]. ThendepthM + proj dimM = n.

As for a monomial module no term order is needed, we obtain as afurther sim-
ple corollary the following relation betweenproj dimM andproj dim (lt≺M).

Corollary 8.13 LetM ⊆ Pm be a graded module and≺ an arbitrary term order
for whichM possesses a Pommaret basis. Thenproj dimM ≤ proj dim (lt≺M).
If ≺ is a class respecting term order, then we even have equality.

Proof Let H be the Pommaret basis of the moduleM for the term order≺ and
setd = minh∈H cls (lt≺h). Then it follows immediately from Theorem 8.11 that
proj dim (lt≺M) = n − d. On the other hand, Theorem 6.1 guarantees the ex-
istence of the free resolution (35) of lengthn − d for M so that this value is an
upper bound forproj dimM. For a class respecting term order we have equality
by Theorem 8.11. ⊓⊔
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9 Castelnuovo-Mumford Regularity

For notational simplicity we restrict again to ideals instead of submodules. In many
situations it is of interest to obtain a good estimate on the degree of an ideal basis.
Up to date, no satisfying answer is known to this question. Somewhat surprisingly,
the stronger problem of bounding not only the degree of a basis ofI but also of its
syzygies can be treated effectively.

Definition 9.1 Let I ⊆ P be a homogeneous ideal.I is calledq-regular, if its ith
syzygy module is generated by elements of degree less than orequal toq + i. The
Castelnuovo-Mumford regularityreg I is the leastq for whichI is q-regular.

Among other applications, the Castelnuovo-Mumford regularity reg I is a use-
ful measure for the complexity of Gröbner basis computations [9]. The question
of effectively computingreg I has recently attracted some interest. In this section
we show thatreg I is trivially determined by a Pommaret basis with respect to the
degree reverse lexicographic order and provide alternative proofs to some charac-
terisations of the Castelnuovo-Mumford regularity proposed in the literature.

Theorem 9.2Let I ⊆ P be a homogeneous ideal. The Castelnuovo-Mumford
regularity of I is q, if and only if I has in some coordinates a homogeneous
Pommaret basis of degreeq with respect to the degree reverse lexicographic order.

Proof Letx be someδ-regular coordinates for the idealI so that it possess a Pom-
maret basisH of degreeq with respect to the degree reverse lexicographic order
in these coordinates. Then theith module of the syzygy resolution (35) induced
by the basisH is obviously generated by elements of degree less than or equal to
q + i. Thus we have the trivial estimatereg I ≤ q and there only remains to show
that it is in fact an equality.

For this purpose, consider a generatorhγ ∈ H of degreeq which is of minimal
class among all elements of this maximal degreeq in H. If clshγ = n, thenhγ

cannot be removed fromH without loosing the basis property, as the leading term
of no other generator of classn can dividelt≺hγ and, since the degree reverse
lexicographic order is class respecting, all other generators do not contain any
terms of classn. Hence we trivially findregI = q in this case.

If cls hγ = n − i for somei > 0, then the resolution (35) contains at theith
position the syzygySγ;(n−i+1,...,n) of degreeq + i. Assume now that we min-
imise the resolution step by step starting at the end. We claim that the syzygy
Sγ;(n−i+1,...,n) is not eliminated during this process.

There are two possibilities howSγ;(n−i+1,...,n) could be removed during the
minimisation. The first one is that a syzygy at the next level of the resolution con-
tained the termeγ;(n−i+1,...,n) with a constant coefficient. Any such syzygy is of
the form (39) withcls hα < n− i andclshα < k1 < · · · < ki < n and its leading
term isxki+1eα;k with ki+1 > ki. However, sincecls (xk1 · · ·xki+1hα) < n − i
andcls (xn−i+1 · · ·xnhγ) = n − i, it follows from our use of the degree reverse
lexicographic order (since we assume that everything is homogeneous, both poly-
nomial have the same degree) and the definition of the inducedSchreyer term
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orders, that the termeγ;(n−i+1,...,n) is greater than the leading termxki+1eα;k of
any syzygySα;(k1,...,ki+1) at the leveli + 1 and thus cannot appear.

The second possibility is thatSγ;(n−i+1,...,n) itself contained a constant coef-
ficient at some vectoreβ;ℓ. However, this requireddeg hβ = deg hγ + 1 which
is again a contradiction.17 As the minimisation process never introduces new con-
stant coefficients, the syzygySγ;(n−i+1,...,n) may only be modified but not elim-
inated. Furthermore, the modifications cannot makeSγ;(n−i+1,...,n) to the zero
syzygy, as otherwise a basis vector of the next level was in the kernel of the differ-
ential. However, this is not possible, as we assume that the tail of the resolution is
already minimised and by the exactness of the sequence any kernel member must
be a linear combination of syzygies. Hence the final minimal resolution will con-
tain at theith position a generator of degreeq + i andregI = q. ⊓⊔

To some extent this result was to be expected. By Theorem 8.7,the reduced
Gröbner basis is generically also a Pommaret basis and, according to Bayer and
Stillman [10], this basis has for the degree reverse lexicographic order generically
the degreereg I. Thus the only surprise is that Theorem 9.2 does not require that
the leading ideal is stable and the Pommaret basisH is not necessarily a reduced
Gröbner basis (if the idealI has a Pommaret basis of degreeq, then the truncated
ideal(le≺I)≥q is always stable by Remark 8.8 and thus the setHq defined by (1)
is the reduced Gröbner basis ofI≥q).

Note furthermore that Theorem 9.2 implies a remarkable fact: given arbitrary
coordinatesx, the idealI either does not possess a finite Pommaret basis for the
degree reverse lexicographic order or, if such a basis exists, it is of degreereg I.
Hence using Pommaret bases, it becomes trivial to determinethe Castelnuovo-
Mumford regularity: it is just the degree of the basis.

Remark 9.3The proof of Theorem 9.2 also provides us with information about
the positions where in the minimal resolution the maximal degree is attained. We
only have to look for all elements of maximal degree in the Pommaret basis; their
classes correspond to these positions. ⊳

Remark 9.4Recall from Remark 6.2 that Theorem 6.1 remains valid for anyin-
volutive basisH with respect to a continuous division of Schreyer type (withan
obvious modification of the definition of the numbersβ

(k)
0 ) and that it is indepen-

dent of the used term order. It follows immediately from the form of the resolution
(35), i. e. from the form of the maps in it given by the respective involutive bases
according to Theorem 5.10, that always the estimatereg I ≤ degH holds and thus
any such basis provides us with a bound for the Castelnuovo–Mumford regularity.

This observation also implies that an involutive basis withrespect to a division
of Schreyer type and an arbitrary term order can never be of lower degree than the

17 For later use we note the following fact about this argument.If eβ;ℓ is a constant term
in the syzygySγ;(n−i+1,...,n), then it must be smaller than the leading term and hence
lt≺(xℓ1 · · ·xℓi

hβ) ≺ lt≺(xk1 · · ·xki+1hα) implying thatcls hβ ≤ cls hγ . Thus it suf-
fices, ifhγ is of maximal degree among all generatorshβ ∈ H with cls hβ ≤ cls hγ . For
the special case thathγ is of minimal class, we exploited this observation already in the
proof of Theorem 8.11.
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Pommaret basis for the degree reverse lexicographic order.The latter one is thus
in this sense optimal. As a concrete example consider again the ideal mentioned in
Remark 2.21: in “good” coordinates a Pommaret basis of degree2 exists for it and
after a simple permutation of the variables its Janet basis is of degree4. ⊳

In analogy to Corollary 8.13 comparing the projective dimension of a mod-
uleM and its leading modulelt≺M with respect to an arbitrary term order≺, we
may derive a similar estimate for the Castelnuovo-Mumford regularity.

Corollary 9.5 Let I ⊆ P be a homogeneous ideal and≺ an arbitrary term order
such that a Pommaret basisH of I exists. Thenreg I ≤ reg (lt≺I) = degH. If
≺ is the degree reverse lexicographic order, then evenreg I = reg (lt≺I).

Proof It follows from Theorem 9.2 thatreg (lt≺I) = degH. On the other hand,
the form of the resolution (35) implies trivially thatregI ≤ degH. For the degree
reverse lexicographic order Theorem 9.2 entails thatreg I = degH, too. ⊓⊔

Combining the above results with Remark 8.8 and Proposition8.6 immediately
implies the following generalisation of a result by Eisenbud, Reeves and Totaro
[26, Prop. 10] for Borel-fixed monomial ideals.

Proposition 9.6Let I be a quasi-stable ideal generated in degrees less than or
equal toq. The idealI is q-regular, if and only if the truncationI≥q is stable.

Remark 9.7Bayer et al. [8] introduced a refinement of the Castelnuovo–Mumford
regularity: theextremal Betti numbers. Recall that the (graded) Betti numberβij

of the idealI is defined as the number of minimal generators of degreei+ j of the
ith module in the minimal free resolution ofI (thusreg I is the maximal valuej
such thatβi,i+j > 0 for somei). A Betti numberβij > 0 is called extremal, if
βkℓ = 0 for all k ≥ i andℓ > j. There always exists a least one extremal Betti
number: if we take the maximal valuei for whichβi,i+reg I > 0, thenβi,i+reg I is
extremal. In general, there may exist further extremal Betti numbers. Bayer et al.
[8, Thm. 1.6] proved that for any idealI both the positions and the values of the
extremal Betti numbers coincides with those of its generic initial ideal with respect
to the degree reverse lexicographic order.

Our proof of Theorem 9.2 allows us to make the same statement for the or-
dinary initial ideal for≺degrevlex—provided the coordinates areδ-regular. Further-
more, it shows that the extremal Betti numbers ofI can be immediately read off
the Pommaret basisH of I. Finally, if we introduce “pseudo-Betti numbers” for
the (in general non-minimal) resolution (35), then the positions and values of the
extremal ones coincide with the true extremal Betti numbersof I.

