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Abstract Much of the existing literature on involutive bases concaess on
their efficient algorithmic construction. By contrast, we &ere more concerned
with their structural properties. Pommaret bases are qadatily useful in this re-
spect. We show how they may be applied for determining thél Knd the projec-
tive dimension, respectively, and the depth of a polynomiatlule. We use these
results for simple proofs of Hironaka’s criterion for Cohbtacaulay modules and
of the graded form of the Auslander-Buchsbaum formula,eetpely.

Special emphasis is put on the syzygy theory of Pommaresizasekits use for
the construction of a free resolution which is genericalipimal for component-
wise linear modules. In the monomial case, the arising cermglways possesses
the structure of a differential algebra and it is possibldedve an explicit formula
for the differential. Here a minimal resolution is obtainédand only if a stable
module is treated. These observations generalise resuiidhou and Kervaire.

Using our resolution, we show that the degree of the Pomnimsis with
respect to the degree reverse lexicographic term ordewiayal the Castelnuovo-
Mumford regularity. This approach leads to new proofs fouaber of character-
isations of this invariant proposed in the literature. Tihidudes in particular the
criteria of Bayer/Stillman and Eisenbud/Goto, respedtyivé/e also relate Pom-
maret bases to the recent work of Bermejo/Gimenez and Trargpmputing the
Castelnuovo-Mumford regularity via saturations.

It is well-known that Pommaret bases do not always exist blytio so-called
d-regular coordinates. We show that several classicaltesutommutative alge-
bra, holding only generically, are true for these speciardmates. In particular,
they are related to regular sequences, independent sedsaibles, saturations and
Noether normalisations. Many properties of the generidahideal hold also for
the leading ideal of the Pommaret basis with respect to tgesdereverse lexico-
graphic term order, although the latter one is in generaBuooel-fixed. We present
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a deterministic approach for the effective constructioftoégular coordinates that
is more efficient than all methods proposed in the literasaréar.

1 Introduction

Rees [59] introduced a combinatorial decomposition ofdigigenerated polyno-
mial modules and related it for graded modules to the Hilberites. Later, more
general decompositions &falgebras were studied by Stanley and several other
authors (seee.g.[7,13,68,69]), especially in the comte@bhen-Macaulay com-
plexes but also for other applications like invariant theaorr the theory of normal
forms of vector fields with nilpotent linear part. Sturmfelad White [74] pre-
sented algorithms to compute various combinatorial deamitipns.

Apparently all these authors have been unaware that simdaompositions
are implicitly contained in the Janet-Riquier theory offeliEntial equations [48].
In fact, they represent the fundamental idea underlyirggttigory. Involutive bases
combine this idea with concepts from Grobner bases. As we $een in Part |, one
may consider (strong) involutive bases as those Grobregbahich automatically
induce a combinatorial decomposition of the ideal they gatiee

The main goal of this second part is to show that Pommaretshasssess a
number of special properties not shared by other involub@ses which makes
them particularly useful for the kind of structure analysfgpolynomial modules
typically needed in algebraic geometry. A number of impotiavariants can be
directly read off a Pommaret basis without any further cotapans. One reason
for this phenomenon is that Pommaret bases induce the $pgoéeof decompo-
sition introduced by Rees [59] and which now carries his name

In their classical works on singularities, Hironaka [44}-46d Grauert [32]
developed a concept of standard bases for ideals in ringsveéipseries. A closer
analysis of their definitions shows that their bases cooedmot to arbitrary
Grobner bases but to Pommaret bases. Later, Amasaki [8lléjved up these
ideas and explicitly introduced Pommaret bases for polyiabideals under the
name Weierstrall bases because of their connection to trexdtvald Preparation
Theorem. In his study of their properties, Amasaki obtaittesbme extent results
which are similar to the ones presented here, however iferdift way.

This second part is organised as follows. Section 2 dissuseproblem of
o-regularity and thus of the existence of Pommaret basesvéldps an effec-
tive method for the construction @kregular coordinates for any ideal without
destroying too much sparsity. This method is based on a cosapeof the Janet
and Pommaret multiplicative variables for a given basis.aAfirst application,
we determine the depth of a polynomial id€ahnd a simple maximal-regular
sequence.

The following section studies combinatorial decompostiof general poly-
nomial modules using involutive bases. A trivial applicati already noticed by
Janet [48] and Stanley [68], is the determination of the étillseries and thus
of the Krull dimension. For Pommaret bases an alternatiegadterisation of the
dimension can be given which is related to Grobner's apgroada maximal in-
dependent sets of variables [35,50]. Extending our prevresults on the depth
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from submodules to arbitrary polynomial modules, we obéaiia simple corollary
Hironaka’s criterion for Cohen-Macaulay modules.

Section 4 discusses the relation betwéeegularity and Noether normalisa-
tion. It turns out that searchingtregular coordinates for an idedlis equivalent
to putting simultaneously and all primary components &7 into Noether po-
sition. As a by-product we provide a number of equivalentraberisations for
monomial ideals possessing a Pommaret basis and show haveduaridant pri-
mary decomposition of such ideals can be easily obtainegls& hesults are heav-
ily based on recent work by Bermejo and Gimenez [12].

Section 5 develops the syzygy theory of involutive bases.sWWew that the
involutive standard representations of the non-multgdliee multiples of the gen-
erators induce a Grobner basis (for an appropriately aintesen order) of the first
syzygy module. Essentially, this involutive form of Scheeg theorem follows
from the ideas behind Buchberger’s second criterion founet&ntS-polynomials.
For Janet and Pommaret bases the situation is even betthge assing Grobner
basis is then again a Janet and Pommaret basis, respectively

In the next three sections we construct by iteration of tesutt free resolu-
tions of minimal length. We first outline the constructiom &bitrary polynomial
modules with a Pommaret basis. Then we specialise to moharmdules where
one can always endow the resolution with the structure offfardéntial algebra
and provide an explicit formula for the differential. Most these results are in-
spired by and generalisations of the work of Eliahou and Kieev[27]. Finally,
we study those modules for which the obtained resolutiomes eninimal. It turns
out that minimality is obtained only for componentwise lnenodules. As a by-
product, we develop an effective method for deciding whetinenot a module is
componentwise linear.

In Section 9 we show that the degree of a Pommaret basis vafiect to the
degree reverse lexicographic order equals the Castelahavoford regularity of
the ideal. Together with our method for the construction-oégular coordinates,
this result leads to a simple effective method for the combor of this important
invariant. As corollaries we recover characterisationtefCastelnuovo-Mumford
regularity previously proposed by Bayer/Stillman [10] &fidenbud/Goto [25]. In
the following section we discuss the relation between gyl and saturation
from the point of view of Pommaret bases. Here we make contitbt recent
works of Trung [78] and Bermejo/Gimenez [12].

Finally, we apply the previously developed syzygy theortheconstruction of
involutive bases in iterated polynomial algebras of sole&jpe. A rather technical
appendix clarifies the relation between Pommaret baseshan8ttirmfels-White
approach [74] to the construction of Rees decompositions.

2 Pommaret Bases and-Regularity

We saw in Part | (Example 2.12) that not every monoid ideaNjh possesses a
finite Pommaret basis: the Pommaret division is not Noegimei©bviously, this
also implies that there are polynomial idedlsC P = kz1,...,z,] without a



4 Werner M. Seiler

finite Pommaret basis for a given term order. However, we stitbw that at the
level of polynomialideals this problem may be considered as solely a question of
choosing “good” variables. For this purpose, we take in the sequel the following
point of view: term orders are defined for exponent vectoes,én the monoidNy;
performing a linear change of variablgs= Ax leads to hew exponent vectors in
each polynomial which are then sorted according to the samedrder as before.

Definition 2.1 The variablesx are §-regularfor the idealZ C P and the term
order <, if Z possesses a finite Pommaret basis-or

Given our definition of an involutive basis, it is obvious tlharegularity con-
cerns the existence of a Pommaret basis for the monoid lele@l A coordinate
transformation generally yields a new leading ideal whicllyrpossess a Pom-
maret basis. In fact, we will show in this section that forrpveolynomial ideal
7 C P variablesx exist such thaf has a finite Pommaret basis provided that the
chosen term ordex is class respecting.

Besides showing the mere existencé-otgular variables, we will develop in
this section an effective approach to recognisirgingular coordinates and trans-
forming them intod-regular ones. It is inspired by the work of Gerdt [29] on the
relation between Pommaret and Janet bases and the key iaaslheady been
used in the context of the combined algebraic-geometrigaetion to involution
of linear differential equations [39]. However, the appro@resented in [39] con-
tains gap$and we develop here a modified version avoiding the probl€ij&o.

We begin by proving two useful technical lemmata. The nunabet), < deg h is
called thedegreeof the finite set{ C P and denoted byleg H.

Lemma 2.2Let the sefH be a homogeneous Pommaret basis of the homogeneous
idealZ C P. Then for any degree > deg’H a Pommaret basis of the truncated
idealZ>4 = @, , Zp is given by

qu{;v"h|h€H, || + deg h = ¢, Vj>clsh:uj:O}. (1)
Conversely, ifZ, possesses a finite Pommaret basis, then sofoes

Proof According to the conditions in (1), each polynomiaé H is multiplied by
termsz# containing only variables which are multiplicative for fthus trivially
cls (zh) = cls . FurthermoreH, is involutively head autoreduced, & is.
Now let f € Z>, be an arbitrary homogeneous polynomial. Kds a Pommaret
basis ofZ, it has a standard representatifn= 3, _,, Pn,h with polynomials
Py, € k[z1,...,zas ). Hencef can be written as a linear combination of polyno-
mialsz”h where|v| = deg f — degh > g — deg h and wherer” contains only
multiplicative variables. We decompose= p + p with |u| = ¢ — degh and

p; = 0forall j > cls . Thusz”h = z”(z*h) with z#h € H, andz” contains

! Recall from the appendix of Part | that any class respecémg torder coincides on
terms of the same degree with the reverse lexicographia.orde
2 | am indebted to Daniel Robertz and an anonymous refereeofotipg out these gaps.
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only variables multiplicative for it. But this trivially irplies the existence of a stan-
dard representatiofi = Zh/e?—tq Py b with Py € k[z1, ..., 2asp/] @and thusH,
is a Pommaret basis Gt .

The converse is also very simple. L&, be a finite Pommaret basis of the
truncated ideal>, and’H, head autoreducell-linear bases of the components
I, for0 < p < q. If we setH = (J?_,H,, thenleL’H is obviously a weak
Pommaret basis of the full monoid iddaLZ and by Proposition 5.7 of Part | an
involutive head autoreduction yields a strong basis. O

Lemma 2.3With the same notations as in Lemma 2.2Nét= le.H,. If v e N/
with clsv = k, ther? v — 1, +1; € N forall k < j < n. Conversely, let
N C (Np), be a set of multi indices of degreelf for eachr € N withclsv = k
and eacht < j < n the multiindexs — 1; 4 1; is also contained inV/, then the
set\ is involutive for the Pommaret division.

Proof j is non-multiplicative for.. As \ is an involutive basis a7, it must
contain a multi index: with i |p v + 1;. Obviously,cls (v + 1;) = k and thus
clsp > k. Because ofu| = |v|, the only possibility isu = v + 1; — 1. The
converse is trivial, as each non-multiplicative multipfezoe A is of the form
v+ 1; with j > k = clsv and hence hasg — 1, + 1; as an involutive divisor. O

As in concrete computations one always represents an fd€alP by some
finite generating sef C Z, we also introduce a notion of regularity for such sets.
Assume that the given séf is involutively head autoreduced with respect to an
involutive division L and a term ordek. In general 7 is not an involutive basis
of Z, but its involutive spaniF), ~ is only a proper subset df.

We consider now a linear change of coordinates- Ax defined by a reg-
ular matrix A € k™*". It transforms eaclf € P into a polynomialf € P =
k[#,...,%,] of the same degree. Thus a given $etC P is transformed into a
setF C P which generally is no longer involutively head autoredudeerform-
ing an involutive head autoreduction yields a $&t. Again F2 will in general
not be an involutive basis of the transformed idEat P.

Since we are dealing with homogeneous polynomials, we cahliligert func-
tions to measure the size not only of ideals but also of inigduspans. Recall
that the Hilbert function of the ided is given byhz(r) = dimZ, for all in-
tegersr > 0. For an involutively head autoreduced sEtwe define similarly
h]:’L7<(7") = dim(<f>L1<)r. ObViOUS'y,hf7L7<(T‘) < hI(T') for all » > 0 with
equality holding only, ifF is an involutive basis. The same inequality is true for
the Hilbert functiom . ; _ defined by the transformed basks®.

According to Lemma 5.12 of Part I, the sEtdefines a direct sum decomposi-
tion of the involutive spaF) . <. This observation allows us to provide a simple
explicit formula for the Hilbert function

hro<(r) =3 ( St 1) )

fer T

3 Recall from Part | that; denotes for any number € N the multi index where all
entries except théth one vanish and tha&h one is given by.
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wheregy = deg f andk; denotes the number of multiplicative variablesfoffor
r < ¢y we understand that the binomial coefficient is zero). Indé®elbinomial
coefficient in (2) is easily seen to give the number of muiltgive multiples off
of degree- and thus the contribution gf to the involutive span at this degree.
Obviously, a linear change of coordinates does not affecHifbert function
of an ideal and thus we finld; = hz. However, this is not true for the Hilbert
functions of the involutive spans) 1, « and(]:'A>L,<, respectively. We may now
measure the effect of the made coordinate transformatiaoimparing the asymp-
totic behaviour ofur 1, < andh z» ; .

Definition 2.4 Let the finite sefF C P be involutively head autoreduced with re-
spect to the Pommaret division and a term ordefThe coordinates are asymp-
totically regularfor 7 and <, if after any linear change of coordinat&s= Ax the
inequalityhr p, (1) > th7P7<(r) holds for all sufficiently large values>> 0.

Example 2.9 et us reconsider Example 2.12 of Part I. It corresponds ¢ostit

F = {zy} C k[z,y] with the degree reverse lexicographic order. Independent o
how we order the variables, the classagf is 1. Hence we havé s p - (r) = 1
forall » > 1. After the change of coordinates= z + § andy = ¢, we obtain the
setF = {2 + 2} C k[z, ). Its leading term igj2 which is of clas=2 implying
thathz , (r) = (JZ;) = r —1forr > 1. Thus the original coordinates are
not asymptotically regular foF and we know from Part | that they are also not
d-regular for the ideal = (F). <

Note that, given variables, generally asymptotic regularity for a finite s&t
according to Definition 2.4 and-regularity for the ideall = (F) according to
Definition 2.1 are independent properties. For a concretainte where the two
concepts differ see Example 2.7 below. The main point is¢hagularity for the
idealZ is concerned with the monoid iddlal, Z whereas asymptotic regularity for
the set” depends on the idedleL F) C le<Z. However, in some cases the two
notions are related. A simple instance is given by the falhgwvesult.

Proposition 2.6 Let the coordinates be é-regular for the idealZ C P and the
term order<. If the setH is a Pommaret basis df for <, then the coordinates
are asymptotically regular fot{ and <.

Proof If the setH is a Pommaret basis d@f, then the two Hilbert functiongz
andhy, p,~ coincide. As obviously for any generating s€tof the idealZ in any
coordinate system the inequality- p~(r) < hz(r) holds for all» > 0, our
coordinates are indeed asymptotically regular. O

0-Regularity of the used coordinategepresents a trivial necessary condition
for the existence of Pommaret bases for an ideal 7. From an algorithmic point
of view, their asymptotic regularity for the current basids equally important for
the effective construction of a Pommaret basis by the cotoplélgorithm 3 of
Part I. Even if the used coordinatesare j-regular for the ideal, it may still
happen that the algorithm will not terminate, as it tries tmstruct an infinite
Pommaret basis for the monoid idd& . H).
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Example 2.70ne of the simplest instance where this termination proleours
is not for an ideal but for a submodule of the fr&ér, y]-module with basis
{e1,ex}. Consider the sef = {y’e;, rye; + ez, zex} and any term order for
which zye; > es. The used coordinates are not asymptotically regulaffpas
any transformation of the form = z + ay with a # 0 will increase the Hilbert
function. Nevertheless, the used coordinatesaregular for the submoduleF):
adding the generataje, (the S-“polynomial” of the first two generators) makes
F to areduced Grobner basis which is simultaneously a minfummaret basis.