Take the generatorhγ used in the proof of Theorem 9.2. Ifclshγ = n− i1 and
deg hγ = q1, then the considerations in the proof imply immediately that βi1,q1+i1

is an extremal Betti number and its value is given by the number of generators of
degreeq1 and classn − i1 in the Pommaret basisH. If i1 = depth I, then this
is the only extremal Betti number. Otherwise, letq2 be the maximal degree of a
generatorh ∈ H with cls h < n− i1 and assume thatn− i2 is the minimal class of
such a generator. Then the arguments used in the proof of Theorem 9.2 show that
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βi2,q2+i2 is also an extremal Betti number and that its value is given bythe number
of generators of degreeq2 and classn − i2 in the Pommaret basisH. Continuing
in this manner, we obtain all extremal Betti numbers. Since all our considerations
depend only on the leading terms of the generators, we find forthe leading ideal
lt≺I exactly the same situation. ⊳

Bayer and Stillman [10] gave the following characterisation of q-regularity for
which we now provide a new proof. Note the close relationshipbetween their first
condition and the idea of assigning multiplicative variables.

Theorem 9.8Let I ⊆ P be a homogeneous ideal which can be generated by
elements of degree less than or equal toq. ThenI is q-regular, if and only if for
some value0 ≤ d ≤ n linear formsy1, . . . , yd ∈ P1 exist such that

(

〈I, y1, . . . , yj−1〉 : yj

)

q
= 〈I, y1, . . . , yj−1〉q , 1 ≤ j ≤ d , (59a)

〈I, y1, . . . , yd〉q = Pq . (59b)

Proof Assume first that the conditions (59) are satisfied for some linear forms
y1, . . . , yd ∈ P1 and choose variablesx such thatxi = yi for 1 ≤ i ≤ d. Let the
finite setHq be a basis ofIq as a vector space in triangular form with respect to
the degree reverse lexicographic order, i. e.lt≺h1 6= lt≺h2 for all h1, h2 ∈ Hq.
We claim thatHq is a Pommaret basis of the truncationI≥q implying that the full
idealI possesses a Pommaret basis of degreeq′ ≤ q and hence by Theorem 9.2
thatreg I ≤ q.

Let us writeHq =
{

hk,ℓ | 1 ≤ k ≤ n, 1 ≤ ℓ ≤ ℓk

}

wherecls hk,ℓ = k. A
basis of the vector space〈I, x1, . . . , xj〉q is then given by allhk,ℓ with k > j and
all terms in〈x1, . . . , xj〉q. We will now show that

Hq+1 =
{

xjhk,ℓ | 1 ≤ j ≤ k, 1 ≤ k ≤ n, 1 ≤ ℓ ≤ ℓk

}

(60)

is a basis ofIq+1 as a vector space. This implies thatHq is locally involutive for
the Pommaret division and thus involutive by Corollary 7.3 of Part I. Since, by
assumption,I is generated in degrees less than or equal toq, we have furthermore
〈Hq〉 = I≥q so that indeedHq is a Pommaret basis of the idealI≥q.

Let f ∈ Iq+1 andcls f = j. By the properties of the degree reverse lexico-
graphic order this implies thatf = xj f̂ + g with f̂ ∈

(k[xj , . . . , xn] \ {0}
)

q
and

g ∈
(

〈x1, . . . , xj−1〉
)

q+1
(cf. Lemma A.1 of Part I). We distinguish two cases.

The condition (59b) implies that
(

〈I, x1, . . . , xd〉
)

q
= Pq. Thus ifj > d, we may

write f̂ =
∑n

k=d+1

∑ℓk

ℓ=1 ck,ℓhk,ℓ + ĝ with ck,ℓ ∈ k andĝ ∈
(

〈x1, . . . , xd〉
)

q
. We

setf̂0 =
∑n

k=j

∑ℓk

ℓ=1 ck,ℓhk,ℓ andf̂1 =
∑j−1

k=d+1

∑ℓk

ℓ=1 ck,ℓhk,ℓ + ĝ. Obviously,

f̂ ∈
(

〈I, x1, . . . , xj−1〉 : xj

)

q
. If j ≤ d, then the condition (59a) implies that ac-

tually f̂ ∈ 〈I, x1, . . . , xj−1〉q. Hence in this case we may decomposef̂ = f̂0 + f̂1

with f̂0 =
∑n

k=j

∑ℓk

ℓ=1 ck,ℓhk,ℓ andf̂1 ∈
(

〈x1, . . . , xj−1〉
)

q
.

It is trivial that 〈Hq+1〉 ⊆ Iq+1 (here we mean the linear span overk and not
overP). We show by an induction overj that Iq+1 ⊆ 〈Hq+1〉. If j = 1, then
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f = x1f̂ with f̂ ∈ Iq. Thusf ∈ 〈Hq+1〉. If j > 1, we writef = f0 + f1 with
f0 = xj f̂0 andf1 = xj f̂1 + g where f̂0 and f̂1 have been defined above. By
construction,f0 ∈ 〈Hq+1〉, asxj is multiplicative for all generators contained in
f̂0, andf1 ∈ Iq+1 with cls f1 < j. According to our inductive hypothesis this
implies thatf1 ∈ 〈Hq+1〉, too. Hence〈Hq+1〉 = Iq+1.

Assume conversely that the idealI is q-regular. Then, by Theorem 9.2, it pos-
sesses a Pommaret basisH of degreereg I ≤ q with respect to the degree reverse
lexicographic order. We setd = dimP/I and claim that for the choiceyi = xi

for 1 ≤ i ≤ d the conditions (59) are satisfied. For the second equality (59b)
this follows immediately from Proposition 3.15 which showsthat it actually holds
already at degreeregI ≤ q.

For the first equality (59a) take a polynomialf ∈
(

〈I, x1, . . . , xj−1〉 : xj

)

q
.

By definition, we have thenxjf ∈ 〈I, x1, . . . , xj−1〉. If f ∈ 〈x1, . . . , xj−1〉,
then there is nothing to prove. Otherwise, a polynomialg ∈ 〈x1, . . . , xj−1〉 exists
such thatxjf − g ∈ I and obviouslycls (xjf − g) = j. If we introduce the set
H≥j = {h ∈ H | clsh ≥ j}, the involutive standard representation ofxjf − g
induces an equationxjf =

∑

h∈H≥j
Phh + ḡ whereḡ ∈ xj〈x1, . . . , xj−1〉 and

Ph ∈ 〈xj〉 (this is trivial if cls h > j and follows fromdeg h ≤ q if cls h = j).
Thus we can divide byxj and find that alreadyf ∈ 〈I, x1, . . . , xj−1〉q. ⊓⊔

Bayer and Stillman [10] further proved that ingenericcoordinates it is not
possible to find a Gröbner basis of degree less thanreg I and that this estimate
is sharp, as it is realised by bases with respect to the degreereverse lexicographic
order. The restriction to the generic case is here essential, as for instance most
monomial ideals are trivial counterexamples. Hence their result is only of lim-
ited use for the actual computation of the Castelnuovo-Mumford regularity, as one
never knows whether one works with generic coordinates.

Example 9.9Consider the homogeneous ideal

I = 〈z8 − wxy6, y7 − x6z, yz7 − wx7〉 ⊂ Q[w, x, y, z] . (61)

The given basis of degree8 is already a Gröbner basis for the degree reverse lex-
icographic term order. If we perform a simple permutation oftwo variables and
considerI as an ideal inQ[w, y, x, z], then we obtain for the degree reverse lexi-
cographic term order the following Gröbner basis of degree50:

{

y7 − x6z, yz7 − wx7, z8 − wxy6, y8z6 − wx13,

y15z5 − wx19, y22z4 − wx25, y29z3 − wx31,

y36z2 − wx37, y43z − wx43, y50 − wx49
}

. (62)

Unfortunately, neither coordinate system is generic: asreg I = 13, one yields a
basis of too low degree and the other one one of too high degree.

With a Pommaret basis it is no problem to determine the Castelnuovo-Mumford
regularity, as the first coordinate system isδ-regular. A Pommaret basis ofI for
the degree reverse lexicographic term order is obtained by adding the polynomials
zk(y7 − x6z) for 1 ≤ k ≤ 6 and thus the degree of the basis is indeed13. ⊳
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Yet another characterisation ofq-regularity is due to Eisenbud and Goto [25].
We give a constructive proof of it as an easy corollary of Theorem 9.2.

Theorem 9.10The homogeneous idealI ⊆ P is q-regular, if and only if its trun-
cationI≥q admits a linear resolution.

Proof If I is q-regular, then by Theorem 9.2 it possesses in suitable coordinates a
Pommaret basisH of degreereg I ≤ q. The setHq defined by (1) is a Pommaret
basis of the truncated idealI≥q according to Lemma 2.2. Now it follows easily
from Theorem 5.10 thatI≥q possesses a linear free resolution, as all syzygies in
the resolution (35) derived fromHq are necessarily homogeneous of degree1.

The converse is trivial. The existence of a linear resolution for I≥q immedi-
ately implies thatreg I≥q = q. HenceI≥q possesses a Pommaret basis of degreeq
by Theorem 9.2 entailing the existence of a Pommaret basis for I of degreeq′ ≤ q.
Hence, again by Theorem 9.2,reg I = q′ ≤ q. ⊓⊔

Remark 9.11We are now finally in a position where we can finish the discussion
started in Remark 2.18 on the effective construction of Pommaret bases. There
we were not able to prove that after a finite number of coordinate transformations
based on our criterion for asymptotic singularity (Theorem2.13) one always ar-
rives at aδ-regular coordinate system for a given homogeneous idealI ⊆ P .
Recall that our main problem in Remark 2.18 was that we do not have a bound for
the degrees of either Pommaret or Janet bases ofI. Our results above do not pro-
vide us with such a bound, but it still turns out that we can prove the termination
of our approach by studying what happens at the finite degreeq = reg I.

We assume from now on that we are working with a class respecting order and
with an infinite fieldk. By the considerations in the proof above, our coordinatesx

areδ-regular, if and only if an involutively head autoreduced,k-linear basis ofIq

is also a Pommaret basis ofI≥q. Denote, as in Remark 2.8, byβ(k)
q the number of

elements of classk in such a basis. There we already noted that these numbers are
invariants ofI, as they are in a one-to-one correspondence with the coefficients of
the Hilbert polynomialHI .

Consider now some basisH arising during the completion process. It induces
a subsetHq ⊂ Iq by taking all Pommaret multiplicative multiples of elements

up to degreeq; let β̃
(k)
q be the number of members of classk in it. If H is not

a Pommaret basis, then a comparison of the valuesβ
(k)
q and β̃

(k)
q starting with

k = n will sooner or later lead to a smaller valuẽβ(k)
q ; more precisely, we have

the inequality
∑n

k=1 kβ̃
(k)
q ≤ ∑n

k=1 kβ
(k)
q with equality holding, if and only ifH

is a Pommaret basis.
Each completion step which adds an element of degreeq or less increases the

value of the sum
∑n

k=1 kβ̃
(k)
q . Consider now the effect of a coordinate transfor-

mation of the form used in the proof of Theorem 2.13. All new terms arising on
the right hand side of (3) are greater than the original one with respect to any class
respecting term order. Thus in general we can expect that after such a transforma-
tion at least some leading terms of the new setHq are greater than before. In fact,
by the same argument as in the proof of Theorem 2.13, we even can be sure that
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after a finite number of transformations this will indeed be the case. But this obser-
vation implies that after a finite number of transformationsthe sum

∑n
k=1 kβ̃

(k)
q

must increase and eventually we must obtain after a finite number of completion
steps and coordinate transformations the right value for this sum implying that we
have obtainedδ-regular coordinates and a Pommaret basis. ⊳

As a further corollary to Theorem 9.10, we provide a converseto Theorem 8.2
generalising Theorem 8.9 from the monomial case to polynomial submodules.

Theorem 9.12Let M ⊆ Pm be a componentwise linear submodule with Pom-
maret basisH. Then generically the resolution (35) is minimal. It is minimal, if
and only ifH is a minimal basis ofM.

Proof As Example 8.3 demonstrated, the problem is that generally the setsGd

defined by (56) are not Pommaret bases of the modulesM〈d〉 for all d ≥ 0.
According to Theorems 9.10 and 9.2, this is trivially the case for all degrees
d ≥ q = degH, since for themM〈d〉 = M≥d. Thus it suffices to consider
the finitely many modulesM〈0〉, . . . ,M〈q〉. By Corollary 2.17, generic coordi-
nate systems are simultaneouslyδ-regular for all these modules (and then also for
the whole submoduleM).

Let H be the Pommaret basis ofM in such a coordinate system and consider
the corresponding setsGd for 0 ≤ d ≤ q. By construction,M〈d〉 = 〈Gd〉. Ac-
cording to our assumption, all modulesM〈d〉 possess linear resolutions and thus
regM〈d〉 = d. Hence the Pommaret basis ofM〈d〉 is of degreed by Theorem 9.2,
which is only possible, if it is already given byGd. If all setsGd are involutive,
then no first syzygy of the Pommaret basisH can contain a constant term and it
follows from Lemma 8.1 that the resolution (35) is minimal. Furthermore, in this
case the basisH must be a minimal generating set ofM. Indeed, it is trivial that
the elements ofH of lowest degree are minimal generators and since no element
of a higher degreed can be contained in a moduleM〈d′〉 for anyd′ < d, it must
also be a minimal generator. ⊓⊔

Remark 9.13These considerations in the proof above can be exploited foreffec-
tively deciding whether a given submoduleM ⊆ Pm is componentwise linear.
We compute a Pommaret basisH for M, changing toδ-regular coordinates if
necessary. If the resolution (35) determined byH is minimal, thenM is compo-
nentwise linear by Theorem 8.2 (the minimality of the resolution is trivial to check
with Lemma 8.1). Otherwise, there are first syzygies in (35) containing a con-
stant term. LetSα;ℓ be one of minimal degree. Ifdeg hα = d, then obviously all
modulesM〈d′〉 for degreesd′ < d possess linear resolutions (coming from their
Pommaret basesGd). For analysing the moduleM〈d〉, we take the corresponding
setGd and complete it to a Pommaret basisHd (potentially performing further
coordinate transformation). IfdegHd = d, then we recompute the Pommaret ba-
sisH of M in the new coordinates, which trivially are stillδ-regular forM and
all modulesM〈d′〉 with d′ < d, and check again for minimality. In the case that
obstructions in some degreed < d̄ < regM appear, we continue in the same
manner. After a finite number of steps we either obtain a minimal resolution and
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M is componentwise linear or we find a degreed such that the moduleM〈d〉 does
not possess a linear resolution. ⊳

10 Regularity and Saturation

Already in the work of Bayer and Stillman [10] on the Castelnuovo-Mumford
regularity thesaturationIsat of a homogeneous idealI ⊆ P plays an important
role. Recall that by definition

Isat = I : P∞
+ =

{

f ∈ P | ∃k ∈ N0 : f · Pk ⊂ I
}

. (63)

An idealI such thatI = Isat is calledsaturated. We show now first howIsat can
be effectively determined from a Pommaret basis ofI.18

Proposition 10.1Let H be a Pommaret basis of the homogeneous idealI for a
class respecting term order. We introduce the setsH1 = {h ∈ H | clsh = 1} and

H̄1 =
{

h/x
degx1

lt≺h

1 | h ∈ H1

}

. ThenH̄ = (H \H1) ∪ H̄1 is a weak Pommaret
basis of the saturationIsat.

Proof Recall that for terms of the same degree any class respectingterm order
coincides with the reverse lexicographic order. Hence of all terms in a generator
h ∈ H1 the leading termlt≺h has the lowestx1-degree. This implies in particular
thatH̄1 is well-defined and does not contain a generator of class1 anymore.

We first show that indeed̄H1 ⊂ Isat. Let d1 = maxh∈H1 {degx1
lt≺h} and

∆ = d1 + maxh∈H1 {deg h} − minh∈H1 {deg h}. We claim that̄h · P∆ ⊂ I for
all h̄ ∈ H̄1. Thus letxµ ∈ P∆ and choosek ∈ N0 such thatxk

1 h̄ ∈ H1; obviously,
we havek ≤ d1. Since the polynomialxµxk

1 h̄ lies inI, it possesses an involutive
standard representation of the form

xµxk
1 h̄ =

∑

h∈H\H1

Phh +
∑

h∈H1

Qhh (64)

with Ph ∈ k[x1, . . . , xcls h] andQh ∈ k[x1].
The left hand side of this equation is contained in〈xk

1〉 and thus also the right
hand side. Analysing an involutive normal form computationleading to the repre-
sentation (64), one immediately sees that this implies thatall coefficientsPh (since
hereclsh > 1) and all summandsQhh lie in 〈xk

1〉. As a first consequence of this
representation we observe that for any monomialxµ (not necessarily of degree∆)
we may divide (64) byxk

1 and then obtain an involutive standard representation of
xµh̄ with respect to the set̄H; hence this set is indeed weakly involutive for the
Pommaret division and the given term order.

If xµ ∈ P∆, then we find for anyh ∈ H1 that | deg h̄ − deg h| ≤ ∆ and
hencedeg Qh = deg

(

xµxk
1 h̄

)

− deg h ≥ k. SinceQh ∈ k[x1], this implies that

18 It seems to be folklore that for Gröbner bases the construction in Proposition 10.1 yields
a Gröbner basis ofI : x∞

1 ; in [71, Prop. 5.1.11] this observation is attributed (without
reference) to Bayer. In our case we do not only get a Pommaret basis but it also turns out
that hereIsat = I : x∞

1 (see the remarks below).
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under the made assumption onxµ already the coefficientQh lies in 〈xk
1〉 so that

the productxµh̄ possesses an involutive standard representation with respect toH
and thus is contained in the idealI as claimed.

Now we show that every polynomialf ∈ Isat may be decomposed into an
element ofI and a linear combination of elements ofH̄1. We may writef = f̃ +g
wheref̃ is the involutive normal form off with respect toH andg ∈ I. If f̃ = 0,
then alreadyf ∈ I and nothing is to be shown. Hence we assume thatf̃ 6= 0. By
definition of the saturationIsat, there exists ak ∈ N0 such thatf̃ · Pk ⊂ I, hence
in particularxk

1 f̃ ∈ I. This implies thatlt≺(xk
1 f̃) ∈ 〈lt≺H〉P . Therefore a unique

generatorh ∈ H exists withlt≺h |P lt≺(xk
1 f̃).

So letlt≺(xk
1 f̃) = xµlt≺h and assume first thatclsh > 1. Since the term on

the left hand side is contained in〈xk
1〉, we must haveµ1 ≥ k so that we can divide

by xk
1 . But this observation implies that alreadylt≺f̃ ∈ 〈lt≺H〉P contradicting

our assumption that̃f is in involutive normal form. Hence we must havecls h = 1
and by the same argument as aboveµ1 < k.