Note that the termination of the involutive completion aitfun depends here
on the precise form of the used term order. If we hayée, < xy%e; for all
exponents: € N, then the algorithm will not terminate, as in tl#h iteration
it will add the generatory*e,. Otherwise, it will treat at some stage the non-
multiplicative producty - (xye; + e2) and thus find the decisive generag@s.
This is in particular the case for any degree compatiblerorde

Another simple example is provided by the s&t= {2? — 1,yz — 1,2} C
k[z, y, z] together with the lexicographic term order... The involutive comple-
tion algorithm will iterate infinitely adding all monomiatsf the formzy* with
k > 1. Nevertheless, a finite Pommaret basig 6} for <., exists and is given
byH = {z —y,y> — 1,2y, x}. N

Remark 2.8 or Definition 2.4 of asymptotic regularity for a finite s&t the be-
haviour at lower degrees is irrelevant and it suffices to werghe involutive span
of F for degrees beyong = deg F. Thus we can proceed as in Lemma 2.2 and re-
placeF by the setF, defined in analogy to (1), i. e. we consider all multiplicativ
multiples of degreg of elements ofF. If we perform a coordinate transformation
and a subsequent involutive head autoreduction, then V\aa'rt)htseti“qA where
again all elements are of degree

It is now very easy to decide which Hilbert function becomsgnaptotically
larger. Letﬁ((,k) denote the number of generatorsi which are of clasg and

similarly Bé’“) for the setJ:'qA. In our special case, it follows immediately from
(2) that both Hilbert functions are actually polynomials fo> ¢. Furthermore,
an expansion of the binomial coefficients in (2) shows thatdfwrite the Hilbert

n—1

function in the formhr p<(q + ) = > ,_, hir', then each coefficient; is
determined by a linear combination /63”1), e ,ﬁ((,”) with positive coefficients.
Thus we must simply compare firsf™ and 3™, thens{" ™" and3{" ", and
so on, until for the first time one coordinate system leads karger value; the
corresponding Hilbert function is asymptotically larger. <

Choosing an arbitrary reference coordinate systeme identify every system
of coordinatesx with the unique regular transformation matrik € k™*" for
which x = Ax. The next result says that asymptotic regularity for a Sebf
polynomials is a generic property in the sense of the Zat@kbdlogy, i. e. almost
all coordinates are asymptotically regular {&r

Proposition 2.9 The coordinate systemxswhich are asymptotically singular for a
finite involutively head autoreduced sEtC P and a term order form a Zariski
closed proper subset @**".
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Proof By the considerations in Remark 2.8, it suffices to consideicase that all
elements ofF possess the same degree. Let us now perform a coordinagéoiran
mationx = Ax with an undetermined matriAd, i. e. we are treating its entries as
parameters. This obviously leads to an asymptotically leggroordinate system,
as each polynomial itF2 will get its maximally possible class. Asymptotically
singular coordinates are defined by the vanishing of ceftaading) coefficients.
These coefficients are polynomials in the entried of hus the set of all asymptot-
ically singular coordinate systems can be described asafteset of an ideal. O

Our goal is an effective criterion for recognising that atioates are asymptot-
ically singular for a given sef and a class respecting term order. The basic idea
consists of comparing the multiplicative variables assijhy the Pommaret and
the Janet division, respectively. The definitions of thege divisions are appar-
ently quite different. Somewhat surprisingly, they nekietéss yield very similar
sets of multiplicative indices, as shown by Gerdt and Blinf@0, Prop. 3.10].

Proposition 2.10Let the finite sef\V" C Ny be involutively autoreduced with re-
spect to the Pommaret division. That(v) C Ny A(v) forall v € N.

For later use, we mention the following simple corollaridsieh further study
the relationship between the Janet and the Pommaret diviRiecall that any set
N C N is involutively autoreduced with respect to the Janet divis\We first
note that by an involutive autoreduction.&f with respect to thé?ommaredivi-
sion itsJanetspan can become only larger but not smaller.

Corollary 2.11 Let ' C N{ be an arbitrary finite set of multi indices and set
Np =N\{veN]|3ueN:pulpr}, ie we elimnate all multi indices
possessing a Pommaret divisorAd. Then(\) ; C (Np) .

Proof If 1 |p u® andpu? |p v, then trivially (V) | p v. Thus for each elimi-
nated multi indexr € N\ Ap another multi index, € Np exists withy |p v.
Letcls u = k. By the proposition abovél, ..., k} C Ny (p). Assume that an
indexj > k exists withj € N a(v). By definition of the Pommaret division,
pi = viforalli > k. Thusp € (vjq1,...,v,) andj € Nja(n). As by the
second condition on an involutive divisioWi; xr (1) € Njar (p) forall u € Np,
we conclude thaj € N (1) andCya(v) C Cyap (1). But this immediately
implies(./\/>J - <NP>J. O

This observation implies that any Pommaret basis is simatiasly a Janet
basis (a similar result is contained in [29, Thm. 17]). Thiug{iis a Pommaret
basis, therX p < (h) = X 7 1,<(h) for all polynomialsh € H.

Corollary 2.12 Let the finite set{ C P be involutive with respect to the Pommaret
division (and some term order). Théhis also involutive for the Janet division.

Proof By the proposition above, it is obvious that the %étis at least weakly
involutive with respect to the Janet division. For the Jatieision any weakly
involutive set is strongly involutive, if no two elementsvieathe same leading
terms. But ag{ is a Pommaret basis, this cannot happen. O
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We show now that for an asymptotically regular coordinatgemy and a class
respecting term order the inclusions in Proposition 2.18the equalities. In other
words, if a variablez, exists which is multiplicative for an element @f with
respect to the Janet division but non-multiplicative wigspect to the Pommaret
division, then the used coordinates are asymptoticallgidar for 7. Our proof
is constructive in the sense that it shows us how to find coatds leading to a
larger Hilbert function.

Theorem 2.13Let the finite setF C P be involutively head autoreduced for the
Pommaret division and a class respecting term ordeand the fieldk be infinite.
If the setF possesses more multiplicative variables for the Janesidirithan for
the Pommaret division, then the coordinateare asymptotically singular for it.

Proof By the proposition above, we havép . (f) C X ;= <(f) forall f € F.
Assume that for a polynomidl € F the strict inclusionXp - (h) C X7 <(h)
holds. Thus a variable, € X; r ~(h) with £ > k = clsh exists. If we define
the setF, for ¢ = degF as in Remark 2.8, theff, contains in particular the
generatonrrz_deg ", which is still of classk. It is easy to see that the variablgis
also Janet multiplicative for this generator. Hence we nggiraassume without
loss of generality that all elements Bfare of the same degree

We perform now the following linear change of variables.= z; for i # k
andx, = Iy + aZ, with a yet arbitrary parameter € k \ {0}. It induces the
following transformation of the terms* € T

1223
ot = Z <M_k)aji,u—jk+je ) (3)

=0 \J

Z" is on the right hand side the only term whose coefficient daésiapend on
the parametedi. All other terms appearing there are greater for a classEsm
term order (and their coefficients are different powerapfLetle<h = . Thus
w=10,...,0, i, .., u) With gz > 0. We consider now the multi index =
w — (pr)x + (uk)e; obviously,clsv > k. Applying our transformation to the
polynomialh leads to a polynomiat containing the tern¥”. Note thats cannot
be an element dk~ F. Indeed, if it was, it would be an element of the same set
(tbe+1, - - -, 4n ) @Sp. But this contradicts our assumption tias multiplicative for
the multi indexu with respect to the Janet division, as by constructipo- ;.
Transforming all polynomial§g € F yields the sefF on which we perform an
involutive head autoreduction in order to obtain theét. Under our assumption
on the size of the ground field, we can choose the parametesuch that after
the transformation each polynomiale F has at least the same class as the cor-
responding polynomiaf € F, as our term order respects classes. This is a simple
consequence of (3): cancellations of terms may occur ditlygiparametes is a
zero of some polynomial (possibly one for each membeFpivith a degree not
higher thandeg F.
We know already that for the polynomialconsidered above the transforma-
tion leads to a polynomial of greater class. We consider now all polynomials
f € Fwith cls f > k andh. After the change of variables all the transformed
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polynomials will thus have a class greater thanBecause of the special form
of our transformation, the old leading exponent always riesa the support of
each transformed polynomial and if exponents appear whiergeeater for our
term order, then they are always accompanied by a coeffidepénding onu.
Furthermore, we noted above thatvas not contained ite< . As all our gen-
erators are of the same degrgean involutive head autoreduction amounts to a
simple Gaussian elimination. For a generic choice of thamatera, it follows
from our considerations above that even after the invodubiead autoreduction
each generator has at least the same class as in the origfitfa(and at least one

a higher class).

Taking the remaining members &f into account may only increase the num-
ber of elements iF2 having a class greater than But this implies that at least
one of the valueg." ™, ..., 3 is larger than the corresponding value for the
original set¥. By Remark 2.8, the Hilbert function of2 is then asymptotically
greater than the one ¢f and our coordinates are not asymptotically regulafl

Corollary 2.14 If the coordinates are asymptotically regular for the finite, Pom-
maret head autoreduced sét C P, then with respect to a class respecting term
order < we haveXp - (f) = X r <(f) for all generatorsf € F.

It is important to note that this corollary provides us onlittwa necessary
but not with a sufficient criterion for asymptotic regularity of tle@ordinatesx.
In other words, even if the Janet and the Pommaret divisiell {the same mul-
tiplicative variables for a given Pommaret head autoredwstF C P, this fact
does not imply that the used coordinates are asymptoticegiylar forF.

Example 2.18 et F = {z% —y? — 22, zz + xy, yz+y* +2?}. The underlined
terms are leading for the degree reverse lexicographiadtde easily checks that
the Janet and the Pommaret division yield the same mukilie variables. If we
perform the transformatioh = z, § = y+z andz = z, then after an autoreduction
we obtain the seF* = {72 — #7, §Z, §°}. Again the Janet and the Pommaret
division lead to the same multiplicative variables, butibert functioni 7 p 4

is asymptotically smaller thaiz . , _, as we find3(? =1 <2 =3?. Thusthe
coordinategz, y, z) are not asymptotically regular fof.

The explanation of this phenomenon is very simple. Obviposir criterion
depends only on the leading terms of the $etln other words, it analyses the
monomial ideaklt < F). Here (It F) = (xz,yz,2%) and one easily verifies that
the used generating set is already a Pommaret basis. Hoevgr = (F) the
leading ideal idt < Z = (x®, zz,yz, 22) (one obtains a Janet basis bby adding
the polynomialz? to F) and obviously it does not possess a finite Pommaret basis,
as such a basis would have to contain all monomidlg® with & € N (or we
exploit our criterion noting thay is a Janet but not a Pommaret multiplicative
variable forz?). Thus we have the opposite situation compared to Examgte 2.
therelt<Z had a finite Pommaret basis b{it-F) not; here it is the other way
round. We will show later in Proposition 4.8 that whenever thonomial ideal
(It F) does not possess a finite Pommaret basis, fhgossesses more Janet
than Pommaret multiplicative variables. <
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Eventually, we return to the problem of the existence of adiRbommaret basis
for every idealZ C P. As the Pommaret division is not Noetherian, Theorem 7.4
of Part | cannot be directly applied. However, with a littteek due to Gerdt [29]
exploiting our above results on the relationship betweenRbmmaret and the
Janet division we can achieve our goal at least for infinitelie

Theorem 2.16Let < be an arbitrary term order andk an infinite coefficient field.
Then every polynomial idedl C P possesses a finite Pommaret basis foin
suitably chosen variables.

Proof As a first step we show that every ideal haBanmarethead autoreduced
Janetbasis. Indeed, let us apply our polynomial completion athor (Algo-
rithm 3 of Part I) for the Janet division with one slight modétion: in the Lines /1/
and /9/ we perform the involutive head autoreductions wéspect to the Pom-
maret division. It is obvious that if the algorithm termiaaf the result is a basis
with the wanted properties.

The Janet division is Noetherian (Lemma 2.14 of Part I). Tiithout our
modification the termination is obvious. With respect to #amet division every
set of multi indices is involutively autoreduced. Hence aeldead autoreduction
only takes care that no two elements of a set have the samiadeaxponents.
But in Line /9/ we add a polynomial that is in involutive norhfierm so that no
involutive head reductions are possible. As the Pommased hatoreduction may
only lead to a larger monoid idekl- H;, the Noetherian argument in the proof of
the termination of the algorithm remains valid after our rificdtion.

Once the ascending ideal chdle<H;) C (lexH2) C --- has become sta-
tionary, the polynomial completion algorithm essentiakyuces to the “mono-
mial” one (Algorithm 2 of Part 1). According to Corollary 211 the Pommaret
head autoreductions may only increase the Janet sf@ns(;) ;. Thus the ter-
mination of the monomial completion is not affected by ourdifioation and the
algorithm terminates for arbitrary input.

Let us now work with a generic coordinate system; i. e. weqrenfa coordi-
nate transformatiod = Ax with an undetermined matriX as in the proof of
Proposition 2.9. By the considerations above, the modifigdrahm will termi-
nate, treating only a finite number of bagés According to Proposition 2.9, the
coordinate systems that are asymptotically singular fegagt one of them form a
Zariski closed set. Thus generic coordinates are asynaptiytiregular for all sets
1t . H; and by Corollary 2.1%their Janet and their Pommaret spans coincide. But
this observation implies that the result of the modified dthm is not only a Janet
but also a Pommaret basis. O

The argument at the end of this proof immediately impliesftiewing ana-
logue to Proposition 2.9.

Corollary 2.17 The coordinate systemswhich ared-singular for a given ideal
7 C P and a term order< form a Zariski closed proper subset kf <™.

* Note that it is not relevant here that the corollary assurhesise of a class respecting
term order, since our argument deals only with monomial. sets
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Remark 2.1&8ombining the completion Algorithm 3 of Part | (or the optsed
variants developed by Gerdt and Blinkov [31]) and the cigterfor asymptotic
singularity provided by Theorem 2.13, we can effectivelyedmined-regular co-
ordinates for any ideal C P. Our approach is based on the observation that if
our given coordinate systesis notd-regular forZ, then any attempt to compute
a Pommaret basis @f with the completion algorithm will sooner or later lead to
a basisH of Z for which the coordinates are not asymptotically regular. Indeed,
by the considerations in the proof of Theorem 2.16, the cetign with respect to
the Janet division (using Pommaret head autoreductioms)rtates. Thus either
the result is simultaneously a Pommaret basié (fnd the given coordinatesare
alreadys-regular forZ) or at some stage we encounter a bésisf Z possessing
more Janet than Pommaret multiplicative variables imgyig Theorem 2.13 that
the coordinates are not asymptotically regular fot.

There are (at least) two possibilities to exploit this olaéon in concrete
computations. The first one consists of following the cortipfealgorithm with
the Pommaret division and checking before each iteratiogtkdr there are more
Janet than Pommaret multiplicative variables. If this is thse, then we perform
coordinate transformations of the form used in the proof bédrem 2.13 until
the Janet and the Pommaret division yield the same mukbilie variables. Then
we continue with the completion. Alternatively, we compaté®ommaret head
autoreduced Janet basis (which always exists by the caoasinles above) and
check whether it is simultaneously a Pommaret basis. Ifishilse case, we again
conclude that our coordinatesare é-regular. Otherwise, we perform coordinate
transformations as above and start again.

It is easy to provide for each approach examples where isfasdter than
the other one. The main disadvantage of the first approadtaisttmay perform
transformations even if the coordinategared-regular for the given ided. Such
redundant transformations will always occur, if we enceuat basisH such that
the coordinates are notdé-regular for the monoid ideafle<) (this assertion
follows from Proposition 4.8 below). As one can see from Egbn2.7, sometimes
the transformations are indeed necessary for the terroimafithe completion but
sometimes they just make the computations more expensive.

In the second approach this problem does not appear, as weletk at the
very end whether we actually have got a Pommaret basis. Thuowsider only
le<Z and not already some subideal contained in it. If the origivardinatesx
ared-regular, then no transformation at all will be performedi ave clearly fare
better than with the first approach. On the other hand, if tedinatesk are not
d-regular, then we will not notice this fact before the endha Janet completion.
It will follow from our results in later sections that in suehsituation, a Janet
basis ofZ will typically be larger than a Pommaret basiséimegular coordinates;
in particular, generally the Janet basis will contain elata@f unnecessarily high
degree. Thus in such situations the first approach will ibicfare better, as it
avoids a number of unnecessary normal form computations.

Note that at this point we are not able to prove that eithextsgyy will lead
to a Pommaret basis afteffiaite number of coordinate transformations. With the
help of the theory developed in later sections, we will beedblprovide a proof
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at least for the most important case of a class respectirgr Remark 9.11). The
basic problem is that we do not know a bound for the degreetbéea Janet or
a Pommaret basis. It is clear that both every completionatejevery coordinate
transformation asymptotically increase the Hilbert fumet:;, p - of the current
basisH. However, without a bound on the degree of the appearingshasis
information is not sufficient to conclude that either apmfoterminates in a finite
number of steps. <

Example 2.19.et us apply the first approach to the Pommaret completioh®f t
setF = {22 —y? — 222, zz + wy, yz + y* + 2} (with respect to the degree
reverse lexicographic order). We have seen in Example habthe coordinates
are nots-regular forZ, although the Janet and the Pommaret spaf obincide.
According to our algorithm we must first analyse the polynamizz + zy). Its
involutive normal form with respect t& is —22. If we determine the multiplicative
variables for the enlarged set, they do not change for theleltients. For the new
polynomial the Janet division yields:, y}. Buty is obviously not multiplicative
for the Pommaret division. Thus our criterion tells us theg toordinates are not
asymptotically regular for the enlarged basis and that ti@faret completion
may not terminate. Indeed, here it is easy to see that no ntaite often we
multiply the new polynomial by, it will never become involutively head reducible
and no finite Pommaret basis can exist {&r).