Division by xk
1 shows thatlt≺f̃ ∈ 〈lt≺H̄1〉P . Performing the corresponding

involutive reduction leads to a new elementf1 ∈ Isat. We compute again its
involutive normal formf̃1 and apply the same argument as above, iff̃1 6= 0. After
a finite number of such reductions we obtain an involutive standard representation
of f with respect to the set̄H proving our assertion. ⊓⊔

By Proposition 5.7 of Part I, an involutive head autoreduction of the setH̄
yields a strong Pommaret basis for the saturationIsat. As a trivial consequence of
the considerations in the proof above, we find that inδ-regular coordinatesIsat is
simply given by the quotientI : x∞

1 (in the monomial case this fact also follows
immediately from Proposition 4.4 (iv)). This observation in turn implies that for
degreesq ≥ degH1 we haveIq = Isat

q . Hence we recover the well-known fact
that all ideals with the same saturation possess also the same Hilbert polynomial
and become identical for sufficiently high degrees;Isat is the largest among all
these ideals. The smallest valueq0 such thatIq = Isat

q for all q ≥ q0 is often
called thesatietysatI of the idealI.

Corollary 10.2 Let H be a Pommaret basis of the idealI ⊆ P . ThenI is sat-
urated, if and only ifH1 = ∅. If I is not saturated, thensatI = degH1. In-
dependent of the existence of a Pommaret basis, we have for any homogeneous
generating setF of the socleI : P+ the equality

satI = 1 + max {deg f | f ∈ F ∧ f /∈ I} . (65)

Proof Except of the last statement, everything has already been proven in the dis-
cussion above. For its proof we may assume without loss of generality that the
coordinates areδ-regular so that a Pommaret basisH of I exists, as all quantities
appearing in (65) are invariant under linear coordinate transformations.

Let h̃ be an arbitrary element ofH1 of maximal degree. We claim that then
h̃/x1 ∈ (I : P+) \ I. Indeed, sincex1 is always multiplicative for the Pommaret
division, we cannot havẽh/x1 ∈ I (otherwiseH would not be involutively head
autoreduced), and if we analyse for any1 < ℓ ≤ n the involutive standard rep-
resentation ofxℓh̃, then all coefficients of generatorsh ∈ H \ H1 are trivially
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contained in〈x1〉 and for the coefficients of elementsh ∈ H1 the same holds
for degree reasons. Hence we can divide byx1 and find thatxℓh̃/x1 ∈ I for all
1 ≤ ℓ ≤ n implying h̃/x1 ∈ I : P+.

By our previous results,sat I = deg h̃. By assumption, homogeneous polyno-
mialsPf ∈ P exist such that̃h/x1 =

∑

f∈F Pff . If deg Pf ≥ 1, thenPff ∈ I
sincef ∈ I : P+. Hence for at least onẽf ∈ F \ I, the coefficientPf̃ must be a

non-zero constant and thusdeg f̃ = satI − 1. ⊓⊔

Remark 10.3The last statement in Corollary 10.2 is due to Bermejo and Gimenez
[12, Prop. 2.1] who proved it in a slightly different way. FormonomialidealsI,
one obtains as further corollary [12, Cor. 2.4] that, ifI : P+ = I : x1, then
satI is the maximal degree of a minimal generator ofI divisible by x1 (this
observation generalises a classical result about Borel-fixed ideals [33, Cor. 2.10]).
If the considered idealI possesses a Pommaret basisH, this statement also follows
from the fact that under the made assumptions all elements ofH1 are minimal
generators. Indeed, suppose to the contrary thatH1 contains two elementsh1 6= h2

such thath1 | h2. Obviously, the minimality impliesdegx1
h1 = degx1

h2 and a
non-multiplicative index1 < ℓ ≤ n exists such thatxℓh1 | h2. Without loss
of generality, we may assume thath2 = xℓh1. But this immediately entails that
xℓh1/x1 = h2/x1 /∈ I and henceh1/x1 ∈ (I : x1) \ (I : P+). ⊳

A first trivial consequence of our results is the following well-known formula
relating Castelnuovo-Mumford regularity and saturation.

Corollary 10.4 Let I ⊆ P be an ideal. Thenreg I = max {satI, reg Isat}.

Proof Without loss of generality, we may assume that we useδ-regular coordi-
nates so thatI possesses a Pommaret basisH with respect to the degree reverse
lexicographic order. Now the statement follows immediately from Proposition 10.1
and Corollary 10.2. ⊓⊔

Trung [78] proposed the following approach for computing the regularity of a
monomial idealI based on evaluations. LetD = dim (P/I) and introduce for
j = 0, . . . , D the polynomial subrings19 P(j) = k[xj+1, . . . , xn] and within them
the elimination idealsI(j) = I ∩ P(j) and their saturations̃I(j) = I(j) : x∞

j+1. A
basis ofI(j) is then obtained by settingx1 = · · · = xj = 0 in a basis ofI and for
a basis of̃I(j) we must additionally setxj+1 = 1. Now define the numbers

cj = sup
{

q | (Ĩ(j)/I(j))q 6= 0
}

+ 1 , 0 ≤ j < D (66a)

cD = sup
{

q | (P(D)/I(D))q 6= 0
}

+ 1 . (66b)

Trung [78] proved that whenever none of these numbers is infinite, then their max-
imum is justreg I. We show now that this genericity condition is satisfied, if and
only if the coordinates areδ-regular and express the numberscj as satieties.

19 Compared with Trung [78], we revert as usual the order of the variables in order to be
consistent with our conventions.
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Theorem 10.5The numbersc0, . . . , cD are all finite, if and only if the monomial
idealI ⊆ P is quasi-stable. In this casecj = satI(j) for 0 ≤ j ≤ D and

max {c0, . . . , cD} = reg I . (67)

If d = depth I, then it suffices to considercd, . . . , cD.

Proof We assume first thatI is quasi-stable and thus possesses a Pommaret basis
which we writeH =

{

hk,ℓ | 1 ≤ k ≤ n, 1 ≤ ℓ ≤ ℓk

}

wherecls hk,ℓ = k. One
easily verifies that the subsetH(j) =

{

hk,ℓ ∈ H | k > j
}

is the Pommaret basis
of the idealI(j). If we setak,ℓ = degxk

hk,ℓ, then the Pommaret basis ofĨ(j) is
H̃(j) = H(j+1)∪

{

hj+1,ℓ/x
aj+1,ℓ

j+1 | 1 ≤ ℓ ≤ ℓj+1

}

. This immediately implies that

cj = max
{

deg hj+1,ℓ | 1 ≤ ℓ ≤ ℓj+1

}

. By construction,dim (P(D)/I(D)) = 0

and Proposition 3.15 entails that forq̂ = degH(D) the equalityI(D)
q̂ = P(D)

q̂

holds. HencecD = q̂ (it is not possible thatcD < q̂, as otherwise the setH was
not involutively autoreduced).

Thus we find thatmax {c0, . . . , cD} = degH and Theorem 9.2 yields (67).
Furthermore, it follows immediately from Corollary 10.2 and Proposition 3.15,
respectively, thatcj = sat I(j) for 0 ≤ j ≤ D. Finally, Proposition 2.20 entails
that the valuesc0, . . . , cd−1 vanish.

Now assume that the idealI was not quasi-stable. By Part (ii) of Proposi-
tion 4.4, this entails that for some0 ≤ j < D the variablexj+1 is a zero divisor in
the ringP/〈I, x1, . . . , xj〉sat ∼= P(j)/(I(j))sat. Thus a polynomialf /∈ (I(j))sat

exists for whichxj+1f ∈ (I(j))sat which means that we can find for any suffi-
ciently large degreeq ≫ 0 a polynomialg ∈ P(j) with deg g = q − deg f such
thatfg /∈ I(j) but xj+1fg ∈ I(j). Hence the equivalence class offg is a non-
vanishing element of(Ĩ(j)/I(j))q so that for a not quasi-stable idealI at least one
valuecj is not finite. ⊓⊔

One direction of the proof above uses the same idea as the one of Theorem 9.2:
the Castelnuovo-Mumford regularity is determined by the basis members of max-
imal degree and their classes give us the positions in the minimal resolution where
it is attained (recall Remark 9.3; here these are simply the indicesj for whichcj is
maximal). However, while Theorem 9.2 holds for arbitrary homogeneous ideals,
Trung’s approach can only be applied to monomial ideals. Theformulation using
satieties is at the heart of the method of Bermejo and Gimenez[12] to compute the
Castelnuovo-Mumford regularity. Similar considerationsyield an alternative proof
of the following result of Bermejo and Gimenez [12, Cor. 17] for monomial ideals.

Proposition 10.6Let I ⊆ P be a quasi-stable ideal andI = J1 ∩ · · · ∩ Jr

its unique irredundant decomposition into irreducible monomial ideals. Then the
equalityreg I = max {regJ1, . . . , regJr} holds.

Proof We first note that the Castelnuovo-Mumford regularity of a monomial irre-
ducible idealJ = 〈xℓ1

i1
, . . . , xℓk

ik
〉 is easily determined using the considerations in

Remark 2.13 of Part I. There we showed that any such ideal becomes quasi-stable
after a simple renumbering of the variables and explicitly gave its Pommaret basis.
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Up to the renumbering, the unique element of maximal degree in this Pommaret
basis is the termxℓ1

i1
xℓ2−1

i2
· · ·xℓk−1

ik
and thus it follows from Theorem 9.2 that

regJ =
∑k

j=1 ℓj − k + 1.
Recall from Proposition 3.10 that an irreducible decomposition can be con-

structed via standard pairs. As discussed in Section 3, the decomposition (13) is
in general redundant; among all standard pairs(ν, Nν) with Nν = N for a given
setN only those exponentsν which are maximal with respect to divisibility appear
in the irredundant decomposition and thus are relevant.

If we now determine the standard pairs ofI from a Pommaret basis according
to Remark 3.12, then we must distinguish two cases. We have first the standard
pairs coming from the termsxµ of degreeq = degH not lying inI. They are of the
form

(

xν , {x1, . . . , xk}
)

wherek = cls µ andxν = xµ/xµk

k . By Proposition 3.10,
each such standard pair leads to the irreducible idealJ = 〈xνℓ+1

ℓ | k < ℓ ≤ n〉.
By the remarks above,regJ = |ν| + 1 ≤ |µ| = q = reg I.