In this example, the Janet completion (with or without Pomehautoreduc-
tions) ends with the addition of this single obstructionrtealution and we obtain
as Janet basis the set

Fr={22-y* 22" zz 4wy, yz+y* +2°, 2%} . (4)

In Example 2.15 we showed that the linear transformatiea z, § = y + z and

z = z yields after an autoreduction the s&* = {22 — 2, 2, §°}. One easily
checks that it is a Pommaret and thus also a Janet basis. Xdmspée clearly
demonstrates that the Janet division also “feélsingularity in the sense that in
such coordinates it typically leads to larger bases of higlegree. <

In Theorems 2.13 and 2.16 we assumed that we are working ovierfiaite
field. A closer look at the proofs reveals that we could relsis aissumption to
“sufficiently large” where the required size @fis essentially determined by the
degree and the size of the considered/Sethus in the case of a finite field, it may
be necessary to enlar@en order to guarantee the existence of a Pommaret basis.
This problem is similar to the situation when one tries to patero-dimensional
ideal in normale,,-position [51, Def. 3.7.21].

In Part | we discussed the extension of the Mora normal forrmtolutive
basis computation. Obviously, the above results remain viélwe substitute the
ordinary normal form by Mora’s version and hence we may algal\ait to Pom-
maret bases with respect to semigroup orders.

Besides being necessary for the mere existence of a finitenf2oet basis,
a second application @fregular coordinates is the constructionZfegular se-
guences for a homogeneous idéalC P. Recall that for any?-module M a se-
quencefi, ..., f,) of polynomialsf; € P is calledM-regular, if the polynomials
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generate a proper ideaf; is a non zero divisor foM and eachf; is a non zero
divisor for M /(f1, ..., fi—1)M. The maximal length of aiM-regular sequence
is thedepthof the module. While the definition allows for arbitrary palymials in
such sequences, it suffices for computing the depth to censidy linear forms
fi € Py. This fact follows, for example, from [24, Cor. 17.7] or [7dem. 4.1].
For this reason, the following proof treats only this case.

Proposition 2.20Let7Z C P be a homogeneous ideal aftla homogeneous Pom-
maret basis of it for a class respecting term order. {Let miny 4 cls h. Then the
variables(z1, . .., z4) form a maximalZ-regular sequence and thdspth Z = d.

Proof A Pommaret basi#{ induces a decomposition @fof the form

=@k, zasn] - b (5)

heH

If d = minyep cls h denotes the minimal class of a generatoHnthen (5) triv-
ially implies that the sequende, . .., z4) is Z-regular.

Let us try to extend this sequence by a variabjewith k£ > d. We introduce
Ha = {h € H | clsh = d} and choose an elemehtc H, of maximal degree.
As we use a class respecting orderc (zi,...,z4) by Lemma A.1 of Part I.
By constructionyy, is non-multiplicative forh and for eacth € H a polynomial
Py, € k[z1,. .., zasp) €Xists such that,h = > her Prnh. No polynomialh with
clsh > dliesin (zy,...,zq4) (Obviouslylt<h ¢ (z1,...,24)). As the leading
terms cannot cancel in the sum, € (zy,...,z4) forallh € H\H4. Thuszih =
> hew, chh+gwith e, € kandg € (z1,...,74)Z. AsT is a homogeneous ideal
and as the degree bfis maximal in4, all constants;, must vanish.

It is not possible that € (zy,...,z4)Z, as otherwiseh would be involu-
tively head reducible by some other elementhfHence we have shown that any
variablez;, with k& > d is a zero divisor inZ/{z1,...,z4)Z and theZ-regular
sequencéz, . .., z4) cannot be extended by any, with k& > d. Obviously, the
same argument applies to any linear combination of suclabkszy,.

Finally, assume that the formys, . . . , y4+1 € P; define arZ-regular sequence
of lengthd + 1. We extend them to a bas{g;, ..., y,} of the vector spac®,
and perform the corresponding coordinate transformation» y. Our basisH
transforms into a sek{, and after an involutive head autoreduction we obtain a
setHyA. In general, the coordinatgsare not asymptotically regular for the latter.

But there exist coordinategs of the form g, = y, + Zf:_f akiy; With ag; € k
such that if we transforrfi{ to them and perform afterwards an involutive head
autoreduction, then they are asymptotically regular ferdbtained seHyA.

This fact implies that{;, is a Pommaret basis of the idéak= (H') C P it
generateé.ThUSminﬁeﬂé clsh = d and, by the same argument as abaye,;
y

5 By Definition 2.4 of asymptotic regularity, the involutivpans of the two sets( and
7-2? possess asymptotically the same Hilbert function. Sikcis assumed to be a Pom-
maret basis of, this function is simultaneously the Hilbert functida of Z implying that
the involutive span o‘ﬁyA is the full idealZ.
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is a zero divisor inZ/(jjy, . . ., §4)Z. Because of the special form of the transfor-
mationy — y, we have—considering everything as formsRp—the equality
(1, 74d) = (Y1, ..., yq) andyqy1 must be a zero divisor il /(y1, . . ., ya)Z.
But this observation contradicts the assumption (pat. . . , y4+1) is anZ-regular
sequence and thus indeéepbth 7 = d. O

Remark 2.210ne may wonder to what extent this result really requiresRtbm-
maret division. Given an arbitrary involutive bagisof Z, we may introduce the
setX7 = (N,ex X171, <(h); obviously, fora Pommaret bask; = {z1,..., 24}
with d = minj e cls h. Again it is trivial to conclude from the induced direct de-
composition ofZ that any sequence formed by elementsXaf is Z-regular. But
in general we cannot claim that these araximalZ-regular sequences and there
does not seem to exist an obvious method to extend them. Tiyia tower bound
for the depth is obtained this way.

As a simple example we consider the id@atenerated byf; = 22 — zy,
fo=yz—wxandfs = y?> — wz. lfwe setr; = w, x5 = , r3 = y andxy = z,
then itis straightforward to check that the get= { f1, f2, f3} is a Pommaret basis
of Z with respect to the degree reverse lexicographic order. Byp&sition 2.20,
(w, z,y) is a maximalZ-regular sequence arldpth Z = 3.

If we setxy, = w, zo = 2z, x3 = y andx4 = x, then no finite Pommaret basis
exists; these coordinates are dategular. In order to obtain a Janet bagig of 7
(for the degree reverse lexicographic order with respettiémew ordering of the
variables), we must enlargg by f, = z* — wz? and f5 = yz® — wa?z. We find
now X7 = {w, z}, as

XJvav<degrevle>£f1) = ijf1v<degrevle>£f2) = {w,z},
XJvav<degrevlex(f3) ={w,z,y.2}, (6)

XJ7-7:J7<degrevlex(f4) = XJ7-7:J7<degrevlex(f5) = {w’ Zs x} :

Thus X7 can be extended to a maxiniaregular sequence by addiggHowever,
the Janet basis gives no indications, wishould be added. One could also conjec-
ture that the minimal number of multiplicative variables ogenerator gives the
depth. But clearly this is also not true for the above Jansisbd@hus no obvious
way seems to exist to dedudepth Z from F ;. <

3 Combinatorial Decompositions

In the proof of Proposition 2.20 we could already see the p@féhe direct sum
decompositions induced by (strong) involutive bases. is $lection we want to
study this aspect in more details. All results apply to aabit finitely generated
polynomial modules. But for notational simplicity, we néstto gradedk-algebras
A = P /T with a homogeneous ide@l C P. If we speak of a basis of the idea|
we always assume that it is homogeneous, too.

The main motivation of Buchberger [16] for the introductiminGrobner bases
was to be able to compute effectively in such factor spaceedd given a Grobner
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basisg of the idealZ, the normal form with respect t@ distinguishes a unique
representative in each equivalence class. Our goal in dusos is to show that
Pommaret bases contain in addition much structural inftionabout the alge-
bra.A. More precisely, we want to compute fundamental invaritikésthe Hilbert
polynomial (which immediately yields the Krull dimensiondathe multiplicity),
the depth or the Castelnuovo-Mumford regularity (see 8adi). Our basic tools
are combinatorial decompositions of the algeldranto direct sums of polynomial
rings with a restricted number of variables.

Definition 3.1 A Stanley decompositioof the gradedk-algebra.4 = P/Z is an
isomorphism of gradett-linear spaces

A= PKX,] -t (7

teT

with a finite set7’ C T and setsX; C {z1,...,z,}.

The elements of the séf; are again called theultiplicative variableof the
generatot. As a first, trivial application of such decompositions weedimine the
Hilbert series and the (Krull) dimension.

Proposition 3.2 ([68]) Let the graded algebrad possess the Stanley decomposi-
tion (7). Then its Hilbert series is

HaN) =) ui\iq:\)kt (8)

teT

whereq; = degt and k; = |X;|. Thus the (Krull) dimension ofd is given by
D = max;c7 k; and the multiplicity (or degree) by the number of tertns 7
with k; = D.

Vasconcelos [79, p. 23] calls Stanley decompositi@msapproach that is not
greatly useful computationally but it is often nice themaily” . One reason for
his assessment is surely that the classical algorithm far donstruction works
only for monomial ideals and uses a recursion over the vlsahy, . . . , z,,. Thus
for largern it becomes quite inefficient. For a general idéadne must first com-
pute a Grobner basis @f for some term ordex and then, exploiting the vector
space isomorphisi®? /T = P /1t Z, one determines a Stanley decomposition. Its
existence is guaranteed by the following result.

Proposition 3.3LetZ C N be a monoid ideal and = N2\T its complementary
set. There exists a finite s&t C Z and for each multi index € A a set of indices
N, C {1,...,n} such that

I=|]Jw+Ny,) 9)
VEJ\7

and (v + Ny )N (u+ Ny, ) =0forall p,v e N

® Recall from Part | the notatioNy, = {v € N | Vj ¢ N : v; = 0}.
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A proof of this proposition may be found in the textbook [2P, g17—-418]
(there it is not shown that one can always construct a disgiromposition, but
this extension is trivial). This proof is not completely abuctive, as a certain de-
greeq is only defined by a Noetherian argument. But it is not diffitalsee that
we may takeyy = max, e v, Where the sel/ is the minimal basis of the monoid
idealZ. Now one can straightforwardly transform the proof into ausive algo-
rithm for the construction of Stanley decompositions (& [Sect. 5.1] for the
details). In fact, one obtains then exactly the algorithopmsed by Sturmfels and
White [74, Lem. 2.4].

One must stress that the complementary decomposition (@)tianique and
different decompositions may use séfsof different sizes. Given any involutive
basis of the monoid ided], it is trivial to determine a disjoint decompositionbf
itself (Corollary 5.5 of Part I). However, there does notrege exist an obvious
way to obtain acomplementary decompositi¢®). The situation is different for
Janet bases where already Janet himself presented a salfitios problem which
can straightforwardly be extended to an algorithm.

Proposition 3.4 ([48,§15]) LetNV; be a Janet basis of the monoid iddalc INj.
Then the sefV" C N in the decomposition (9) may be chosen such that for all
v € N the equalityN, = N nr,uq.3 (v) holds.

Remark 3.5)anet did not formulate his algorithm in this algebraic laage. He
considered the problem of determining a formally well-pbisgtial value problem
for an overdetermined system of partial differential equad [67, Sect. 9.3]. If one
identifies this system with our idedl, his problem is equivalent to computing a
Stanley decomposition ¢?/Z. An algorithmic approach to formally well-posed
initial value problem was also presented by Reid [60]. <

According to Corollary 2.12, we may apply Janet's algorittotmPommaret
bases, too. But as the Pommaret division has such a simpgbalglefinition, it
is almost trivial to provide an alternative decompositiapdnding only on the
degreeg of a Pommaret basis of the ideal(we will see later in Sect. 9 that this
degree is in fact an important invariant 8j. In general, this decomposition is
larger than the one obtained with Janet’s algorithm, bua# fome advantages in
theoretical applications.

Proposition 3.6 The monoid ideal C N has a Pommaret basis of degrgeif
and only if the setd/y = {v € Z | |v| < ¢} and N7 = {v € T | |v| = ¢} yield
the disjoint decompaosition

I=Nou |J Cr(v). (10)
veN1
Proof The definition of the Pommaret division implies the identity

(ND)s, = | Cr(v) (11)
\

v|=q

7 For an alternative proof see [58].
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from which one direction of the proposition follows trivialHere(]Ng)>q denotes
the set of all multi indices of length greater than or equaj.tBy the definition of
an involutive division, the union on the right hand side isjaint.

For the converse, we claim that the $ét= {1 € Z,} is a Pommaret basis of
monoid idealZ> ,; this immediately implies our assertion by Lemma 2.2. Assum
thaty € H with clspy = k and letk < j < n be a non-multiplicative index
for it. We must show that + 1; € (H)p. But this is trivial: we have: + 1; €
Cp(p—1x+1;)andu—1,+1; € Z,, as otherwise we encounter the contradiction
w+1; ¢ 7 by (10). O

Example 3.7The decomposition (10) is usually redundant. Considerorghf;
only multi indices of length; makes the formulation much easier but it is not
optimal. Consider the trivial examplép = {[0, 1]}. According to Proposition 3.6
we should seVy = {[0,0]} and\; = {[1,0]}. ButobviouslyZ = [0, 0]+ N7,,.
Janet’s algorithm directly yields this more compact form. <

If 7 C P is a polynomial ideal possessing a Pommaret basis for somme te
order=, then applying Proposition 3.6 b = le~.7 yields a Stanley decomposi-
tion of a special type: all set¥; are of the formX; = {z1, 22, ..., zas:} Where
the numberlst is called theclas$ of the generatot. One speaks then offRees
decompositiomf .4 = P /7 [59]. It is no coincidence that we use here the same
terminology as in the definition of the Pommaret divisiont: # z* with 1 € N7,
then indeed its class ids p. Elimination of the redundancy in the decomposition
(10) leads to the following result.

Corollary 3.8 LetZ C P be a polynomial ideal which has for some term order
a Pommaret basi#{ such thatminyc clslexh = d. ThenP /T possesses a Rees
decomposition where the minimal class of a generatdr-s1.

Proof Obviously, it suffices to consider the monomial case and tdae the proof
therefore in the multi index language of Proposition 3.6itkermore, ford = 1

there is nothing to be shown so that we assume from now onl. Our starting
pointis the decomposition (10). For eacke N; with cls v = k < d we introduce
the multi index> = v — (v )i, i. €. U arises fromv by setting thekth entry to
zero. Obviously, the:-dimensional con€’, = v + N, ;. is still completely

contained in the compleme®tandCr(v) C C,,.

If we replace in (10) for any suchthe con&Cp(v) by C,, then we still have
a decomposition of, but no longer a disjoint one. We now show first that in the
thus obtained decomposition all cor@svith 0 < dim C < d — 1 can be dropped
without loss. Indeed, fok < d — 1 we consider the multiindex = 7 + (vg ) g+1-
Obviously,| ;| = g andcls 4 = k + 1; hence under the made assumptipns ;.
Furthermorefi = p — (uk+1)k+1 IS @ divisor of & (the two multi indices can
differ at most in their(k + 1)st entries andix+; = 0) and thus the inclusion
CoCCu=n+N{  iny holds.

The remaining cones withim C' > d — 1 are all disjoint. This is trivially
true for all cones withlim C' > d, as these have not been changed. For the other

8 Some authors prefer the tefievel
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ones, we note that ji andv are two multi indices withels u = clsy =d — 1 and
|1l = |v| = ¢, then they must differ at some positiémvith ¢ > d. But this implies
that the cones’, andC, are disjoint.

Thus there only remains to study the zero-dimensional coossisting of the
multi indicesr € Np. If we setl = ¢ — |v|, theny = v + {1 € N, since we
assumed! > 1, and trivially v € C), = (1 — (p1)1) + N7, By our consider-
ations above the con@,, and thusv is contained in soméd — 1)-dimensional
cone. Therefore we may also drop all zero-dimensional canesobtain a Rees
decomposition where all cones are at l@st- 1)-dimensional. O

Slightly generalising the notion of Rees decompositioresspeak of auasi-
Rees decompositioif there exists a termh € 7 such that J,., X; = X3, i.e.
there exists a unique maximal set of multiplicative varabtontaining all other
sets of multiplicative variables. Obviously, every Reesataposition is a quasi-
Rees decomposition, but not vice versa. We will see belowsiheh decomposi-
tions possess special properties.

Sturmfels et al. [73] introduced the notion stindard pairsalso leading to a
kind of combinatorial decomposition, however not a disj@ne. They consider
pairs (v, N,,) wherev € N{ is a multi index andV, C {1,...,n} a set of
associated indices. Such a pair is calkdhissible if suppr N N, = 0, i.e.
v; = 0 foralli € N,. On the set of admissible pairs one defines a partial order:
(v,Ny) < (u,Ny), if and only if the restricted cong + N7, is completely
contained inv + N7, . Obviously, this is equivalent te | © and any index such
that eitheru; > v; ori € N, is contained inVv,,.

Definition 3.9 Let Z C Ng be an arbitrary monoid ideal. An admissible pair
(v, N,) is calledstandardor Z, if v+ N}, NZ = 0 and(v, N,)) is minimal with
respect to< among all admissible pairs with this property.

Any monoid idealZ ¢ N{ leads thus automatically to a uniquely determined
set of standard pairs. These define both a decompositioneafdmplementary
setZ into cones (though these will overlap in general) and a deaosition of
the idealZ itself as an intersection of irreducible monomial idealseTollowing
result is contained in the proof of [73, Lemma 3.3].

Proposition 3.10LetZ C N{ be an arbitrary monoid ideal and denote the set of
all associated standard pairs b§; = {(v, N,) | (v, N,) standard fofZ }. Then
the complementary s&tof Z can be written in the form

I= |J v+NR, (12)
(V,N,,)ESI

and the ideall itself can be decomposed as

T= () (w+D:ligN), (13)

(V,N,,)ESI
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According to Sturmfels et al. [73, Lemma 3.3] the number ahstard pairs of
a monomial ideal equals tharithmetic degreef Z, a refinement of the classical
concept of the degree of an ideal introduced by Bayer and Mtohj®]. We further
note that the ideals on the right hand side of (13) are tlivialeducible, so that
(13) indeed represents an irreducible decompositidh of

In general, this decomposition is highly redundant. Ne€ {1,...,n} be an
arbitrary subset and consider all standard pgirsV, ) with N, = N. Obviously,
among these only the ones with multi indicewhich are maximal with respect to
divisibility are relevant for the decomposition (13) andaut restricting to the cor-
responding ideals yields the irredundant irreducible deoasition ofZ (which is
unique according to [57, Thm. 5.27]). Their intersectiofinks a possible choice
for the primary component for the prime idgal = (x; | i ¢ N), so that we can
also extract an irredundant primary decomposition fromdtamdard pairs. As a
trivial corollary of these considerations the standardgpanmediately yield the
setAss (P/Z) of associated prime ideals, as it consists of all prime slealsuch
that a standard pair, N) exists.

Hosten and Smith [47] discuss two algorithms for the digeetstruction of the
setSz of all standard pairs given the minimal basislofAlternatively,Sz can eas-
ily be extracted from any complementary decomposition, askow now. Thus
once a Janet basis ofis known, we may use Janet’s algorithm for the construction
of a complementary decomposition and then obtain the stermars.

Let the finite set’z = {(v,N,) | v € N§, N, C {1,...,n}} define a com-
plementary decomposition . If the pair(v, N,) € 77 is not admissible, then
we substitute it by the paiw, N, ) wherep;, = 0 forall i € N, andy; = v; else.
Obviously, this operation produces an admissible pair hadus obtained sé&;
still defines a (generally no longer disjoint) decompositid the complementary
setZ. Finally, we eliminate all pairs iz which are not minimal with respect to
the partial ordexK and obtain a sef;.

Proposition 3.11Let 77 be a finite complementary decomposition of the monoid
idealZ C INg. The thus constructed s&t consists of all standard pairs ¢f.

Proof It is trivial to see that the se§; contains only admissible pairs and that
v+ N% C T forany pair(v, N,) € Sz. Thus there only remains to show that all
standard pairs are containedSa-.

Let (u, N,,) be an admissible pair such that- N3, C 7. Since the union of
the coness + N7 with (v, N,) € Sz still coversZ, the finiteness of 7 implies
the existence of a multi index € 1 + N% and a pair(v, N,) € Sz such that
n+Ny Cv+Ny, (obviously, it is not szsibIe to cover+ N7, with a finite
number of lower-dimensional cones). As bgth N,,) and(v, N, ) are admissible
pairs, this entails that in fagy, N,,) < (i, N,,). Hence eithefu, NV,,) € Sz or it
is not a standard pair. O

Remark 3.12f we use the decomposition (10) derived from a Pommareshefsi
degreey, then the determination of the s8¢ is completely trivial. For all pairs
(v,N,) € Tz with |v| < ¢ we haveN,, = () and hence they are trivially admissible.
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For all other pairs we find thatuppr N N, = {clsv}. Thus none of them is
admissible, but they become admissible by simply settieditlst non-vanishing
entry ofv to zero. <

Example 3.1Tonsider theided = (23, y2? — x22,4y* — 2y) C k[z,y, 2]. Both

a Janet and Pommaret basi€dbr the degree reverse lexicographic order is given
by the setH = {23, y2% — 222,922 — xyz, y? — xy}. Using Janet’s algorithm, we
obtain the se?” = {1, v, z, yz, 22} and the complementary decomposition

P/I= Kokl yoklr okl yzakl] 2. (14

It follows from (14) that a complementary decompositionted torresponding
monoid ideale~Z = ([0, 0, 3], [0, 1, 2], [0, 2,0]) is given by

sz ={(10,0,00,{1}), (10,1,0], {1}, ([0,0,1], {1}),
(01,11, {13), (0,02 {1})}

and one easily verifies that these are all standard pairs.

The complementary decomposition constructed via Propos8.6 is much
larger. Besides many multi indices without any multiplicatindices, we obtain
the following six multi indices for whicH is the sole multiplicative index3, 0, 0],
[2,1,0],[2,0,1],[1,1,1], [1,2,0] and][1, 0, 2]. After setting the first entry to zero,
we find precisely the multi indices appearing in (15) plusrhdti index |0, 2, 0].

As ([0,1,0],{1}) < ([0,2,0],{1}), the latter pair is not minimal. The same holds
for all pairs corresponding to the multi indices without tiplicative indices and
hence we also arrive at (15). <

(15)

As an application of Rees decompositions, we will now shoat given a
Pommaret basis of the idea) we can easily read off the dimension and the depth
of the algebrad = P/Z. In principle, the determination of the dimension is of
course already settled by Proposition 3.2 and the poggilbdlicompute Stanley
decompositions via Janet bases. However, in the case of mBmtbasis a further
useful characterisation dfim .4 exists. It may be considered as a strengthening of
the following general observation for quasi-Rees decoritipos.

Lemma 3.14Let G be a GBbner basis of the homogeneous idgalC P for
some term order and assume that the finite sét C T defines a quasi-Rees
decomposition ofA = P/Z with the maximal seX; of multiplicative variables
for some termt € 7. If ¢ = 1 + maxie7 degt, then(G, X;), = P, and no
smaller set of variables or other set of variables of the saine has this property.

Proof Assume first that the term¥* € P, \ 1t<Z is not contained in the leading
ideal. By definition of the degreg¢ we have|u| > degt for all t € 7. Hence
x* must be properly contained in some cone of the quasi-Reesgrusition and
can be written as a produgit with somet € 7 and a termm in the variables
X; C X;with degm > 0. This presentation implies* € (X3).

If the termz# € P, lies inltZ, we compute its normal form with respect to
the Grobner basi§. If this normal form vanishes, thett* € (G). Otherwise, it is
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ak-linear combination of terms i, \ 1t-Z and thus lies by the considerations
above in{X;). Hence we may conclude that all terms of degrdie in (G, X;).

No setX C X of variables withX # X; and|X| < |X{| can possess this
property, adt<Z N k[Xz] = {0} and hence we always find a tenti € (k[X7]),
not contained inG, X ). Indeed, assume thatd € 1t<Z N k[X;] existed. Then
obviously? - z¥ € 1t-Z, contradicting the fact thaf defines a complementary
decomposition with multiplicative variables; for ¢. O

Proposition 3.15Let H be a homogeneous Pommaret basis of the homogeneous
idealZ C P with deg H = ¢ for some term ordex. Then the dimensiob of the
algebrad =P/Tis

D=min{i| (H,z1,...,2:)qg = Py} (16)

Proof The Hilbert polynomials ot4 and the truncatiomd>, coincide. Thus it
suffice to consider the latter algebra. By Lemma 2.2, a Poranizsis ofZ,

is given by the set{, determined in (1). IfD is the smallest number such that
(Hg,x1,...,2D)q = Py, then all multi indices’ with |v| = g andclsv > D lie

in lexH, but a multi indexu exists such thau| = ¢, clsp = D andp ¢ le,H,.
By Proposition 3.6, this observation entails thas a generator of clas® of the
complementary decomposition (10) and that the decompagitbes not contain a
generator of higher class. But this trivially implies thiin A = D. O

In a terminology apparently introduced by Grobner [35,t®ec131], a subset
Xz C {z1,...,z,} isindependent modulthe idealZ, if Z N k[Xz] = {0}. If
evenlt<ZNk[Xz] = {0} for some term ordek, then one speaks ofstronglyin-
dependent set for. One can show that the maximal size of either an independent
or a strongly independent set coincides wititm .4. This approach to determin-
ing the dimension of an ideal has been taken up by Kredel ansiféaning [50]
using Grobner bases (see also [11, Sects 6.3 & 9.3]).

Strong independence modwowith respect to a term ordex is easy to verify
effectively with the help of a Grobner bagisof Z for <: it follows immediately
from the definition of a Grobner basis that the &gt is strongly independent, if
and only if it satisfiedt<G N k[Xz] = 0. It is now a combinatorial (and thus
sometimes quite expensive) exercise to determine eftdgtall maximal strongly
independent sets modufoand to compute their maximal size and hedaa A.
The situation becomes much simpletdif= P /Z admits a quasi-Rees decomposi-
tion, as we will show now that in this case a unique maximairgity independent
set moduldZ exists. This observation is based on the following resulictviis a
variant of [62, Lemma 14.

Lemma 3.16LetZ C P be an ideal and< a term order. Assume that the finite set
T C T defines a quasi-Rees decomposition of the algebra: P /1t Z with the
maximal setX; of multiplicative variables for a term e 7. Then the variable;

% In this paper it is also shown how quasi-Rees decompositiansbe effectively com-
puted using Janet bases and coordinate transformatioiigrsimthe ones used by us for
the construction ob-regular coordinates.
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is not contained inXz, if and only if the minimal basis dt .7 contains an element
of the formz$* for some exponent; € N.

Proof Assume first thatr; ¢ Xi; by definition of a quasi-Rees decomposition,
z; ¢ X, forallt € 7. SinceT is afinite set, only finitely many terms of the form
t= zf* can be contained in it. If we choogeagreater than all these valukg then
x¥ € 1t27 and the minimal basis df .7 must contains an elemenf:.

For the converse, assume th4t lies in the minimal basis dft<Z. Then for
anyt € 7 the termt - =7’ lies inlt-Z and thuse; cannot be an element &f, by
definition of a complementary decomposition. O

Proposition 3.17Under the assumptions of Lemma 3.16, the)§eis the unique
maximal strongly independent set modulo the ideal

Proof We showed already in the proof of Lemma 3.14 thatZ N k[X;] = {0},

i. e. that the seX7 is strongly independent modulo It follows from Lemma 3.16
that no variable:; ¢ X; can be contained in a strongly independent set mafiulo
Hence any such set must be a subseYaf O

Corollary 3.18 Let the chosen coordinatesbe o-regular for the idealZ C P,
i.e.Z possesses a Pommaret badisThen{x1,...,zp} with D = dim A is the
unique maximal strongly independent set modulo the ideal

Applying standard arguments of homological algebra to tkecesequence
07— P — P/I — 0,one easily shows thalepth (P/Z) = depthZ — 1.
Hence Proposition 2.20 immediately implies the followirggult (one can also
prove it directly along the lines of the proof of Propositids20).

Proposition 3.19Let H be a homogeneous Pommaret basis of the homogeneous
idealZ C P for a class respecting term order arntd= minc cls h. Then the
depth of A = P/Z isdepth A =d — 1.

Since{z1,...,xq4—1} is trivially a strongly independent set modupwe ob-
viously find that alway9) > d— 1. Thus as a trivial corollary of Propositions 3.15
and 3.19, we find the well-known fact that for any graded algeb = P/Z the
inequalitydepth A < dim A4 holds. In the limit caséepth .A = dim .4, the alge-
bra is by definitionCohen-Macaulaynd we obtain the following characterisation
of such algebras.

Theorem 3.20Let H be a Pommaret basis of degre®f the homogeneous ideal
7 C P foraclass respecting term ordet and setd = miny e cls h. The algebra
A =P /T is Cohen-Macaulay, if and only i, z1, ..., z4-1)q = Py

An alternative characterisation, which is more useful fanputations, is based
on the existence of a special kind of Rees decompositionsometimes speaks
of aHironaka decompositigra terminology introduced in [72, Sect. 2.3].

Corollary 3.21 A = P/Z is a Cohen-Macaulay algebra, if and only if a Rees
decomposition of4 exists where all generators have the same class.
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Proof One direction is trivial. If such a special decompositiofisexwith d the
common class of all generators, then obviously both the dgiee and the depth
of A is d and thusA4 is Cohen-Macaulay.

For the converse, let us assume tiais a Cohen-Macaulay algebra and that
dim A = depth.A = d. Let H be a Pommaret basis @f with respect to the
degree reverse lexicographic order. By Theorem 2.16, suuwdsis always exists
in §-regular variables. Proposition 3.19 implies thatiny,cp clsh = d + 1. We
introduce the se\ = {v € N \ (lexH) | clsv > d} (recall that by convention
we defined:ls [0, ..., 0] = nso thaf0, ..., 0] € N"whenevef # P). N is finite,
as all its elements satisfy| < deg H by Theorem 3.20, and we claim that

A%@]k[xl,...,xd]-x”. 17)
veN

In fact, (17) is precisely the decomposition obtained bylypg Janet’s algo-
rithm (cf. Proposition 3.4). Consider any multi indexc A; obviously, it is of the
formv =[0,...,0,va41,..., ] With D77 v < g = deg'H. If we setq’ =
q — > i_449 Vir then by Theorem 3.20 the multi indéx . .., 0, ¢, vara, . . ., vn]
lies in the monoid idealle< 7). But this fact implies the existence of a multi in-
dexv’ € lexH with v/ = [0,...,0,0), 1, Va2, ..., vn] With vgy < vy, < ¢
Hence the setvyio,...,v,) is considered in the assignment of multiplicative
variables to the elements &f for the Janet division and it consists only of the
multi index ', as’H is involutively head autoreduced (with respect to the Pom-
maret division). But this observation implies that Janatorithm chooses as
an element of\” and assigns to it the multiplicative variables . . ., z4.

Janet's algorithm cannot lead to a larger 8ét as any further multi index

would be of class less than or equatitand thus be contained iz, . .., z4] - 1.
But since we know that the sets are disjoint, this cannot bapmd we obtain the
decomposition (17). O

Example 3.2Zonsider again the idedl = (23, y2? — 222,y — zy) C k[z,y, 2]
of Example 3.13. It follows from the Pommaret basis giverreéhthat both the
depth and the dimension @ /7 is 1. HenceA = P/Z is Cohen-Macaulay and
indeed (14) is a Hironaka decomposition. <

4 Noether Normalisation and Primary Decomposition

As a simple consequence of our results in the previous seatie show now that
any complementary quasi-Rees decompositidh imfduces aNoether normalisa-
tion [34, Def. 3.4.2] ofA and that its maximal seX; of multiplicative variables
defines a homogeneous system of parameterd férslightly less general form of
the following result is contained in the proof of [62, Algd.\Bhere it is exploited
for the explicit construction of Noether normalisationggsJanet bases.

Proposition 4.1Under the assumptions of Lemma 3.16, the restriction ofdhes-
ical projectionr : P — A to k[ X;] defines a Noether normalisation fe.



Involution andd-Regularity 11 25

Proof By Proposition 3.17, the séX; is strongly independent moduloand thus
also independent modulg i. e.ZNk[Xz] = {0} implying that the restriction of
to k[X7] is injective. Furthermore, it follows immediately from thefinition of a
complementary quasi-Rees decomposition that the algélisdinitely generated
as a module over the rink[ X7]. O

Remark 4.Recall from Lemma 3.16 that for any variahte ¢ X; the minimal
basis ofit . Z contains an element of the forp)’ for some exponent; € N. Thus
any Grobner basis df for the chosen term order must contain an element € G
with It~ g; = z7*. Assume now thak is the lexicographic order. Thep must be
of the formg; = z" + Zj":_ol wag with polynomialsP; ; € k[z1,...,z;—1].
Thus in this case we even obtain a general Noether nornialisat <

Since according to [62, Algo. 3] every ide@l C P admits a complemen-
tary quasi-Rees decomposition, we obtain as a trivial tanpthe existence of a
Noether normalisation for every affine algebda= P/Z (alternatively, we may
employ Theorem 2.16 and Proposition 3.6 asserting theesxdstof even a com-
plementary Rees decomposition for every idéal Comparing with the classi-
cal existence proof of Noether normalisations given e. g3#], we see that the
search for variables admitting a quasi-Rees decompositioiesponds to putting
the idealZ into Noether positiori79, Def. 2.22].

However, a quasi-Rees decomposition is generally not yetes Rlecompo-
sition and thus even if the variables are chosen in such a hatkiz, ..., zp)
defines a Noether normalisation gf, this fact is not sufficient for concluding
that the ideall possesses a Pommaret basis in these variables. As we will sho
now, the existence of a Pommaret basis is equivalent to agergroperty. Since
under the assumptions of Proposition 3141, ...,z p] also defines a Noether
normalisation ofP /1t Z, it suffices to consider monomial ideals.

Definition 4.3 A monomial idealZ C P is called quasi-stablgif it possesses a
finite Pommaret basis.

The reason for this terminology will become apparent in Bac8 when we
consider stable ideals. We now give several equivalenbadge characterisations
of quasi-stable ideals which are independent of the thebiamnmaret bases.
They will provide us with a further criterion foé-regularity and also lead to a
simple description of an irredundant primary decompositibsuch ideals.

Proposition 4.4LetZ C P be a monomial ideal withlim P/Z = D. Then the
following six statements are equivalent.

(i) Zisquasi-stable.

(i) The variabler; is not a zero divisor fof® P /72 and for all1 < j < D the
variablez ;. is not a zero divisor foP/(Z, 1, . .., x;)%".