The other standard pairs come from the termsxν /∈ I with |ν| < q. It is easy to
see that among these the relevant ones correspond one-to-one to the “end points”
of the monomial completion process: we call an element of thePommaret basisH
of I an end point, if each non-multiplicative multiple of it has aproper involutive
divisor in the basis (and thus one branch of the completion process ends with
this element20). If xµ ∈ H is such an end point, then the corresponding standard
pair consists of the monomialxν = xµ/xk wherek = cls µ and the empty set
and it yields the irreducible idealJ = 〈xνℓ+1

ℓ | 1 ≤ ℓ ≤ n〉. Thus we find again
regJ = |ν| + 1 = |µ| ≤ q = reg I.

These considerations prove the estimatereg I ≥ max {regJ1, . . . , regJr}.
The claimed equality follows from the observation that any element of degreeq in
H must trivially be an end point and the corresponding standard pair yields then
an irreducible idealJ with regJ = q. ⊓⊔

The question of bounding the Castelnuovo-Mumford regularity of a homoge-
neous idealI in terms of the degreeq of an arbitrary generating set has attracted
quite some interest. Hermann [40] gave already very early a doubly exponential
bound; much later Mayr and Meyer [55] showed with explicit examples that this
bound is indeed sharp (see [9] for a more detailed discussion).

For monomial idealsI the situation is much more favourable. It follows imme-
diately from Taylor’s explicit resolution of such ideals [75] (see [65] for a deriva-
tion via Gröbner bases) that here alinear bound

reg I ≤ n(q − 1) + 1 (68)

holds wheren is again the number of variables. Indeed, this resolution issupported
by thelcm-lattice of the given basis and the degree of itskth term is thus trivially
bounded bykq. By Hilbert’s Syzygy Theorem, it suffices to consider the first n
terms which immediately yields the above bound. If the idealI is even quasi-
stable, a simple corollary of Proposition 10.6 yields an improved bound using the
minimal generators ofI.

20 Note that an end point may very well be a member of the minimal basis ofI!



Involution andδ-Regularity II 63

Corollary 10.7 Let the monomialsm1, . . . , mr be the minimal generators of the
quasi-stable idealI ⊆ k[x1, . . . , xn]. If we setxλ = lcm(m1, . . . , mr) and
d = min {clsm1, . . . , clsmr} (i. e.d = depth I), then the Castelnuovo–Mumford
regularity of I satisfies the estimate

reg I ≤ |λ| + d − n (69)

and this bound is sharp.

Proof Applying repeatedly the rule〈F , t1t2〉 = 〈F , t1〉 ∩ 〈F , t2〉 for arbitrary
generating setsF and coprime monomialst1, t2, one obtains an irreducible de-
composition ofI. Obviously, in the worst case one of the irreducible ideals is
J = 〈xλd

d , . . . , xλn
n 〉. As we already know thatregJ = |λ| + d − n, this value

boundsreg I by Proposition 10.6. ⊓⊔

Remark 10.8An alternative direct proof of the corollary goes as follows. LetH be
the Pommaret basis ofI. We claim that each generatorxµ ∈ H with cls µ = k
satisfiesµk ≤ λk andµj < λj for all j > k. The estimate forµk is obvious,
as it follows immediately from our completion algorithm that there is a minimal
generatorxν | xµ with νk = µk.

Assume for a contradiction that the Pommaret basisH contains a generatorxµ

whereµj > λj for somej > clsµ. If several such generators exist for the same
valuej, choose one for whichµj is maximal. Obviously,j is non-multiplicative
for xµ and hence the multiplexjx

µ must contain an involutive divisorxν ∈ H.
Because of our maximality assumptionνj ≤ µj and hencej must be multiplicative
for xν so thatcls ν ≥ j. But this fact trivially implies thatxν |P xµ contradicting
thatH is by definition involutively autoreduced.

Now the assertion follows immediately: under the made assumptionsclsλ = d

and in the worst caseH contains the generatorxλd

d x
λd+1−1
d+1 · · ·xλn−1

n which is of
degree|λ| + d − n. ⊳

Remark 10.9The same arguments together with Proposition 10.1 also yield im-
mediately a bound for the satiety of a quasi-stable idealI. As already mentioned
above, a quasi-stable ideal is not saturated, if and only ifd = 1. In this case, we
have triviallysatI ≤ |λ| + 1 − n. Again the bound is sharp, as shown by exactly
the same class of irreducible ideals as considered above.

The estimate (69) also follows immediately from the resultsin [12]. Yet an-
other derivation is contained in [37]. ⊳

If one insists on having an estimate involving only the maximal degreeq of
the minimal generators and the depth, then the above result yields immediately the
following estimate, variations of which appear in [2,18,19].

Corollary 10.10 Let I ⊆ P be a quasi-stable ideal minimally generated in de-
grees less than or equal toq. If depth I = d, then

q ≤ reg I ≤ (n − d + 1)(q − 1) + 1 (70)

and both bounds are sharp.
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Proof Under the made assumptions we trivially find that the degree of the least
common multiple of the minimal generators is bounded by|λ| ≤ (n−d+1)q. Now
(70) follows immediately from (69). The upper bound is realised by the irreducible
idealI = 〈xq

1, . . . , x
q
n〉. The lower bound is attained, ifI is even stable, as then

Proposition 8.6 implies thatreg I = q independent ofdepth I. ⊓⊔

Remark 10.11Eisenbud, Reeves and Totaro [26] presented a variation of the esti-
mate (70). They introduced the notion ofs-stabilityas a generalisation of stability:
let s ≥ 1 be an integer; a monomial idealI is s-stable, if for every monomial
xµ ∈ I and every indexn ≥ j > cls µ = k an exponent1 ≤ e ≤ s exists such
thatxµ−ek+ej ∈ I. Then it is easy to see that for ans-stable ideal generated in
degrees less than or equal toq the estimate

reg I ≤ q + (n − 1)(s − 1) (71)

holds, asI≥q+(n−1)(s−1) is stable (thus anys-stable ideal is trivially quasi-stable).
However, in general (71) is an overestimate, as it based on the assumption thatI
possesses a minimal generator of class1 and degreeq which must be multiplied
by xs−1

2 xs−1
3 · · ·xs−1

n in order to reach a stable set.
Thus for the8-stable ideal〈x8, y8, z8〉 the estimate is indeed sharp (this is

exactly the same worst case as in the proof above for an ideal of depth1); the
Pommaret basis contains as maximal degree element the monomial x8y7z7. On
the other hand, for the also8-stable ideal〈x6, x2y4, x2z4, y8, z8〉 the regularity is
only 16, as now the maximal degree element of the Pommaret basis isx2y7z7. ⊳

Finally, we recall that, given two quasi-stable idealsI,J ⊆ P and their re-
spective Pommaret bases, we explicitly constructed in Remarks 2.9 and 6.5, re-
spectively, of Part I weak Pommaret bases for the sumI + J , the productI · J
and the intersectionI ∩ J . They lead to the following estimates for the regularity
of these ideals which were recently also given by Cimpoeaş [21,20].

Proposition 10.12Let I,J ⊆ P be two quasi-stable ideals. Then the following
three estimates hold:

reg (I + J ) ≤ max {regI, regJ } , (72a)

reg (I · J ) ≤ regI + regJ , (72b)

reg (I ∩ J ) ≤ max {regI, regJ } . (72c)

Proof The first two estimates follow immediately from the weak Pommaret bases
given in the above mentioned remarks and Theorem 9.2. For thelast estimate the
weak Pommaret basis constructed in Remark 6.5 of Part I is notgood enough; it
would also yieldreg I +regJ as upper bound. However, Lemma 2.2 allows us to
improve it significantly. LetG be the Pommaret basis ofI andH the one ofJ . If
we setq = max {degG, degH}, then one easily sees thatGq∩Hq is the Pommaret
basis of(I ∩ J )≥q. Hence, the intersectionI ∩ J possesses a Pommaret basis of
degree at mostq. ⊓⊔
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11 Iterated Polynomial Algebras of Solvable Type

In Section 11 of Part I we studied involutive bases in polynomial algebras of solv-
able type over rings. We had to substitute the notion of an involutively head autore-
duced set by the more comprehensive concept of an involutively R-saturated set.
In a certain sense this was not completely satisfying, as we had to resort here to
classical Gröbner techniques, namely computing normal forms of ideal elements
arising from syzygies. Using the syzygy theory developed inSection 5, we provide
now an alternative approach for the special case that the coefficient ringR is again
a polynomial algebra of solvable type (over a field). It is obvious that in this case
left ideal membership inR can be decided algorithmically and by Theorem 5.4 it
is also possible to construct algorithmically a basis of thesyzygy module.

Remark 11.1In Section 5 we only considered the ordinary commutative polyno-
mial ring, whereas now we return to general polynomial algebras of solvable type
(over a field). However, it is easy to see that all the arguments in the proof of
the involutive Schreyer Theorem 5.4 depend only on normal form computations
and on considerations concerning the leading exponents. The same holds for the
classical Schreyer theorem, as one may easily check (see also [52,53] for a non-
commutative version). Thus the in the sequel crucial Theorem 5.4 remains valid in
the general case of non-commutative polynomial algebras. ⊳

We use the following notations in this section:R = (k[y1, . . . , ym], ⋆,≺y) and
P = (R[x1, . . . , xn], ⋆,≺x). Furthermore, we are given an involutive divisionLy

onNm
0 and a divisionLx onNn

0 . For simplicity, we always assume in the sequel
that at leastLy is Noetherian. In order to obtain a reasonable theory, we make
similar assumptions as in Section 11 of Part I: bothR andP are solvable algebras
with centred commutation relations so that both are (left) Noetherian.