(i) We haveZ : 23° CZ : 23 C --- C T :z3 andforalD < j < nan
exponent:; > 1 exists such that?j el

10 See Section 10 for a more detailed discussion of the sataratit.
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(v) Forall 1 <j <ntheequalityl : 23° =1 : (zj,...,x,)*> holds.

(v) Forevery associated prime ideple Ass (P/Z) anintegerl < j < n exists
such thaty = (z;,...,z,).

(vi) If z# € Z and u; > 0 for somel < i < n, then for eacl) < r < p; and
i < j < mnanintegers > 0 exists such that*~ "+ ¢ 7.

Proof The equivalence of the statements (ii)—(v) was proven by and
Gimenez [12, Prop. 3.2]; the equivalence of (iv) and (vi) whswn by Herzog

et al. [42, Prop. 2.2] (alternatively the equivalence ofafi)d (vi) is an easy con-
sequence of Lemma 2.3). Bermejo and Gimenez [12] calledsdsaisfying any

of these conditionsnonomial ideals of nested typderzog et al. [42] spoke of
ideals of Borel typdyet another terminology used by Caviglia and Sbarra [18] is
weakly stable idea)st! Thus it suffices to show that these concepts coincide with
quasi-stability by proving the equivalence of (i) and (iii)

Assume first that the idedl is quasi-stable with Pommaret bagis The ex-
istence of a termc?’ € Z forall D < j < n follows then immediately from
Proposition 3.15. Now consider a tettt € 7 : 23° \ Z for somel < k < n. By
definition of such a colon ideal, there exists an integsuch thatz{,z* € Z and
hence a generatat’ € H such that” |p xix“. If clsv > k, thenv would also
be an involutive divisor of: contradicting the assumptiart ¢ Z. Thus we find
clsv < kandyg > ug.

Next we consider for arbitrary exponenis > 0 the non-multiplicative prod-
uctszj?, z” € Z. For eachm a generator:”"’ € M exists which involutively

dividesa}", , z. By the same reasoning as above* ™ > k+1is not possible,
as the Pommaret bastsis by definition involutively autoreduced. This yields the
estimatecls v < cls x”(m) <k+1.

We claim now that there exists an integeg such thatp(™) = p(™mo) for all
m > ma andclsz?™ = k + 1. Indeed, ifclsz?™ < k + 1, then we must
havep,(:j:1 = vpy1 + m, Sincex,s 1 is not multiplicative forz*™ . Hencez?"™

cannot be an involutive divisor af}";'z* and p(™*+1 ¢ {p1) ... p(™} As
(mo)

the Pommaret basi¥ is a finite setfls )x”
But thenz; 1 is multiplicative forz# ™" and thusc”
divisor of 7, | ” for all valuesm > my.

(mo)

Note that, by construction, the generatér "~ is also an involutive divisor of
r x#, aszy is multiplicative for it. Hence this term must lie i and conse-
quentlyz# € 7 : 275 ;. Thus we may conclude that: z3° C 7 : 25, for all
1 <k < n. This proves (iii).

For the converse assume that (iii) holds and3die the minimal basis of the
ideal Z. Let z# € B be an arbitrary term of class. Thenz*/x), € T : x7°.
By assumption, this means that alst/x;, € Z : z3° for any non-multiplicative
index£. Hence for each term* € B and for each valuels (z*) < ¢ < n there

exists an integeq,, , such that}"“z# /z), ¢ T but x‘,f“’*”lxﬂ/xk € 7. For the

=k J(r 1)for some valueng > 0.
°"is trivially an involutive

11 As usual, one must revert the ordering of the variables . ., «,, in order to recover
the results of the given references.
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valuesl < ¢ < clsz* we setg,, = 0. Observe that itz” € B is a minimal
generator dividingcg*"*“a:/’//a:k, then we find for the inverse lexicographic order
thatz” <inviex ©#, sincecls (z¥) > cls (z#) andvy, < pg.

Consider now the set
'H:{x‘“”’|x“EB/\Vlgﬁgn:OSpggqmg}. (18)

We claim thatH is a weak involutive completion df and thus a weak Pommaret
basis ofZ. In order to prove this assertion, we must show that each €rra 7
lies in the involutive cone of a member &f.

Asz* is assumed to be an elementoive can factoritas® = 27" 2¢" 21
wherez#"” € B is a minimal generaton;”(l) contains only multiplicative vari-
ables forz#" andz*" only non-multiplicative ones. gr "+ e ‘H, then
we are done, as obvioustys (x““”fpm) = cls (x”m) and hence all variables

. . (1) T . M4,
contained in® ~ are multiplicative forx* T too.

Otherwise there exists at least one non-multiplicativealdesz, such that

.. (2) C . q, +1 ) .
Py’ > qu,m - Any minimal generator” € B dividing x,’ W g /xy IS

also a divisor oft* and we find a second factorisation = 2 2 z+* where
againx"(g) consists only of multiplicative and*” only of non-multiplicative
variables forz” . If 222 +r® ¢ 'H, then we are done by the same argument as
above; otherwise we iterate.

According to the observation made above, the sequem(é) Lo .) of
minimal generators constructed this way is strictly degaggwith respect to the
inverse lexicographic order. However, the minimal bd3iis a finite set and thus
the iteration cannot go on infinitely. As the iteration ontgss, if there exists an
involutive cone containing?, the involutive span of{ is indeedZ and thus the
idealZ quasi-stable. O

(1) (1)

(1)

)

Remark 4.9\ote that our considerations about standard pairs and theed pri-
mary decomposition in the last section imply a simple diggobf of the implica-
tion “(i) = (v)” in Proposition 4.4. If the idedl is quasi-stable, thefi admits a
complementary Rees decomposition according to Proposdi6. Together with
Propositions 3.10, 3.11 and Remark 3.12, this observatidalty implies that all
associated prime ideals are of the fopre: (x;, ..., z,). <

Lemma 4.6LetZ;,Z, C P be two quasi-stable ideals. Then the syt Z,, the
productZ; - Z, and the intersectioff; N Z, are quasi-stable, too. If C P is
a quasi-stable ideal, then the quotieht: 7 is again quasi-stable for arbitrary
monomial idealg7 C P.

Proof For the sunZ; + Z, the claim follows immediately from Remark 2.9 of
Part | which states that the uniéty, U Hs of (weak) Pommaret basés, of Z; is
a weak Pommaret basis of the s+ Z,. Similarly, the case of both the product
7, - I> and the intersectiofi; N Z, was settled in Remark 6.5 of Part | where for
both ideals weak Pommaret bases were constructed.

For the last assertion we use Part (vi) of Proposition 4.47 lis minimally
generated by the monomialsy, ..., m,, thenZ : J = n;zlz : my, and thus it
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suffice to consider the case thdtis a principal ideal with generatat’. Assume
thatz# € Z : z¥ and thaty; > 0. Sincez**” lies in the quasi-stable ided],
we find for each) < r < p; andi < j < n and integers > 0 exists such that
ghtv=ritsi ¢ T. Asr < puj;, this trivially implies thate# ="+ ¢ T : 2V, O

Remark 4.7Alternative proofs for Lemma 4.6 were given by Cimpoead[Zhere

it was also noted that its final statement trivially impliestv) of Proposition 4.4,

as any associated prime idgabf a quasi-stable idedl is of the formp =7 : =¥

for some monomiak” and thus is also quasi-stable. But the only quasi-stable
prime ideals are obviously the idedls;, . .., ).

Above we actually proved that Part (iii) of Proposition 4.4yrbe replaced
by the equivalent statemefit: z$° C 7 : 25° C --- C T : zo° which does
not require a priori knowledge ab (the dimensionD arises then trivially as the
smallest valué: such thatZ : z7* = P, i.,e, for whichZ contains a minimal
generatorr, for some exponent > 0). In this formulation it is straightforward
to verify (iii) effectively: bases of the colon idedls: x;° are easily obtained by
settingx, = 1 in any basis ofZ and for monomial ideals it is trivial to check
inclusion, as one must only compare their minimal bases.

We furthermore note that if we have for some valug k& < n an ascending
chainZ : z* C 7 :23° C --- CT:z°, thenforeach < j < k the minimal
basisB; of T : z5° lies ink[z; 1, ..., 7,]. Indeed, no element d§; can depend
onz;. Now assume that” € B; satisfiexlsv = ¢ < j. Thenz"z" is a minimal
generator ofZ for some suitable exponemt € Nj. This in turn implies that
afta? fx) € T2 C I x3° and hencer” /zy* € 7 : x5° which contradicts
our assumption that” was a minimal generator. <

The above mentioned version of Proposition 4.4 (iii) preddis with a new,
simple and effective criterion faf-regularity of a monomial ideal. The follow-
ing converse to Theorem 2.13 shows that for monomial iddedsnition ofd-
regularity and asymptotic regularity (for Pommaret autlueed bases) are equiv-
alent. Obviously, this observation entails their equinakefor Pommaret autore-
ducedGrobnerbases of arbitrary ideals.

Proposition 4.8LetZ C P be a monomial ideal an# a finite, Pommaret autore-
duced monomial basis of it. If is not quasi-stable, then for at least one generator
in the basis3 a variable exists which is Janet but not Pommaret multipiea

Proof As the idealZ is not quasi-stable, there exists a minimal valuguch that
T:ax €T : a5, Letz” be a minimal generator of : x7° which is not
contained irf : x3 ;. Then for a suitable exponent € Ny the termz” = " 2"
is a minimal generator &f and hence contained 5.

We claim now that3 contains a generator for whichy,, is Janet but not
Pommaret multiplicative. Ik, € X ;5(z#), then we are done, as according to
Remark 4.%ls ji = k and hence1 ¢ Xp(z"). Otherwise3 contains a term”
such thavy, = p, fork +1 < ¢ <n andvi41 > ur+1. If several generators with
this property exist in3, we choose one for whichy ., takes a maximal value so
that we haver, 11 € X ;(x") by definition of the Janet division. s v < k+1,
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we are again done, as thep; ¢ Xp(z¥). Now assume thatlsy = k& + 1 and
consider the term:? = 2 /2;"'. Obviously,z” € T : 275, contradicting our
assumptionc” ¢ 7 : 235 | sincex” | z*. Hence this case cannot arise. O

We mentioned above that whideregular coordinates ensure thaits in Noether
position the converse is not true. Based on Propositiony,4fe can formulate
a converse for monomial ideals stating that a Pommaret baaisnonomial ideal
induces not only a Noether normalisation of the ideal itbalf simultaneously of
all its primary components.

Corollary 4.9 ([12, Prop. 3.6])LetZ be a monomial ideal withlim P/Z = D.
Furthermore, letZ = q; N --- N q,- be an irredundant monomial primary decom-
position withD; = dimP/q; for 1 < j < r. ThenZ is quasi-stable, if and only
if k[z1,...,2p] defines a Noether normalisation &f/Z andk[z1,...,zp,] one

of P/q; for each primary component;.

We may also exploit Proposition 4.4 for actually derivingigedundant pri-
mary decompositio = g1 N --- N ¢, with monomial idealsy; for an arbitrary
quasi-stable ideal.*> Bermejo and Gimenez [12, Rem. 3.3] noted that their proof
of the implication “(v)=- (iv)” in Proposition 4.4 has some simple consequences
for the primary idealsy;. Let againD = dimP/Z. Thenp = (zpy1,...,Zn)
is the unique minimal prime ideal associated/t@and the corresponding unique
primary component is given by : =% (if D = 0, then obviouslyZ is already a
primary ideal). More generally, we find for any< k£ < D that

= (] W (19)

PiC(Tt1sesTn)

wherep; = ,/q; is the corresponding associated prime ideal. Based on dtese
servations, an irredundant primary decomposition can Instcocted by working
backwards through the sequerit€ Z : 23° C T : 23 C--- C T : a0,

Letd = depthP/Z, i.e.d + 1 is the minimal class of a generator in the
Pommaret basi#( of 7 according to Proposition 3.1§.For1 < k < D we set
sp=min{s|Z:2; =1: a:‘,i“}, i.e. sy is the highest:;-degree of a minimal
generator off. Then we introduce the ideal§, = Z + (z,"}', ..., 27}) and

qk:jk:a:zo:Z:xi"—!—(m}iﬁf,...,x?). (20)

It is easy to see that all the idealg are again quasi-stable provided the id€al
is quasi-stable (this follows immediately from Propositi.4 and the fact that in
this case(Z : z{°) : 27° = I : x5° for i < j). For notational simplicity we
formally defineZ : 2§° = Z andqo = Jo = Z + («7', ..., 7). Since obviously
dimP/J, = kfor0 < k < D, it follows from the considerations above thgat
isan{xgt1,...,z,)-primary ideal.

12 The following construction is joint work with M. Hausdorf dM. Sahbi and has al-
ready appeared in [38].

13 Note that for determining the depthin the case of a quasi-stable ideal, it is not neces-
sary to compute the Pommaret basis: since multiplicatiah avhon-multiplicative variable
never decreases the clagst 1 is also the minimal class of a minimal generator.
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Proposition 4.10 ([38, Prop. 4.6])LetZ C ‘P be a quasi-stable ideal. Then a
monomial primary decomposition is given by= ﬂfzd qx- Eliminating all pri-
mary idealsy, whereZ : x7° = 7 : 235, makes it an irredundant decomposition.

Proof We first show that the equality : z2° = ﬂf:k q¢ holds or equivalently
thatZ : 23° = qx N (Z : 235,) for 0 < k < n; for k = d this represents the first
statement of the proposition, since obviously z3° = --- =7 : 23° = Z. By
definition of the valuesy 11, we have that [34, Lemma 3.3.6]

Toap = (T:a2 4+ () 0 (T a) s a75) - (21)

The second factor obviously equdls 37 ;. To the first one we apply the same
construction and decompose

T:a? + (o) =
=(T:27°+ (;L'Zﬁff , ;LZZ_*j)) N((T:ap° + <SLZ:_+11>) L15,)  (22)
=(T:2p°+ (a:‘;ﬁff , a:,jfj)) N (T x5, + <x2’f11>) )
Continuing in this manner, we arrive at a decomposition
T:apy =aqrn---N(T:x35,) (23)

where the dots represent factors of the fafm z3° + (2%, ..., z,2") with
¢ >k + 2. Since we assume thitis quasi-stablel : x7 ; is contained in each
of these factors and we may omit them which proves our claim.

In the thus obtained primary decompositionZothe radicals of all appearing
primary ideals are pairwise different. Furthermore, it vimus thatyy, is redun-
dant whenevet : zp° = 7 : x35 ;. Thus there only remains to prove that all the
other primary ideals;;, are indeed necessary. Assume that z3° C 7 : 275
(which is in particular the case fdr < d). Then there exists a minimal generator
x# of Z : xS, which is not contained iff : z;°. Consider the monomial}" z*.

It cannot lie inZ : 2¢°, as otherwise already” € Z : «}°, and thus it also cannot
be contained iny;, (since we showed above that: 3° = qx N (Z : 275,)). On
the other hand we find that* «* € g, for all ¢ > k since thert : x5, € q0 and
forall ¢ < k since then(z;*) C q,. Henceyy, is not redundant. O

According to Lemma 4.6, the quotient idedls z7° are again quasi-stable. It
is straightforward to obtain Pommaret bases for them. Weidity decompose the
monomial Pommaret basi¢ = H, U - - - U H,, whereH;, contains all generators
of classk. Furthermore, we writé¢; for the set obtained by setting, = 1 in
each generator ifi(,.

Lemma4.11For any1 < k < n the setH’ = Hj U J,_,,, H¢ is a weak
Pommaret basis of the colon ideak x3°.

Proof We first show that’ is an involutive set. By definition of the Pommaret
division, it is obvious that the subsk,_, . , H, is involutive. Thus there only
remains to consider the non-multiplicative products of thembers ofi{;.. Take
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z* € 'Hj, and letz, be a non-multiplicative variable for it. Obviously, therests
anm > 0 such thatz]'z* € H; and hence a generatet < UZ:k ‘H, such
thatz,z"z* lies in the involutive con€p(z”). Writing z,z*z# = zf™, we
distinguish two cases. lsv > k, thenp, = m and we can divide by} in
order to obtain an involutive standard representatiomf* with respect taH’.
If clsy = k, then the multi index is of the formry, i.e. only thekth entry is
different from zero, and we even find that* = 2¥ /], € Hj,.

Thus there only remains to prove tidt is actually a generating set fér: z7°.
For this we first note that the Pommaret basis of a quasiestidell contains a
generator of clasg only, if there is a minimal generator of clagsas applying
the monomial completion Algorithm 2 of Part | to the minimaldis adds only
non-multiplicative multiples of the minimal generatorsi@ethese are trivially of
the same class). By Remark 4.5, all minimal generatotg ofz7° have at least
classk + 1. Thus settinge, = 1 in any member oU?;l1 ‘H, can never produce
a minimal generator of : z¢° and thusi’ is a weak involutive completion of
the minimal basis of : x{°. According to Proposition 2.8 of Part I, an involutive
autoreduction yields a strong basis. O

The ideals(z," !, ..., z77) are obviously irreducible and fdr > d exactly
of the form that they possess a Pommaret basis as discussasark 2.13 of
Part I. There we also gave an explicit Pommaret basis for suctdeal. Since
according to Remark 2.9 of Part | the union of two (weak) Pomanhases of
two monomial ideald, Z, yields a weak Pommaret basishf + 7>, we obtain
this way easily weak Pommaret bases for all primary idgalappearing in the
irredundant decomposition of Proposition 4.10.

Thus the crucial information for obtaining an irredundarnitrary decomposi-
tion of a quasi-stable idedl is where “jumps” are located, i. e. whefe: z7° C
T : x35,. Since these ideals are quasi-stable, the positions otitheg are de-
termined by their depths. A chain with all the jumps is ob¢aliby the following
simple recipe: sefy = 7 and defin€ly, ;1 = Zj : zy whered;, = depth Zj. This
construction leads to the so-callsequential chaimf Z:

L,=ICHLC---CIL =P;. (24)

Remark 4.12Vith the help of the sequential chain (24) one can also sh@igéit-
forwardly that any quasi-stable ideakisquentially Cohen-Macaul§§?2, Cor. 2.5]
(recall that the algebral = P /7 is sequentially Cohen-Macaulay [70], if a chain
Zo=7Z CIy C--- CZ, = P exists such that all quotienfs. /Z; are Cohen-
Macaulay and their dimensions are ascendibg: (Zy, /Z—1) < dim (Zp+1/Zx))-
Indeed, consider the idedl, = Z; N k[z4,,...,2,]. By Remark 4.7, the
minimal generators aoff;, are the same as the minimal one<gf furthermore, by
Proposition 4.4(V)7;*" = Jy : «3° . Hence we find tha 1 = (J3*)p and

Tt )T = (T2 Te) 21, - - s Tay—1] - (25)

Since the factor ring7;:2*/ 7, is trivially finite (as ak-linear space), the quotient
Zi+1/Zy is thus &dy, — 1)-dimensional Cohen-Macaulay module. <
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5 Syzygies for Involutive Bases

Grobner bases are a very useful tool in syzygy theory. Aregérgsult isSchreyer’s
Theorenil, 64] that the standard representations of$hgolynomials between the
elements of a Grobner basis directly determine a Grobasistof the first syzygy
module with respect to an appropriately chosen term ordew e study the use
of involutive bases in this context.

In Part | we introduced involutive bases only for ideals, the extension to
submodules of free modulé@x™ is trivial. We represent elementsBf” as vectors
f = (f1,..., fm) With f, € P. The standard basis @™ consists of the unit
vectorse, With e,3 = do3 andl < o < m; thusf = fie1 +--- + fi,e,. Nowa
termt is a vector of the fornt = te,, for somea and witht € T a term inP. We
denote the set of all terms By™; it is a monoid module over.

LetH C P™ be afinite set< a term order ofil’” and L an involutive division
onNg. We divide into m disjoint setsH, = {h € H | ltih = te,, t € T}.
This leads naturally ten sets\, = {M € Ny | zte, € 1t<Ha}. If h € H,,
we assign the multiplicative variable$y, 3, «(h) = {z; | i € Ny, (le<h)}.
The involutive spanH);, < is defined by an obvious generalisation of the old
definition in Part I.

Let H = {hy,...,hs} be an involutive basis of the submoduld C P™.
Take an arbitrary elemerti, € H and choose an arbitrary non-multiplicative
variablezy € XL,H,< (h,) of it. By the results of Part |, we can determine with an
involutive normal form algorithm for each generaioy € H a unique polynomial
Pﬁ("“k) € k[Xp 7,<(hp)] such thateyh, = Y25, Pﬁ(‘“’)hﬁ. To this relation
corresponds the syzygy

Saik = Treq — Y P e e P2 (26)
8=1

We denote the set of all thus obtained syzygies by
HSyz = {Soz,k | I1<ac< EHEUPES XL,'H,-<(hoz)} . (27)

Lemma 5.1 LetH be an involutive basis for the involutive divisidrand the term
order <. If S = 22:1 Sseg is an arbitrary syzygy in the modufgyz(H) with
Sg S H{[XL7H7_<(h5)] forall 1 < 6 < s, thenS = 0.

Proof By definition of a syzygyzz,:1 Sghg = 0. As the involutive basig{ is in-
volutively head autoreduced, each elemgnrt () possesses a unique involutive
standard representation. In particular, this holdfar (H). Thus eitheS = 0 or
Sp ¢ k[X 1, 1 <(hg)] for at least ongs. O

A fundamental ingredient of Schreyer's Theorem is the terdeo< onT*
induced by an arbitrary finite sef = {f;,...,f,} C P™ and an arbitrary term
order< onT™: given two termss = se, andt = te,, we sets < t, if either
lt<(sfy) < It (tf;) orlt<(sf,) =1t~ (if;) andr < o.
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Corollary 5.2 If H C P is an involutive basis, then the sk, generates the
syzygy modulByz(H).

Proof LetS = Z;Zl Szegs by an arbitrary non-vanishing syzygy #yz (). By
Lemma 5.1, at least one of the coefficieftsmust contain a term* with a non-
multiplicative variabler; € X1 » <(hg). Let cz*es be the maximal such term
with respect to the term ordex,, andj the maximal non-multiplicative index
with x; > 0. Then we eliminate this term by computiS§g= S — cz#~1iSg,;. If

S’ # 0, we iterate. Since all new terms introduced by the subtadire smaller
than the eliminated term with respect tg,, we must reach zero after a finite
number of steps. Thus this computation leads to a reprdsamta S as a linear
combination of elements Gs,,. O

Let X = {h;y,---,hs} be an involutive basis and thus a Grdbner basis for
the term order<. Without loss of generality we may assume tihais a monic
basis. Set, = lt<h, andt,g = lem(t,,tg). We have for evens-polynomial
a standard representati® (h,, hg) = Zi 1 fapyhy where the polynomials
fapy € P satisfyltL(S<(ha, hg)) = lt<(fapyhy) for 1 < 4 < s. Setting
fos = 27_1 fap~e~, We introduce forx # 3 the syzygy

Suy = o, _LoBo g (28)
ts
Schreyer’s Theorem asserts that the Bethreyer = {Sap | 1 < a < 8 < s}
of all these syzygies is a Grobner basis of the first syzygguteSyz(H) for the
induced term order ;.
We denote bS53 =

sponding taS,z and if S C Hschreyer IS @ set of syzygiesS contains the corre-
sponding syzygies of the leading terms.

fle, — ﬂeg the syzygy of the leading terms corre-

Lemma5.3Let S C Hsenreyer b€ Such thatS generatesSyz (It o). ThenS
generatesSyz(H). Assume furthermore that the three pairwise distinct iadic
a, (3, v are such that Sap: Sy, Say € S andt, | taz. Then the smaller set
S\ {Sup} still generatesSyz(H).

Proof It is a classical result in the theory of Grobner bases $14t{S,s} still
generateSyz(lt<H). In fact, this is the basic property underlying Buchberger’
second criterion for avoiding redundasitpolynomials. Thus it suffices to show
the first assertion; the second one is a simple corollary.

LetR=>""_, R.e, € Syz(H) be an arbitrary syzygy of the full generators
and setr = max {It<(Rohs) | 1 < a < s}.Then

R= Y  lt<(R.h,) € Syz(ltH) . (29)

lto(Roahy)=tg

According to our assumptloﬁ is a generating set &fyz(lt<H), so that we may
writt R = Y 5.5 agS for some coefficientag € P. Let us now consider the

1 1f o > B, then we understand th8g,, € S etc.
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syzygyR’' = R — Y ¢ s agS. Obviously,tr: < tr. By iteration we obtain thus
in a finite number of steps a representatdn= ) ¢ s bsS and thusS generates
the moduleSyz(H). O

As a consequence of this simple lemma, we can now show thlatieaslutive
basis yields immediately a Grobner basis of the first syaygyule. In fact, this
basis is automatically computed during the determinatiothe involutive basis
with the completion Algorithm 3 of Part I. This is completelpalogously to the
automatic determination Gfscnreyer With the Buchberger algorithm.

Theorem 5.4Let H be an involutive basis for the involutive divisidnand the
term order<. Then the set{s,, is a Grobner basis of the syzygy mod6ez(H)
for the term order<.

Proof Without loss of generality, we may assume thats a monic basis, i. e. all
leading coefficients ark. LetS,.,. € Hsy,. AS’H is an involutive basis, the unique
ponnomiaIsPﬂ("“k) in (26) satisfyltAPé“k)hg) < It (zxhy) and there exists
only one index3 such thaﬂt<(Pé‘“’)hB) = lt<(zxh,). Itis easy to see that we
haveSa;k = Saﬁ_' ThUSHsyZ - HSChreyer-

LetSag € Hschreyer \ Hsy» be an arbitrary syzygy. We prove first that the set
Hschreyer \ {Sag} still generateSyz(H). Any syzygy inNHschreyer has the form
Sas = z*eq — 2¥eg + R, . By construction, one of the monomiatg andz”
must contain a non-multiplicative variahitg for h,, or hg, respectively. Without
loss of generality, we assume that € X, 3, <(h,) andy, > 0. This implies
thatHs,, contains the syzyg$.... As shown above, a unique index# 3 exists
suchthaS,.; = Squ,.

Let Soy = zre, — z”ey + Ruy. By constructionz’t, = xt, divides
zHto = tag. Thust, | t,s and by Lemma 5.3 the sé{schreyer \ {Sas} still
generateSyz(H). If we try to iterate this argument, we encounter the follogyi
problem. In order to be able to elimina$e,s we need bott8,, andSg,, in the
remaining set. Fo8,, € Hsy,, this is always guaranteed. But we know nothing
aboutSg, and, if it is not an element df(s,, it could have been removed in an
earlier iteration.

We claim that with respect to the term ordey, the termlt_,, S, is greater
than bothlt_,, S.~ andlt,, Sg,. Without loss of generality, we may assume for
simplicity thate < 8 < v, as the syzygieS,g andSg, differ only by a sign.
Thuslt<,, S = tﬁ’*ea and similarly forS,, andSg,. Furthermoret, | tos
trivially implies t. | tos and hence,., < t,g for any term order. Obviously,
the same holds fatrg,. Now a straightforward application of the definition of the
term order<,; proves our claim.

Thus if we always remove the syzy§y.s € Hschreyer \ Hsy» Whose leading
term is maximal with respect to the term ordefy, it can never happen that the
syzygysS s, required for the application of Lemma 5.3 has already beiemmhted
earlier andHsy, is a generating set &fyz ().

Itis a simple corollary of Schreyer’s theorem tftég,, is even a Grobner basis
of Syz(H). Indeed, we know thakischreyer iS @ Grobner basis dyz(7) for the
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term order<y and it follows from our considerations above that whenever w
remove a syzygg.s we still have in the remaining set at least one syzygy whose
leading term dividest<,, S, 3. Thus we find

(It <, (Hsyz)) = (t<y (Hschreyer)) = lt<,, Syz(H) (30)
which proves our assertion. O

This result is not completely satisfying, as it only yield&edbner and not an
involutive basis of the syzygy module. The latter seems tbdre to achieve for
arbitrary divisionsL. For some divisions it is possible with a little effort. Theyk
idea is that in the ordek+, the numbering of the generatorsfnis important and
we must choose the right one. For this purpose we generakismstruction of
Plesken and Robertz [58] for the special case of a Janet basis

We associate a directed graph with each involutive basists vertices are
given by the elements if. If z; € X, < (h) for some generatds € H, then,
by definition of an involutive basisi{ contains a unique generathrsuch that
le<h is an involutive divisor ofle (x;h). In this case we include a directed edge
from h to h. The thus defined graph is called thegraphof the basis-.

Lemma 5.5If the divisionL is continuous, then thé-graph of any involutive set
‘H C P is acyclic.

Proof The leading exponents of the vertices of a path inLagraph define a se-
guence as in the definition of a continuous division. If théhpaa cycle, then the
sequence contains identical elements contradicting théraoty of L. O

We order the elements 6{ as follows: whenever thé-graph of H contains
a path fromh, to hg, then we must have. < 3. Any ordering satisfying this
condition is called ar.-ordering Note that by the lemma above for a continuous
division L-orderings always exist (although they are in general naug).

For the Pommaret divisio® it is easy to describe explicitly &-ordering
without using theP-graph: we require that if eithefish, < clshg orclsh, =
clshg = k and and the last non-vanishing entrylefh, — le<hg is negative,
then we must have < (. Thus we sort the generatdss, first by their class and
within each class lexicographically (according to our dé&bn in Appendix A of
Part I). It is straightforward to verify that this defines @&t aP-ordering.

Example 5.6_et us consider the idedl C k[z, y, z] generated by the six polyno-
mialsh; = 22, ho = 2y, hs = x2—vy, hy = y%, hs = yz—y andhg = 22—z + 2.
One easily verifies that they form a Pommaret basi®r the degree reverse lexi-
cographic order. The correspondifggraph has the following form

h2—>h4

N
AN

h3y — hg

(31)
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One clearly sees that the generators are alrdadydered, namely according to
the description above. <

The decisive observation about &rordering is that we can now easily deter-
mine the leading terms of all syzygi€s.;. € Hsy, for the Schreyer order .

Lemma 5.7 Let the elements of the involutive basisC P be ordered according
to an L-ordering. Then the syzygies,,;, satisfylt.,, Sq.r = zre€q.

Proof By the properties of the involutive standard representatice have in (26)
1t<(P[§a;k)hg) =< lt<(x1h,) for all 3 and only one index3 exists for which

1t<(Pé“;k)h5) = lt<(zth,). Thusle<hg is an involutive divisor ofle (z;h,)
and theL-graph of { contains an edge frorh,, to hj. In an L-ordering, this
impliesa < 3. Now the assertion follows immediately from the definitidrttoe
term order<y. a

There remains the problem of controlling the multiplicativariables associ-
ated to these leading terms by the involutive divisiarFor arbitrary divisions it
does not seem possible to make any statement. Thus we simfiie c class of
involutive divisions with the desired properties and shdteravards that at least
the Janet and the Pommaret division belong to this class.

Definition 5.8 An involutive division_ is of Schreyer typéor the term order<, if
for any setH which is involutive with respect tb and < all setsXr, 3, <(h) with
h € ‘H are again involutive.

Lemma 5.9Both the Janet and the Pommaret division are of Schreyerfomny
term order<.

Proof For the Janet division any set of variables, i. e. monomittiegree one, is
involutive. Indeed, letF be such a set and, € F, then

XJ7_7:(.23]€) = {331 | T; ¢ FVvi< k} (32)
which immediately implies the assertion. For the Pommairgsion sets of non-
multiplicative variables are always of the fotf= {zy, zx41,...,z,} and such
a set is trivially involutive. O

An example of an involutive division which is not of Schreygpe is the
Thomas divisiol” [76] defined as follows: let" C IN{} be a finite set and € N
an arbitrary element; thehe Np a-(v), if and only if v; = max,ca p; (Obvi-
ously, one may consider the Janet division as a kind of refamgrof the Thomas
division). One easily sees that no set consisting only daées can be involutive
for the Thomas division so that it cannot be of Schreyer type.

Theorem 5.10Let L be a continuous involutive division of Schreyer type for the
term order< andH an L-ordered involutive basis of the polynomial modu¢
with respect tal and <. Thens,, is an involutive basis o8yz () with respect

to L and the term ordeK .
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Proof By Lemma 5.7, the leading term 8%,.;, € Hsy, is e, and we have one
such generator for each non-multiplicative variablec XL,H,<(ha). Since we
assume that is of Schreyer type fok, these leading terms form an involutive set.
As we know already from Theorem 5.4 ttd,, is a Grobner basis &yz(H),
the assertion follows trivially. O

Note that under the made assumptions it follows immedidtely the simple
form of the leading terms th&tsy, is a minimal Grobner basis &z ().

Example 5.1We continue with Example 5.6. As all assumption of Theoreh®5.
are satisfied, the eight syzygies

S1,3 = z€1 —xe3 —eq, (33a)
So;3 = zex — x€5 — €g (33b)
S3.;3 = ze3 —xeg +e; —e3 + e, (33c)
Sys = z€4 —yes — ey, (33d)
S5.3 = ze5 —yeg + ez, (33e)
S1,2 =ye; — zea (33f)
So0 = yes — vey (330)
S3.0 = yes — ve; +e4 — e (33h)

form a Pommaret basis of the syzygy modsje () with respect to the induced
term order<. Indeed, as

2S1,2 = yS1.3 — 82,3 + wSy;2 + S22, (34a)
2822 = ySa;3 — 843 + S0, (34b)
283;2 = yS3;3 — 85,3 — So;3 + Sy;3 + S3.2 — S1;2, (34c)

all products of the generators with their non-multipligativariables possess an
involutive standard representation. <

6 Free Resolutions I: The Polynomial Case

As Theorem 5.10 yields again an involutive basis of the syaypgdule, we may
apply it repeatedly and construct this way a resolution fyrolynomial submod-
ule M C P™ given an involutive basis of it for an involutive division 8threyer
type. We specialise now to Pommaret bases where one can ekeranmumber of
statements about the size of the resolution. In particwanmmediately obtain a
stronger form of Hilbert's Syzygy Theorem as a corollaryfént, we will see later
that we get the strongest possible form, as the arising &selution is always of
minimal length).