We now propose an alternative algorithm for the involutiveR-saturation. Until
Line /13/ it is identical with Algorithm 6 of Part I; afterwards we perform an invo-
lutive completion and multiply in Line /17/ each polynomialin H̄′

f,Lx
by the non-

multiplicative variables of its leading coefficient. In thedetermination of involutive
normal forms, we may multiply each polynomialh′ ∈ H′ only by monomialsrxµ

such thatxµ ∈ R[XLx,H′,≺x
(h′)] andr ∈ k[

YLy,lc≺x (H̄′
h′,Lx

),≺y
(lc≺x

h′)
]

.

Proposition 11.2Let Ly be a Noetherian constructive division. Algorithm 1 ter-
minates for any inputF with an involutivelyR-saturated and head autoreduced
setH such that〈H〉 = 〈F〉. Furthermore, the setslc≺x

H̄h,Lx
form weakLy-

involutive bases of theR-ideals generated by them for eachh ∈ H.

Proof The termination criterion in Line /26/ is equivalent to local involution of all
the setslc≺x

H̄′
f,Lx

. Under the made assumptions on the divisionLy and because
of the fact thatP is Noetherian, the termination of the algorithm and the assertion
about these sets is obvious. In general we only obtain weak involutive bases, as
no involutive head autoreductions of these sets are performed. The correctness is a
consequence of Theorem 5.4: by analysing all non-multiplicative products we have
taken into account a whole basis of the syzygy moduleSyz(lc≺x

H̄′
f,Lx

). Thus the
outputH is indeed involutivelyR-saturated. ⊓⊔
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Algorithm 1 InvolutiveR-saturation (and head autoreduction)
Input: finite setF ⊂ P , involutive divisionsLy onNm

0 andLx onNn
0

Output: involutivelyR-saturated and head autoreduced setH with 〈H〉 = 〈F〉
/1/ H ← F ; S ← F
/2/ while S 6= ∅ do
/3/ ν ← max≺x le≺xS; Sν ← {f ∈ H | le≺xf = ν}
/4/ S ← S \ Sν ; H′ ←H
/5/ for all f ∈ Sν do
/6/ h← HeadReduceLx,≺x(f,H)
/7/ if f 6= h then
/8/ Sν ← Sν \ {f}; H′ ←H′ \ {f}
/9/ if h 6= 0 then
/10/ H′ ←H′ ∪ {h}
/11/ end if
/12/ end if
/13/ end for
/14/ if Sν 6= ∅ then
/15/ choosef ∈ Sν and determine the set̄H′

f,Lx

/16/ repeat
/17/ T ←

˘

yj ⋆ f̄ | f̄ ∈ H̄′
f,Lx

, yj ∈ ȲLy,lc≺x (H̄′
f,Lx

),≺y
(lc≺x f̄)

¯

/18/ repeat
/19/ chooseh′ ∈ T such thatle≺y (lc≺xh′) is minimal
/20/ T ← T \ {h′}
/21/ h← NormalFormLx,≺x,Ly,≺y (h′,H′)
/22/ if h 6= 0 then
/23/ H′ ← H′ ∪ {h}
/24/ end if
/25/ until T = ∅ ∨ h 6= 0
/26/ until T = ∅ ∧ h = 0
/27/ end if
/28/ if H′ 6= H then
/29/ H ← H′; S ← H
/30/ end if
/31/ end while
/32/ return H

Theorem 11.3Let the polynomial ringP satisfy the made assumptions andLx

be a Noetherian constructive division. If in Algorithm 3 of Part I the subalgorithm
InvHeadAutoReduceLx,≺x

is substituted by Algorithm 1, then the completion will
terminate with a weak involutive basis ofI = 〈F〉 for any finite input setF ⊂ P .
Furthermore, the setslc≺x

H̄h,Lx
form strongLy-involutive bases of theR-ideals

generated by them for eachh ∈ H.

Proof The proof of the termination and of the correctness of the algorithm is as in
Part I. The only new claim is that the setslc≺x

H̄h,Lx
are stronglyLy-involutive.

This is a simple consequence of the fact that under the made assumption on the
product inP the loop in Lines /5-13/ of Algorithm 1 leads to an involutivehead
autoreduction of these sets. Hence we indeed obtain strong involutive bases. ⊓⊔
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Corollary 11.4 If Lx is the Janet division, then each polynomialf ∈ I pos-
sesses a unique involutive standard representationf =

∑

h∈H Ph ⋆ h where
Ph ∈ k[YLy,lc≺x (H̄h,Lx ),≺y

(lc≺x
h)][XLx,H,≺x

(h)].

Proof For the Janet division the only obstruction forH being a strong involutive
basis is that some elements of it may have the same leading exponents. More pre-
cisely, for anyh ∈ H we haveHh,Lx

= {h′ ∈ H | le≺x
h′ = le≺x

h}. This imme-
diately implies furthermorēHh,Lx

= Hh,Lx
. By Theorem 11.3 the setslc≺x

H̄h,Lx

form a strongLy-involutive basis of the ideals they generate. Hence the claimed
representation must be unique. ⊓⊔

12 Conclusions

One can find in the literature algorithms for the effective determination of all the
invariants considered in this article. However, typicallyone has for each invari-
ant a separate algorithm requiring often a number of Gröbner bases computations.
In fact, the classical approach for many of them would be to construct the min-
imal free resolution—an obviously quite expensive approach. By contrast, with
the determination of a single Pommaret basis (with respect to the degree reverse
lexicographic order) we obtain simultaneouslywithout further computationsthe
following information on our module: its Hilbert function (and thus the Krull di-
mension and the multiplicity) together with a maximal strongly independent set of
variables, its depth and a very simple maximal regular sequence, a Noether nor-
malisation together with a sparse homogeneous system of parameters and finally
its projective dimension together with all extremal Betti numbers (and thus the
Castelnuovo-Mumford regularity) plus bounds on the remaining Betti numbers.
Taking a converse point of view, we may say that compared withordinary Gröbner
bases Pommaret bases are much less arbitrary but to a considerable extent deter-
mined by structural properties of the module they generate.This fact makes them
a natural choice for many computational problems in algebraic geometry.

The price to pay for this power of Pommaret bases is the problem ofδ-regularity
which makes their effective construction somewhat more cumbersome. We pro-
posed a simple deterministic method for solving this problem which even gives
us a fighting chance of finding a sparse coordinate transformation. Generally, it
should be much more efficient than the usually proposed probabilistic approach
which inevitably destroys all sparsity present in the original generating set and
thus makes all subsequent computations very expensive.

δ-regularity is often considered as a purely technical nuisance. Our results
show a different picture. Asymptotic regularity is indeed atechnical concept used
by our method for the construction ofδ-regular coordinates and relevant for the ter-
mination of the completion algorithm presented in Part I. Bycontrast,δ-regularity
has an intrinsic meaning. This can already be seen from the simple fact that in the
case of linear differential operators there is a close relation to characteristics (see
any textbook on partial differential equations, e. g. [49,61]): a necessary condition
for a coordinate system to beδ-regular is that the hypersurfacexn = 0 is non-
characteristic. Indeed, the standard definition of a characteristic hypersurface may
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be rephrased that on it one cannot solve for all derivatives of classn. We also men-
tioned in Remark A.5 thatδ-regularity is essentially equivalent to quasi-regularity
in the sense of Serre which in turn is related to the associated prime ideals of the
module and thus again to intrinsic properties (see [66] for details).

We have also seen thatδ-regularity is related to many genericity concepts in
commutative algebra and algebraic geometry. Many statements that are only gener-
ically true hold inδ-regular coordinates. In particular, inδ-regular coordinates
many properties of an affine algebraA = P/I may already be read off the mono-
mial algebraA′ = P/lt≺I where≺ is the degree reverse lexicographic order.

For example, it follows immediately from Proposition 3.19 that depthA =
depthA′ and that(x1, . . . , xd) is a maximal regular sequence for both algebras.
As in the homogeneous case it is also trivial thatdimA = dimA′, we see that
the algebraA is Cohen-Macaulay, if and only ifA′ is so. Similarly, it is an easy
consequence of Theorem 8.11 thatproj dimA = proj dimA′ and of Theorem 9.2
thatregA = regA′; in fact, all extremal Betti numbers are the same as mentioned
in Remark 9.7. An exception are the remaining Betti numbers where Example 8.10
shows that even inδ-regular coordinatesA andA′ may have different ones.

These equalities are of course not new; they can already be found in [10] (some
even in earlier references). However, one should note an important difference:
Bayer and Stillman [10] work with thegeneric initial ideal, whereas we assumeδ-
regularity of the coordinates. These are two different genericity concepts, as even
in δ-regular coordinateslt≺I is not necessarily the generic initial ideal (in contrast
to the former, the latter is always Borel-fixed).

When we proved in Corollary 8.13 and 9.5, respectively, the two inequalities
proj dimA ≤ proj dimA′ andreg I ≤ reg (lt≺I) for arbitrary term orders≺,
we had to assume the existence of a Pommaret basis ofI for ≺. It is well-known
that these inequalities remain true, if we drop this assumption (see for example the
discussions in [9,10,15]). We included here our alternative proofs because of their
great simplicity and they cover at least the generic case.

Many of the results in Sections 6–8 on monomial ideals are generalisations
of the work of Eliahou and Kervaire [27]. They considered exclusively the case
of stable modules where we obtain a minimal resolution. If one analyses closely
their proofs, it is not difficult to see that implicitly they introduce Pommaret bases
and exploit some of their basic properties. Our proof of Theorem 8.9 appears so
much simpler only because we have already shown all these properties in Part I.
Furthermore, Eliahou and Kervaire did not realise that theyconstructed a syzygy
resolution in Schreyer form. Hence they had to give a lengthyand rather messy
proof that the complex(S∗, δ) is exact, whereas in our approach this is immediate.

We rediscover all their complicated calculations in the proof of Theorem 7.2.
But note that this explicit formula for the differential is needed neither for proving
the minimality of the resolution nor for its construction, although the latter is of
course simplified by it. Furthermore, the theory of involutive standard representa-
tions gives us a clear guideline how to proceed.