Theorem 6.1Let’H be a Pommaret basis of the polynomial submoduleC P™.
If we denote bﬁé’“) the number of generatoils € H such thatclslech = k£ and

setd = min {k | ﬁék) > 0}, thenM possesses a finite free resolution
0—Pmd—... P11 PO S M-—0 (35)
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of lengthn — d where the ranks of the free modules are given by

ez () e

k=1

Proof According to Theorem 5.10s,, is a Pommaret basis &fyz () for the
term order<4. Applying the theorem again, we can construct a Pommarés bas
of the second syzygy modufyz*(H) and so on. In the proof of Theorem 5.10
we showed thale,, S,.» = zre,. HenceclsS,., = k£ > clsh, and ifd is the
minimal class of a generator iH, then the minimal class ifi(sy, is d + 1. This
yields the length of the resolution (35), as a Pommaret veitlisd = n generates
a free submodule.

The ranks of the modules follow from a rather straightfordvaombinatorial
calculation. Letﬁgk’) denote the number of generators of class theith syzygy
moduleSyz' (). By definition of the generato&,..., we findﬂgk’) = Zf;ll ﬁf_)l,
as each generator of class less thain the Pommaret basis &z~ (#) con-
tributes one generator of clabso the basis 08yz' (). A simple induction allows
us to express théi(k) in terms of the@é’“):

k—1 .
8 =3 (k o 1) 2 (37)

j=1

The ranks of the modules in (35) are givenhy= >, _, @@; entering (37)
yields via a classical identity for binomial coefficient$}3 O

Remark 6.2ZT’heorem 6.1 remains valid for any involutive basiswith respect to
a continuous division of Schreyer type, if we defi@}%’) (respectivelyﬂgk’) in the
proof) as the number of generators withmultiplicative variables, since Theo-
rem 5.10 holds for any such basis. Indeed, after the firstwieplways analyse
monomial sets of the fornw;, , x4y, ..., 2, , } With iy < i2 < -+ < ip_j. By
assumption, these sets are involutive and this is only plessf one of the gener-
ators possessesmultiplicative variables, another one— 1 and so on until the
last generator which has only— k& multiplicative variables (this fact follows for
example from Proposition 3.2 on the form of the Hilbert s&ri¢dence the basic
recursion relatiorﬂi(’“) = Ef;ll @@1 and all subsequent combinatorial computa-
tions remain valid for any division of Schreyer type.

For the special case of the Janet division, Plesken and BdB&] proved di-
rectly the corresponding statement. Here it is straightéod to determine explic-
itly the multiplicative variables for any syzygy:if, is a generator in the Janet ba-
sisH with the non-multiplicative variableX ;3 < (ho) = {@i,, Tig, - -, Ti, . }
wherei; < ig < -+ <ip_g, then

XJ,'Hsyz,-<(S()n;ij) - {Z‘l, cee 73377,} \ {xi_j+1 5 xi_j+2) .. axin,k} 5 (38)

as one easily verifies. <
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As in general the resolution (35) is not minimal, the ramksappearing in
it cannot be identified with the Betti numbers of the mod#e However, they
obviously represent an upper bound for them. With a litttendre effort one can
easily derive similar bounds even for the multigraded Baitnbers; we leave this
task as an exercise for the reader.

We may explicitly write the syzygy resolution (35) as a coexplLet)V be a
free P-module with basigw,...,wy}, i.e. its rank is given by the size of the
Pommaret basig{. Let V be a further freeP-module with basig{v,,...,v,},

i. e. its rank is determined by the number of variable®irand denote byl) the
exterior algebra ovey. We seC; = Wep AV for0 <i <n.lfk = (ki,...,k;)
is a sequence of integers with< k; < ko < --- < k; < n andvy denotes the
wedge producty, A --- A vg,, then a basis of this freB-module is given by the
set of all tensor products,, ® vi. Finally, we introduce the submodufg C C;
generated by all those basis elements whigre cls h,. Note that the rank of;
is preciselyr; as defined by (36).

We denote the elements of the Pommaret bas&ymT(H) by S..x with the
inequalitiesclsh, < k; < --- < k;. An involutive normal form computation
determines for every non-multiplicative index> k; 11 > k; = cls S,k unique

polynomialsPéj’e;k’k”’“) € k[z1,...,xe,] such that
o ;k,k
Z‘ki+1sa;k = ZZPB(?Z ’ Hl)slg;z (39)
B=1 ¢
where the second sum is over all integer sequelces (¢4, ...,¥¢;) satisfying

clshg < ¢ < --- < ¢; < n. Now we define theP-module homomorphisms
€:S — Mando: S;y1 — S; bye(w,) = h, and

S(Wa ® Vi kyyy) = Thyyy Wa @ Ve — P g @up . (40)
5.

We extend the differential to a mapC; 1 — C; as follows. Ifk; < clsh,, then
we setd(w, @uvk) = 0. Otherwise leyj be the smallest value such thigt> clsh,
and set (by slight abuse of notation)

M(wa @V, Ao Avg,) = Uy Ao A,y ANO(Wa @ Uy, Ao Avg,) . (41)

Thus the factowy, A --- A vg,_, remains simply unchanged and does not affect
the differential. This definition makes, by constructid@,, ¢) to a complex and
(S«,9) to an exact subcomplex which (augmented by the may, — M) is
isomorphic to the syzygy resolution (35).

Example 6.3NMe continue with the ideal of Example 5.6 and 5.11, respelgtiAs
hered = 1, the resolution has lengthin this case. Using the notation introduced
above, the modulé, is then generated bjuw;, ..., ws}, the moduleS; by the
eight elementw; ® vs,...,ws ® vs, w1 ® va,..., w3 @ va} (the first three
generators in the Pommaret basgisare of classl, the next two of clasg and
the final one of clas8) and the modul&; by {w; ® vy A vs, ..., w3 ® va A v}
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corresponding to the three first syzygies of clask follows from the expressions
(33) and (34), respectively, for the first and second sya/tiat the differentiad
is here defined by the relations

O(un ® v3) = 2wy — Tws — Wa (42a)
O(we ® v3) = zwe — TWs — Wa (42b)
0(ws ® v3) = zws — Twg + w5 — w3 + Wy , (42¢)
0(wg ® v3) = 2wy — Yyws — wy , (42d)
0(ws ® v3) = zws — Yywg + wo , (42e)
0(ws ® va) = yws — zws + wg — wo , (42f)
d(we ® vg) = yws — TWyY , (429)
0(wr ®va) = ywy — zws , (42h)
0wy @ vy Avg) = 2wy ® vy — ywy @ U3 + TWwe Q V3 — (42i)

TW3 Q Vg — W X vy .
0(wa ® va Avg) = zwe @ Vg — Yywa ® V3 + TWy ® V3 — W @ Vg , (42))
O(ws @ vy Avg) = zws ® vy — yws Q v3 + Tws @ v3 + (42k)

Wy ® V3 — Wy QUz — W3 Qv +w; Qv ,

It represents a straightforward albeit rather tedious taskerify explicitly the
exactness of the thus constructed comglgx 4). <

In the case that, = 1 and thusM is actually an ideal irP, it is tempting to
try to equip the completC.,, §) with the structure of a differential algebra. We first
introduce a multiplication<c onW. If h,, andhg are two elements of the Pommaret
basisH, then their product possesses a unique involutive starreéprésentation
hohg = 370, Papyh and we define

P
Wo X W3 = Z Pogywsy (43)

y=1

and continugP-linearly onWW. This multiplication can be extended to the whole
complexC, by defining for arbitrary elements, w € W andw, @ € AV

(WRw)x (WRw)=(wxXw)(wAw) . (44)

The distributivity of x is obvious from its definition. For obtaining a differen-
tial algebra, the product must furthermore be associative and satisfy the graded
Leibniz ruleé(a x b) = 6(a) x b+ (—1)1%la x §(b) where|a| denotes the form
degree ofa. While in general both conditions are not met, a humber otigpe
situations exist where one indeed obtains a differentgelala.
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Let us first consider the associativity. It suffices to studatithe level of\W
where we find that

y4

) = 3 PanaPas (452
d,e=1
D
(Wa X wg) X wy = Y PapsPyscwe . (45b)
d,e=1

One easily checks that boEf;e:1 Pay5Posche andzgez1 P.gsPysche are stan-
dard representations of the produgthgh., for the Pommaret basi¥. However,
we cannot conclude that they are involutive standard remtasions, as we do not
know whetherPs. s and P, 35, respectively, are multiplicative fdk.. If this was
the case, then the associativity would follow immediatetyri the uniqueness of
involutive standard representations.

For the graded Leibniz rule the situation is similar but monlved. In the
next section we will discuss it in more details for the monalogase. In the end, it
boils down to analysing standard representations for prtsthf the forme,hohig.
Again there exist two different ways for obtaining them arglfficient condition
for the satisfaction of the Leibniz rule is that both lead aps to the unique invo-
lutive standard representation.

Example 6.4 et us analyse the by now familiar ide&lC k[z, y, z] generated by
hi = y? — 2, ho = yz — x andhs = 22 — xy. We showed already in Part |
(Example 5.10) that these polynomials form a Pommaret lodgisor the degree
reverse lexicographic term order. The Pommaret basis dfibtesyzygy module
consists 08,3 = ze; —yez +e3 andSy,3 = ze; —yes —xe;. As both generators
are of class, this is a free module and the resolution stops here.

In a straightforward calculation one obtains for the mililtigtion x the fol-
lowing defining relations:

wf = w3 — Yywa + y2w1 , W1 X wy = —yws + y2w2 — TW1 , (46a)
wy X wz = (y* — 2)ws , Wi =y ws — zws + YW (46b)
we X wg = (yz — T)ws , w% = (22 — zy)ws . (46c¢)

Note that all coefficients ofy; andws are contained irk[x, y] and are thus mul-
tiplicative for all generators. This observation immedlgatimplies that our multi-
plication is associative, as any way to evaluate the progduct wg x w~ leads to
the unigque involutive standard representatiofhgh., .

As furthermore in the only two non-multiplicative produetls;, = yhs + xhy
andzh, = yhs + h3 all coefficients on the right hand sides lielif, y], too, it
follows from the same line of reasoning that the differerdgitisfies the Leibniz
rule and we have a differential algebra. <

The situation is not always as favourable as in this exanjile.next example
shows that in general we cannot expect to obtain a diffeakaligebra (in fact, not
even an associative algebra).
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Example 6.8Me continue with the ideal of Examples 5.6, 5.11 and 6.3. i&at&n
of the defining relation (43) is particularly simple for theoducts of the form
w; X wg = h;wg, as all variables are multiplicative for the generakgr Two
further products are? = y?ws — yws — zw, andws X ws = TYws — Yws — TWa.
In a straightforward computation one finds

(ws X ws) X ws — wg X w?) = 2w, — zyws | 47)

so that the multiplication is not associative. Note thatdifeerence corresponds
to the syzygyz2hy — xyho = 0. This result is not surprising, as it encodes the
difference between two standard representatiorig;6f. The reason for the non-
associativity lies in the coefficieptof w; in the powens?; it is non-multiplicative
for ho and the generatan, appears in the produets x ws. Hence computing
w3 x w? does not lead to an involutive standard representatidn;bf whereas
the produci{ws x ws) x ws does. <

7 Free Resolutions II: The Monomial Case

For monomial modulesiitis possible to obtain a closed forthmefdifferential (40)
based only on the s&t and thus to generalise results by Eliahou and Kervaire [27]
for stable ideals. The existence of a Pommaret basis is nawdrivial assump-
tion, as the property of being monomial is not invariant urcmrdinate transfor-
mations. Thus we always assume in the sequel that we arengewith a quasi-
stable submodulat C P™. LetH = {h,,...,h,} with h, € T™ be its mono-
mial Pommaret basis (by Proposition 2.11 of Part I, it is ue)q Furthermore, we
introduce the functior\(«, k) determining the unique generator in the Pommaret
basisH such thatryh, = to,rha(a,r) With atermt, ;. € k[Xp(ha(a,r))]-

Lemma 7.1 The functionA and the termg,, ;, satisfy the following relations.

(i) The inequalityclsh, < clsha(a,k) < k holds for all non-multiplicative in-
dicesk > clsh,,.

(ii) Letks > k1 > clsh, be two non-multiplicative indices. flsh oo x,) > k1,
then A(A(a, k1), k2) = A(a, ko) and i, ta ke = ta kit A(ak) ke Other-
wise we have the two equatiods(A(a, k1), k2) = A(A(a, k2), k1) and
to kit A(aky) ke = ta,kabA(aks) Ky -

Proof Part (i) is trivial. The inequalitklsh, < clsh(, ) follows from the

definition of A and the Pommaret division.dfs h 5, 1) > k, thenh 5, ) would

be an involutive divisor oh,, which contradicts the fact that any involutive basis

is involutively head autoreduced.
For Part (i) we compute the involutive standard repred@neof xx, xx, h,.

There are two ways to do it. We may either write

Thy Ty o = iyt kDA k) = Lok tA(a k) ke DA(A Lk ) ko) 5 (48)

which is an involutive standard representation by Parbfistart with

Thy Thy Do = Thy ta ks DA, k) (49)
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requiring a case distinction. éls h 5, 1,) > k1, thisis an involutive standard rep-
resentation and its uniqueness implies our claim. Otherwis rewrite multiplica-
tively ok, ha(a k) = tA(a,ks), ki DA(A(a, ko), k) 1N OFder to obtain the involutive
standard representation. Again our assertion follows fitSraniqueness. O

Using this lemma, we can now provide a closed form for theeddfhtial §
which does not require involutive normal form computatiomshe syzygy mod-
ulesSyz'(H) (which are of course expensive to perform) but is solely basein-
formation already computed during the determinatioft{ofor its proof we must
introduce some additional notations and conventions.afra = (k1,...,k;) is
an integer sequence with< k; < --- < k; < n, then we writek; for the same
sequence of indices but with; eliminated. Its first entry is denoted kik;);
hence(k;)1 = k; for j > 1 and(k;)1 = ks, for j = 1. The syzygyS,.x is
only defined forclsh, < k;. We extend this notation by settir§},.,x = 0 for
clsh, > k1. This convention will simplify some sums in the sequel.

Theorem 7.2Let M C P™ be a quasi-stable submodule akd= (kq, ..., k;).
Then the differentiad of the complexX.. may be written in the form

S(we ® vk) = Z(_l)iij (xkjwa - taxkjwﬂ(%kj)) ® vk, - (50)

j=1

Proof All summands wheré; is multiplicative forh,, vanish which trivially im-
plies (41). Thus we restrict to the cadeh,, < k; where (50) is equivalent to

Saik = Z(_l)iij (xkj Saik; ~ tak SA(%’C_;‘)*_;‘) ‘ (51)

Jj=1

Some of the term$ A4, x);; Might vanish by our above introduced convention.
The equation (51) is trivial fof = 1 (with S, = h,) and a simple corollary of
Lemma 7.1 (i) for; = 2.

Fori > 2things become messy. We proceed by induction émour approach,
the syzygyS..x arises from the non-multiplicative produgt;, Sq.x,. Thus we
must compute now the involutive normal form of this produgy. our induction
hypothesis we may write

i—1
Tk, Sajk, = Z(_l)iilij (a:kjwkisa§kji = Tk;ta,k; SA(O‘vkj)ﬂ(ji) . (52)
j=1

As zy, is always non-multiplicative, using again the inductiorpbghesis, each
summand may be replaced by the corresponding syzygy—bybithe expense
of the introduction of many additional terms. The main taskhe proof will be
to show that most of them cancel. However, the cancellattmsir in a rather
complicated manner with several cases, so that no simpleferggroving (51)
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seems to exist. We obtain the following lengthy expression:

i—1
_ i—1—j
Tk Sak, = Z(_l)z ! |:xkj Sa;kj —tak; SA(a,kj);kj:|
j=1
j—1 i—1
e+ j+1 O+j+1
+ Zxk’ [Z ’ xk@sa;kzj o Z (=)™ xk@sa;kﬂ
(=1 L=j+1
i—1 j—1 ®
l+j5+1
- lZ(—l) Tk kS Aok ke T
j=1 Le=1
i—1 o
O+j+1
> =yt xkjtavk«SA<a,kz>;kﬂ]
l=75+1
i—2
1
+ Z(_l)z Jxk-ftavk’?sﬂ(%ki);kji + xki—lt"“kiSA(mki);ki—l,i
j=1
. (53)
O+j+1 ©)
- St | S 8, -
=1
i—1
O+j+1 ao
(=77 2k, S 5 (o, )kﬂ}
(=j+1
i—1 j—1 @
L4541
+ Zto"k-j [ (=1)" tA(a,kj)JwSA(A(a,kj),kz);ke]‘ o
j=1 =1
i—1
4j+1
(=)™ tA(aykj):kZSA(A(a,kj),kg);kjg]
t=j+1
i—1
i—1—j
- Z(_l)l Jta7kth(a7kj)7kiSA(A(()L,]Cj),ki);kj,; :
j=1

Note that the term@), (8 and13), respectively, correspond to the special casei
(andj = i —1) inthe sum#&) and12), respectively. We list them separately, as they
must be treated differently. The existence of any summanerevthe coefficient
contains a term. . is bound on conditions.