Our results strongly suggest a homological background of the Pommaret divi-
sion. Most of the quantities like the depth or the Castelnuovo-Mumford regularity
determined by the Pommaret basis of an idealI are of a homological nature; more
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precisely, they correspond to certain extremal points in the Betti diagram and thus
come from the Koszul homology. For the special case of monomial ideals, Sahbi
showed in his diploma thesis [63] how the Koszul homology of aquasi-stable ideal
can be explicitly computed from theP -graph of its Pommaret basis.

The combination of Corollary 3.8 and Proposition 3.19 allows us to make some
statements about the so-calledStanley conjecture. It concerns the minimal num-
ber of multiplicative variables for a generator in a Stanleydecomposition. Fol-
lowing Apel [5, Def. 1] and Herzog et al. [43] we call this number theStanley
depthof the decomposition and for an idealI ⊆ P the Stanley depth of the al-
gebraA = P/I, written sdepthA, is defined as the maximal Stanley depth of
a complementary decomposition forI. In its simplest form the Stanley conjec-
ture claims that we always have the inequalitysdepthA ≥ depthA. Obviously,
Corollary 3.8 together with Proposition 3.19 (plus the existence Theorem 2.16 for
Pommaret bases) shows that this inequality holds for arbitrary ideals.

The rigorous formulation of the Stanley conjecture [69, Conj. 5.1] concerns
monomial ideals and requires that all generators in the decomposition are again
monomials. Furthermore, no variables transformation is allowed. Then our results
only allow us to conclude that the Stanley conjecture is truefor all quasi-stable
ideals. Some further results on this question have been achieved by Apel [5,6]
with the help of a slightly different notion of involutive bases.

Many of the results mentioned above are quite well-known forBorel-fixed ide-
als and thus for generic initial ideals. However, it appearsthat for many purposes
it is not necessary to move to this highly special class of ideals; quasi-stable ideals
which are easier to produce algorithmically share many of their properties. Thus
it is not surprising that quasi-stable ideals have appearedunder different names in
quite a number of recent works in commutative algebra (e. g. [12,18,42]).

The results presented in this article offer two heuristic explanations for the
efficiency of the involutive completion algorithm already mentioned in Part I. The
first one is that according to our proof of Theorem 5.4 the involutive algorithm
automatically takes into account many instances of Buchberger’s second criterion
for redundantS-polynomials. Whereas a naive implementation of Buchberger’s
algorithm without such criteria fails already for rather small examples, a naive
implementation of the involutive completion algorithm works reasonably for not
too large examples.

The second explanation concerns Proposition 3.2. It is well-known that the so-
called “Hilbert driven” Buchberger algorithm [77] is oftenvery fast, but it requires
a priori knowledge of the Hilbert polynomial. The involutive completion algorithm
may also be interpreted as “Hilbert driven”. The assignmentof multiplicative vari-
ables to the elements of the current basisH defines at each iteration a trial Hilbert
functionhH,L,≺ measuring the size of the involutive span〈H〉L,≺. This trial func-
tion is the true Hilbert function, if and only if we have already reached an involutive
basis; otherwise it yields too small values. For continuousdivisions the analysis of
the products of the generators with their non-multiplicative variables represents a
simple check for the trial Hilbert function to be the true one.

While for many ideals the involutive approach is an interesting alternative for
the construction of Gröbner bases, there exist some obvious cases where this is
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not the case. For monomial ideals any basis is already a Gröbner basis, whereas
an involutive basis still has to be constructed. Blinkov andGerdt [14] showed that
for toric ideals involutive bases are typically much largerthan Gröbner bases. In
both cases, the reason is that these ideals are rarely in general position and often
possess Gröbner bases of a much lower degree thanreg I.

An interesting question is whether the results of this second part can be ex-
tended to the polynomial algebras of solvable type introduced in the first part.
Such a generalisation is trivial only for the determinationof Stanley decompo-
sitions, as these are defined as vector space isomorphisms and therefore do not
feel the non-commutativity (note that we always have the commutative product·
on the right hand side of the defining equation (7) of a Stanleydecomposition).
Thus involutive bases are a valuable tool for computing Hilbert functions even in
the non-commutative case. They give immediately theGelfand-Kirillov dimension
[56, Sect. 8.1.11] as the degree of the Hilbert polynomial (only in the commuta-
tive case it always coincides with the Krull dimension). Some examples for such
computations in the context of quantum groups (however, using Gröbner instead
of involutive bases) may be found in [17].

By contrast, our results on the depth and on the Castelnuovo-Mumford regu-
larity rely on the fact that for commutative polynomialsf ∈ 〈xj〉 implies that any
term in f is divisible byxj . In a non-commutative algebra of solvable type we
have the relationsxi ⋆ xj = cijxixj +hij and in general the polynomialhij is not
divisible byxj .

For syzygies the situation is complicated, too. The proof ofTheorem 5.4 is
independent of the precise form of the multiplication and thus we may conclude
that we can always construct at least a Gröbner basis of the syzygy module. Our
proof of Theorem 5.10 relies mainly on normal form argumentsthat generalise.
A minimal requirement is that the term order≺H respects the multiplication⋆, as
otherwise the theorem does not even make sense. Furthermore, we must be careful
with all arguments involving multiplicative variables. Weneed that ifxi andxj

are both multiplicative for a generator, thenxi ⋆xj = cijxixj +hij must also con-
tain only multiplicative variables which will surely happen, if hij depends only on
variablesxk with k ≤ max {i, j}. This is for example the case for linear differen-
tial operators, so that we may conclude that Theorem 5.10 (and its consequences)
remain true for the Weyl algebra and other rings of differential operators.

Example 12.1Recall from Example 3.9 of Part I that the universal enveloping al-
gebra of the Lie algebraso(3) is isomorphic to the ring(k[x1, x2, x3], ⋆) with the
product⋆ induced by the relations

x1 ⋆ x2 = x1x2 , x2 ⋆ x1 = x1x2 − x3 ,

x1 ⋆ x3 = x1x3 , x3 ⋆ x1 = x1x3 + x2 ,

x2 ⋆ x3 = x2x3 , x3 ⋆ x2 = x2x3 − x1 .

(73)

Obviouslyx1x2 − x3 ∈ 〈x1〉, but the termx3 is not divisible byx1. It follows
from the same relation thatx2 ⋆ x1 depends onx3 and thus the arguments on
multiplicative variables required by our proof of Theorem 5.10 break down. ⊳
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A Rees Decompositions̀a la Sturmfels-White

Sturmfels and White [74, Algo. 4.2] presented an algorithm for the effective con-
struction of Rees decompositions (based on works by Baclawski and Garsia [7]).
We show now that generically it yields a Pommaret basis. However, we believe
that the involutive approach is much more efficient. It does not only allow us to
avoid completely computations in factor algebras, using our results in Section 2
we obtain more easily and deterministically good coordinates whereas Sturmfels
and White must rely on a probabilistic approach.

We introduce some additional notations. Let againM be a finitely generated
module over the ringP = k[x1, . . . , xn]. Theannihilatorof an elementm ∈ M
is Ann(m) = {f ∈ P | fm = 0}. Thek-vector spaceZM ⊆ M is defined
as the setZM = {m ∈ M | Ann(m) = P+} (of course,ZM is nothing but
thenth Koszul homology groupHn(M) of M). The approach of Sturmfels and
White is based on the following fact which may be interpretedas their version of
the concept ofδ-regularity.

Lemma A.1 If ZM = 0, then there exists a non zero divisory ∈ P1, i. e.ym = 0
impliesm = 0 for all m ∈ M. IdentifyingP1 with kn, the set of all non zero
divisors contains a Zariski open subset.

The Sturmfels-White Algorithm 2 computes a basisY = {y1, . . . , yn} of P1

and a setH ⊂ M of generators such that (as gradedk-vector spaces)

M ∼=
⊕

h∈H

k[y1, . . . , yclsh] · h . (74)

Here the classclsh is automatically assigned in the course of the algorithm and
not necessarily equal to the notion of class we introduced inthe definition of the
Pommaret division. Within this appendix, the latter one will be referred to asco-
ordinate classcclsxh, since its definition depends on the chosen coordinatesx.

Whether the individual steps of Algorithm 2 can be made effective depends on
howM is given. If it is presented by generators and relations, as we always as-
sume, one may use Gröbner bases; Sturmfels and White formulated their algorithm
directly for this case. Note that they need repeated Gröbner bases calculations in
order to perform algorithmically all the computations in factor modules. A further
problem is to find the non zero divisors, as Lemma A.1 only guarantees their ex-
istence but says nothing about their determination. Sturmfels and White proposed
a probabilistic approach. As the non zero divisors contain aZariski open subset
of P1, the random choice of a one-form yields one with probability1.

Theorem A.2 The Algorithm 2 terminates for any finitely generated polynomial
moduleM with a Rees decomposition.

For a proof we refer to [7,74] where Lemma A.1 is proved, too (note also
Remark A.5 below). We will now show that generically the Sturmfels-White Al-
gorithm 2 returns a Pommaret basis when it is applied to a submoduleM ⊆ Pr

of a free module. We begin by studying the relation between the classes and the
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Algorithm 2 Construction of a Rees Decomposition à la Sturmfels-White
Input: polynomial moduleM overP = k[x1, . . . , xn]
Output: basisY of P1, setH of generators defining Rees decomposition (74)
/1/ k ← 0; p← 0; M′ ←M
/2/ whileM′ 6= 0 do
/3/ computeZM′

/4/ if ZM′ = 0 then
/5/ k ← k + 1
/6/ choose a non zero divisoryk ∈ P1 linearly independent of{y1, . . . , yk−1}
/7/ M′ ←M′/ykM

′

/8/ else
/9/ computehp+1, . . . ,hp+ℓ ∈ M such that

˘

[hi] | p < i ≤ p + ℓ
¯

is a basis ofZM′

/10/ for i from p + 1 to p + ℓ do
/11/ clshi ← k
/12/ end for
/13/ p← p + ℓ
/14/ M′ ←M′/ZM′

/15/ end if
/16/ end while
/17/ if k < n then
/18/ complete{y1, . . . , yk} to a basisY of P1

/19/ end if
/20/ return

`

Y,H =
˘

(h1, cls h1), . . . , (hp, cls hp)
¯´

coordinate classes of the generators of a Rees decomposition determined with the
help of this algorithm (the restriction to submodules concerns only the very first
step of the next proof).

Proposition A.3 LetH define a Rees decomposition of the form (74) for the sub-
moduleM ⊆ Pr with respect to the basisY of P1 and letH andY be determined
with the Sturmfels-White Algorithm 2. With respect to the basisY we have the in-
equalitiesclsh ≥ cclsyh for all generatorsh ∈ H.

Proof ZM = 0 for a submoduleM ⊂ Pr. Thus Algorithm 2 produces no gener-
ators of class0. The coordinate class is always greater than0.

We follow step by step Algorithm 2. In the first iteration somenon zero divisor
y1 ∈ P1 is chosen and in the second iteration we must treat the factormodule
M(1) = M/y1M. Now m ∈ M represents an element ofZM(1) , if and only if
ykm ∈ y1M for all k > 1. Thuscclsy(ykm) = 1 for all k > 1 which is only
possible ifcclsym = 1.

If ZM(1) 6= 0, then Algorithm 2 proceeds withM(2) = M(1)/ZM(1) . Now
m ∈ M represents an element ofZM(2) , if and only if for all k > 1 the product
ykm either is an element ofy1M or represents an element ofZM(1) . In both cases
this is only possible, ifcclsym = 1. The same argument holds untilZM(ℓ) = 0
for someℓ. Thus all generatorsh to which Algorithm 2 assigns the class1 are
divisible byy1 and hence all their terms possess the coordinate class1.
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Now M(ℓ+1) = M(ℓ)/y2M(ℓ) must be considered. Proceeding as above, we
see thatm ∈ M represents an element ofZM(ℓ+1) , if and only if ykm ∈ y2M(ℓ)

for all k > 2 implying thatcclsym ≤ 2. Using the same argument as above, we
conclude that all generators of class2 according to the Sturmfels-White algorithm
consist of terms with a coordinate class less than or equal to2. Following Algo-
rithm 2 until the end we obtain the assertion, namely thatclsh ≥ cclsyh for all
generatorsh ∈ H. ⊓⊔

As it may happen thatclsh > cclsyh for some generatorh, the setH is not
necessarily a Pommaret basis. More precisely, the coordinatesy are not necessarily
δ-regular forM. We show now similarly to the proof of Theorem 2.13 that we may
always transformy into aδ-regular coordinate systemz.

For simplicity, let us assume that only one generatorh with cclsyh < clsh

exists and thatclsh = 2. Consider a coordinate transformationzk = yk for k > 1
and z1 = y1 + cy2 wherec ∈ k is chosen such that with respect to the new
coordinatescclszh = 2. The possible values ofc form a Zariski open set ink.
By Lemma A.1, the non zero divisors among whichy1 was chosen in Algorithm 2
contain a Zariski open subset ofP1. Thus there exist values ofc such that both
cclszh = 2 andz1 is a non zero divisor.

As in the proof of Theorem 2.13, it is not difficult to show thatthis transforma-
tion increases the Hilbert function of the involutive span of H. Applying a finite
number of similar changes of coordinates leads to a new basisZ of P1 in which
cclszh = clsh. As we still have a Rees decomposition, the setH is a Pommaret
basis of the submoduleM and the coordinatesz areδ-regular forM. Obviously,
the one-formsz1, . . . , zn would have been valid choices for the non zero divisors
in Algorithm 2. Thus we conclude that this algorithm may be used for the con-
struction of Pommaret bases. The following proposition shows that in fact any
Pommaret basis may be constructed this way.

Proposition A.4 Let H be a Pommaret basis of the submoduleM ⊆ Pr with
respect to theδ-regular coordinatesy and a class respecting term order≺. The
one-formsy1, . . . , yn may be used as non zero divisors in Algorithm 2 and the then
obtained generators̄h satisfycls h̄ = cclsyh̄. They arek-linear combinations of
the elements ofH; one may even simply take use the elements ofH.

Proof The Pommaret basisH defines a Rees decomposition

M =
⊕

h∈H

k[y1, . . . , ycclsyh] · h . (75)

As in the previous proof, we follow step by step the Sturmfels-White Algorithm 2.
Let M(1) = M/y1M andH1 = {h ∈ H | cclsyh = 1}. The vector space
ZM(1) is isomorphic to a subspace of thek-linear space freely generated byH1,
asZM(1) contains only elements with coordinate class1 by Proposition A.3 and
the only elements ofM of coordinate class1 which are not iny1M arek-linear
combinations of the elements ofH1.

Let h ∈ H1 andk > 1. We determine the involutive normal form ofykh

induced by (75). Every term inykh has coordinate class1, thust = lt≺(ykh)
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satisfiescclsyt = 1. SinceH is a strong basis, there exists precisely one generator
h′ ∈ H such thatlt≺h′ |P t. If lt≺h′ = t, thenh′ ∈ H1, as≺ is class respect-
ing. After the corresponding reduction step, the initial term of the result is still of
coordinate class1. So the normal form ofykh has the following structure

ykh =
∑

h̃∈H1

ch̃h̃ + y1m (76)

for some coefficientsch̃ ∈ k and an elementm ∈ M. The vector spaceZM(1) is
generated by thosẽh ∈ H1 where the first summand in (76) is zero; this includes
in particular all elements ofH1 of maximal degree.

Thus if H1 6= ∅, thenZM(1) 6= ∅. Algorithm 2 proceeds in this case with
M(2) = M(1)/ZM(1) . If dimZM(1) < |H1|, thenZM(2) 6= ∅. Algorithm 2 will
iterate Line /14/, until all elements ofH1 have been used up. When this stage is
reached,ZM(ℓ) = 0. It follows from the direct sum in (75) thaty2 is a non zero
divisor forM(ℓ) and we may proceed withM(ℓ+1) = M(ℓ)/y2M(ℓ).

Let H2 = {h ∈ H | cclsyh = 2}. As above,ZM(ℓ+1) is isomorphic to
a subspace of the vector space freely generated byH2. There are some minor
modifications in (76): the first sum is over allh̃ ∈ H2 and there are additional
summands which vanish either moduloy1M or moduloy2M(ℓ) or modulo some
ZM(i) for 1 ≤ i ≤ ℓ. Again Algorithm 2 will iterate line /14/, until all elements of
H2 have been used up. The same argument may be repeated fory3, . . . , yn.

Thus, Algorithm 2 terminates with a Rees decomposition (with respect to the
basisY ⊂ P1) generated bȳH where|H̄| = |H| and where the elements̄h ∈ H̄
with cls h̄ = k freely generate the same vector space as the elementsh ∈ H with
cclsyh = k. We may even choosēH = H. In any case,cls h̄ = cclsyh̄ andH̄ is a
Pommaret basis ofM. ⊓⊔

Remark A.5Note the strong similarity between this proof and the proof of Proposi-
tion 2.20. This fact is not surprising, as the minimal class assigned by Algorithm 2
is equal to the depth ofM [74] and the basisY determined by it is quasi-regular
for the moduleM in the sense of Serre (see either the letter of Serre appendedto
[36] or [66]). In fact, Lemma A.1 follows immediately from the results of Serre.
They imply furthermore thatZM is always finite-dimensional and thus it is not
really necessary to factor byZM. In [66] it is shown that coordinates areδ-regular
for the submoduleM ⊆ Pr, if and only if they are quasi-regular for the factor
modulePr/M. Thus in principle, one should always compare Algorithm 2 ap-
plied toPr/M with the Pommaret basis ofM (recall that the latter also leads
immediately to a Rees decomposition ofPr/M via Corollary 3.8). ⊳
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28. A. Galligo. A propos du théorème de préparation de Weierstrass. In F. Norguet, editor,
Fonctions de Plusieurs Variables Complexes, Lecture Notes in Mathematics 409, pages
543–579. Springer-Verlag, Berlin, 1974.

29. V.P. Gerdt. On the relation between Pommaret and Janet bases. In V.G. Ghanza,
E.W. Mayr, and E.V. Vorozhtsov, editors,Computer Algebra in Scientific Computing
— CASC 2000, pages 167–182. Springer-Verlag, Berlin, 2000.

30. V.P. Gerdt and Yu.A. Blinkov. Involutive bases of polynomial ideals. Math. Comp.
Simul., 45:519–542, 1998.

31. V.P. Gerdt and Yu.A. Blinkov. Minimal involutive bases.Math. Comp. Simul., 45:543–
560, 1998.
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entifiques, Fascicule IV. Gauthier-Villars, Paris, 1929.

49. F. John.Partial Differential Equations. Applied Mathematical Sciences 1. Springer-
Verlag, New York, 1982.

50. H. Kredel and V. Weispfenning. Computing dimension and independent sets for poly-
nomial ideals.J. Symb. Comp., 6:231–247, 1988.

51. M. Kreuzer and L. Robbiano.Computational Commutative Algebra 1. Springer-Verlag,
Berlin, 2000.

52. V. Levandovskyy. On Gröbner bases for non-commutativeG-algebras. In J. Calmet,
M. Hausdorf, and W.M. Seiler, editors,Proc. Under- and Overdetermined Systems of
Algebraic or Differential Equations, pages 99–118. Fakultät für Informatik, Universität
Karlsruhe, 2002.

53. V. Levandovskyy. Non-commutative Computer Algebra for Polynomial Algebras:
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