With the exception of the coefficient,, , in the term@), all coefficients are
already multiplicative. Thus this term must be further exged using the induction
hypothesis for the last time:

Thy i tokiS Aok )ik 1L_t(¥kSA(ak)k

i—2

S ) S0 B
j:1 ( ’ 1)7 JT (54)
i—1

i—1—j 6
+ Z(_l) ' Jta’kitA(avki)kaSA(mki)%_y‘)%kﬁ ’
j=1
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The left hand side of (53) and the terfis @ and(14) represent the syzygy
Sa.x We are looking for. We must thus show that all remaining tevasish. In
order to simplify the discussion of the double sums, we syvapd/ in @), &, ©
and(D so that everywherg < /. It is now easy to see th@ and@ cancel; each
summand of3) also appears i but with the opposite sign. Note, however, that
the same argument does not appl{iiv andl2), as the existence of these terms is
bound to different conditions!

For the other cancellations, we must distinguish seversgésaepending on
the classes of the generators in the Pommaret 3asidle first study the double
sums and thus assume that j < 1.

= If clsha(ar,) < (kj)1, the termgd) and(10) are both present and cancel each
other. We must now make a second case distinction on the tfdsis,, 1, )-

— If clshaa,k,) < (kj)1, then the term@ and@ are also present and cancel
each other. Furthermore, bdth) and12) exist and cancel due to the second
case of Lemma 7.1 (ii).

— If clsha(a,k,) > (kj)1, then none of the four terns), @, and(12
exists. For the latter two terms, this fact is a consequehteedfirst case
of Lemma 7.1 (ii).

— If clsha(a,k,) > (kj)1, then neithe nor10) nor(12) exists. For the remaining
double sums, we must again consider the clads @f, 1,)-

— If clsha(a,r,) < (kj)1, then the termg) and(@ exist and cancel each
other. The ternflD) does not exist, as Lemma 7.1 implies the inequalities
clshaca(a,ke) k) = clshacaca,k,)ke) = clshagar,) > (kj)1-

— If clshagqk,) > (kj)1, then neithef6) nor(@ exist and the terri is not
present either; this time the application of Lemma 7.1 (@lgs the chain
of inequalitiesz:ls hA(A(a,k[),kj) >cls hA(O(,k}g) > (kj)l

For the remaining terms everything depends on the class\of 1, control-
ling in particular the existence of the tefgh

— If clsha(a,r) < k1 < (kj)1, then the ternff) exists and generates the terms
and(6). Under this condition, the terf@ is present, too, and because of
Lemma 7.1 (ii) it canceldd). Again by Lemma 7.1 (ii), the conditions for the
existence ofi3) and(16) are identical and they cancel each other.

— If clsha(qk,) > k1, then® and consequent(ys) and(I6) are not present. The
analysis of7) and3) requires a further case distinction.

- Under the made assumption, the calséh 5(,,1,) < (k;)1 can occur only
for j = 1 as otherwis€k;),; = k;. Because of Lemma 7.1 (ii), the terms
and(3) exist for; = 1 and cancel each other.

— If clsha(ar,y > (kj)1, then@ does not exist. The terfd3) is also not
present, but there are two different possibilities: defegmdn which case
of Lemma 7.1 (ii) applies, we either findsha(a(a,k,).k) = clsha(a,r)
orclshaca(a,k;)k) = clshaa(a,ki).k;) = clshaga,k,); butin any case
the class is too high.

Thus we have shown that indeed all terms vanish with the eiaepf @,
and(14) which are needed for the syzy@y, x. This proves our claim. O
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Remark 7.3n the last section we introduced for any involutive baisvith re-
spect to a divisiorL its L-graph. We augment now this graph by weights for the
edges. Recall that we have a directed edge ftoto h, if le<h is an involutive
divisor of le(zh) for some non-multiplicative variable, € Xy <(h). If
le(zxh) = le<h + p, then we assign the weight' to this edge. For a mono-
mial Pommaret basis the correspondifgraph has then a directed edge fram

to h a1y With weightt,, ;. for every non-multiplicative variable, € Xp(hy).
Thus we may say that by Theorem 7.2 the whole comfifexd) (and the isomor-
phic syzygy resolution of)) is encoded in the weightefd-graph ofH. <

As in the previous section, we may introduce for monomiahldgi. e. for
m = 1, the productx. The right hand side of its defining equation (43) simplifies
for a monomial basig{ to

Wo X W3 = maﬂwp(a’g) (55)

where the function’’(a, 3) determines the unique generator, 3 such that
hohg = M ghra,p) With atermm, s € k[Xp(hp,g))]. Corresponding to
Lemma 7.1, we obtain now the following result.

Lemma 7.4 The function/” and the termsn,, s satisfy the following relations.

(i) cls hpa,p) > max {cls hq, cls hg}.
(i) F(F(a,ﬁ),v) = F(a,F(ﬂ,’y)) andmea, gMmr(a,g),y = MBAMI(B,),a-
(i) I'(A(a, k), 8) = A(I'(e, 8), k) andta kma(ak),8 = tr(a,8)5Ma.s-

Proof Part (i) is obvious from the definition of the functidn Part (ii) and (iii),
respectively, follow from the analysis of the two differamtys to compute the
involutive standard representation/afhgh~, andz;hqhg, respectively. We omit
the details, as they are completely analogous to the prooéwima 7.1. O

Theorem 7.5Let’H be the Pommaret basis of the quasi-stable ideal P. Then
the productx defined by (55) makes the compléx, ¢) to a differential algebra.

Proof This is a straightforward consequence of Lemma 7.4. Writingthe rela-
tions one has to check, one easily finds that Part (ii) engheeassociativity ofk
and Part (iii) the satisfaction of the graded Leibniz rule. O

8 Minimal Resolutions and Projective Dimension

Recall that for a graded polynomial moduld a graded free resolution imini-
mal, if all entries of the matrices corresponding to the mapsP"™ — P"i-1 are
of positive degree, i.e. no constant coefficients appeatodpomorphisms, the
minimal resolution is unique and its length is an importamtairiant, theprojective
dimensionproj dim M of the module. If the moduléV is graded, then the res-
olution (35) is obviously graded, too. However, in geneitdg not minimal. Our
first goal consists of finding conditions under which (35) imimal. A simple cri-
terion for minimality that can be directly checked on the FPoanet basig{ of M

is provided by the next result.
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Lemma 8.1 The resolution (35) is minimal, if and only if all first syzgg8,,.;, are
free of constant terms.

Proof One direction is of course trivial. Since (35) was obtaingdérating The-
orem 5.10, it suffices for proving the converse to show thateurthe made as-
sumption all second syzygi&s,.., 1, are free of constant terms. But this is easy
to see: we hav&,.x, k;, = Tky€aiky — ThiCasks + Zvyzcv;ge’%g where every

non-vanishing coefficient,,, is divisible by a coeﬁicienpﬁ("“"’) with &k = k; or

k = ko appearing in the first syzydy,., and thus is of positive degree. O

A minimal resolution of the graded module! is linear, if all maps appearing
in it are linear in the sense that the entries of the matriessiibing them are zero
or homogeneous polynomials of degreeThe graded moduld is calledcom-
ponentwise lineaiif for every degreel > 0 the moduleM 4y = (Mg) generated
by the componeniM,; of degreed has a linear resolution (in other words, if the
only non-vanishing Betti numbers @8# 4, are; ;1q fori =0,1,...) [41].

Theorem 8.2If the resolution (35) is minimal, then the graded modweC P™
is componentwise linear.

Proof Let H be the Pommaret basis ¢#f andd > 0 an arbitrary degree. As in
Lemma 2.2, it is easy to see that the set

Ga={a"h|he HA|ul+degh=dAVj>clsh:pu; =0} (56)

defines ak-linear basis of the homogeneous compongfyi and thus generates
the moduleM 4y. Consider now a produat; g for some generatay :}-“E € Gy
wherej > k = cls g so thatr; is non-multiplicative forg. If j < cls h, thenG,
also contains the generatpr= z#~1+*lih and we haver;g = x§ where the
latter product is multiplicative.

Otherwise, the variable; is non-multiplicative fork, too, and the resolution
(35) contains a first syzygy corresponding to an involutiamdard representation
xjh =Y,y Puh. I |u] > 0, then we can lift this equation to a standard repre-
sentationr;g = ), ., Pnz*h. However, in general it will no longer be an invo-
lutive one, as the term* may depend on variables which are non-multiplicative
for some generators € H. In this case, we must rewrite the right hand side using
further first syzygies from (35). It is not difficult to see ttafter a finite number
of such steps we also arrive at an involutive standard reptation

z;g= Y _ Pyh (57)
heH
where for notational simplicity we still denote the coefficts byP;,.

Assume now that the resolution (35) is minimal. Obviousllfiest syzygies
and thus also the coefficienty, in (57) are then free of constant terms. But this
observation implies that we can transform (57) into an intieé standard repre-
sentationz; g = degd Q49 With respect taj; and hence this set is a Pommaret
basis of the modul@1 4 by Corollary 7.3 of Part I. As all elements gf; are of
degree, it follows immediately from the form of (35) evaluated f@y that M 4
has a linear resolution and thiAd is componentwise linear. O
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Example 8.3The converse of Theorem 8.2 is not true, as the followinggrsoun-
terexample demonstrates. Consider the monomial @eal(z,y?) C k[z,y]. It

is componentwise lineaf;, = (z) is as principal ideal a free module; all ide-
alsZ4 for d > 1 are simply generated by all monomials of degdeand thus
possess trivially a linear resolution. For the natural ordgof variablesr; = «
andz, = y, the Pommaret basis @fis H = {x,zy,y?} and since the arising
resolution contains the first syzygyge, — eo, it is not minimal. Comparing with
the proof above, we see thét = {z} is not a Pommaret basis 8f,, (actually,
7,1y does not even possess a finite Pommaret basis, as it is notsteiale).

Note, however, that the situation is different, if we chatigeordering of the
variables tor; = y andzy = . In this case the minimal basi¢’ = {z,4?} is
already a Pommaret basisband the arising resolution is trivially minimal, as the
only syzygy isy?e; —zeq. We will see later (Theorem 9.12) that this observation is
no accident but thagenericallythe resolution (35) is minimal for componentwise
linear modules (and thus generically (36) yields the Beatthbers of component-
wise linear modules). <

For quasi-stable monomial moduldd a simple combinatorial characterisa-
tion exists when our resolution is minimal. We will also pide a simple alterna-
tive characterisation via Pommaret bases.

Definition 8.4 ([27]) A (possibly infinite) sed C N7 is calledstable if for each
multi indexv € N all multi indicesy — 15 + 1, withk = clsv < j < n are also
contained inN. A monomial submoduld1 C P™ is stable if each of the sets
No = {p|2teq € M} C Ny withl < a < mis stable.

Remark 8.5The stable modules are of considerable interest, as thegicoas a
subset th&orel-fixedmodules, i. e. modules1 C P™ which remain invariantun-
der the natural action of the Borel grotiplndeed, one can show that (for a ground
field of characteristi®) a module is Borel-fixed, if and only if it can be generated
by a setS of monomials such that whenevefe; € S then alsar”~!ctlie; € S
forallclsv < k < j <n[24, Thm. 15.23]. Generically, the leading terms of any
polynomial module form a Borel-fixed module [28] [24, Thm..28]. Note that
while stability is obviously independent of the charadttci of the ground field,
the same does not hold for the notion of a Borel-fixed module. <

Any monomial submodule has a unique minimal basis. Forstsitbmodules
it must coincide with its Pommaret basis. This result repns a very simple
and effective characterisation of stable submodules.hEuriore, it shows that
any stable submodule is trivially quasi-stable and thudagnp the terminology
introduced in Definition 4.3.

Proposition 8.6 ([54, Lem. 2.131°) Let M C P™ be a monomial submodulé
is stable, if and only if its minimal basiq is simultaneously a Pommaret basis.

15 Classically, the Borel group consists of upper triangulatnioes. In our “inverse” con-
ventions we must take lower triangular matrices.
18 See also the remark after [27, Lem. 1.2].
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Mall [54, Thm. 2.15] proved that for any idedl C P the reduced Grobner
basis is simultaneously a Pommaret basis, if and only iféhdihg idealt<Z is
stable. Combining this result with the above mentionedtfaat the generic initial
ideal is always Borel-fixed and thus stable, one obtainsaheving theorem.

Theorem 8.7Let M C P™ be a graded submodule in generic position ghthe
reduced Gobner basis ofM for an arbitrary term order<. If chark = 0, then
G is also the minimal Pommaret basis 8 for <.

Remark 8.8t follows from Lemma 2.3, that if{ is a Pommaret basis of the sub-
moduleM C P™ of degregy, then(lt< M) >, is a stable monomial submodule,
aslt < 'H, is obviously its minimal basis and simultaneously a Pomirizasis. <

Our next resultimplies that for stable modules the resofuf85) is isomorphic
to the minimal resolution constructed by Eliahou and Keev§27, Thm. 2.1]. In
fact, if one formulates (35) as a complex as described ini@eé6t then one finds
that in this special case the two resolutions are identical.

Theorem 8.9Let M C P™ be a quasi-stable module. Then the syzygy resolution
given by (35) is minimal, if and only iM is stable.

Proof According to Lemma 8.1, the resolution (35) is minimal, ifdaonly if all
first syzygies are free of constant terms. For a monomial rieotthis is the case,
if and only if already the minimal basis is the Pommaret hasisce otherwise
the Pommaret basis contains generaiorsh, related byh, = z;h; for some
non-multiplicative variable:; leading to a first syzygy;e; — e, with a constant
term. Now our claim follows from Proposition 8.6. O

Example 8.1@ne might be tempted to conjecture that this result extetalpdly-
nomial modules, i. e. that (35) was minimal for polynomialdatesM with stable
leading modulét o M. Unfortunately, this is not true. Consider the homogeneous
idealZ C k[z,y, z] generated byy; = 2% + xy, he = yz — 22, hs = y? + 22,

hy = 2%z andhs = z2y. One easily checks that these elements form a Pommaret
basisH for the degree reverse lexicographic term order andlthat1 is a stable
module. A Pommaret basis 8§z (H) is given by

So3 =22+ (x —y)er +zes —es —e5, (58a)
S33=1z2e3—ze; — (z+y)es —es+e5, (58b)
Suz = zeq — z2e; + zes (58c)
Ss;3 = ze5 — x’ey — wey (58d)
Sio = (y —z)es — z’eq (58e)
S50 = yes — z2es + ey . (58f)
As the first two generators show, the resolution (35) is natimal. <

Given an arbitrary graded free resolution, it is a standasé to reduce it to the
minimal resolution using just some linear algebra (see fangple [23, Chapt. 6,
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Theorem 3.15] for a detailed discussion). Thus for any cetecmoduleM it is
straightforward to obtain from (35) the minimal resolutidtowever, even in the
monomial case it seems highly non-trivial to find a closedrfalescription of the
outcome of the minimisation process. Nevertheless, tr@utisn (35) contains so
much structure that certain statements are possible.

Theorem 8.11Let’H be a Pommaret basis of the graded modieC P™ for a
class respecting term order and skt minp e clsh. Thenprojdim M = n—d.

Proof Consider the resolution (35) which is of length- d. The last map in it is
defined by the syzygieS,;4+1....,») Originating in the generatois,, € H with
clsh, = d. Choose now among these generators an eletnewf maximal de-
gree (recall that the same choice was crucial in the proofrop@sition 2.20).
Then the syzyg$s..4+1,....n) Cannot contain any constant coefficient, as the coef-
ficients of all basis vectorss,x where the last entry df is n must be contained in
(z1,...,2,—1) and the coefficients of the basis vectefsj;1,....,—1) cannot be
constant for degree reasons.

If we start now a minimisation process at the end of the rasmiuthen it
will never introduce a constant term into the syzy$)y(1,... ») and thus it will
never be eliminated. It is also not possible that it is reduoezero, as the last map
in a free resolution is obviously injective. This impliesaththe last term of the
resolution will not vanish during the minimisation and tleadth of the minimal
resolution, i. eproj dim M, is still n — d. O

The gradedduslander-Buchsbaum formul24, Exercise 19.8] is now a trivial
corollary of this theorem and Proposition 2.20 on the dejtite that, in contrast
to other proofs, our approach is constructive in the senaewe automatically
have an explicit regular sequence of maximal length and diglig) explicit free
resolution of minimal length.

Corollary 8.12 (Auslander-Buchsbaum)Let M C P™ be a graded polynomial
module withP = k|x1, ..., z,]. Thendepth M + projdim M = n.

As for a monomial module no term order is needed, we obtairfadlaer sim-
ple corollary the following relation betwegnoj dim M andproj dim (lt<M).

Corollary 8.13 Let M C P™ be a graded module and an arbitrary term order
for which M possesses a Pommaret basis. Therj dim M < projdim (1t M).
If < is a class respecting term order, then we even have equality.

Proof Let H be the Pommaret basis of the modul¢ for the term order< and
setd = minpey cls (It<h). Then it follows immediately from Theorem 8.11 that
projdim (It<M) = n — d. On the other hand, Theorem 6.1 guarantees the ex-
istence of the free resolution (35) of length— d for M so that this value is an
upper bound foproj dim M. For a class respecting term order we have equality
by Theorem 8.11. O
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9 Castelnuovo-Mumford Regularity

For notational simplicity we restrict again to ideals irsstef submodules. In many
situations it is of interest to obtain a good estimate on #&grele of an ideal basis.
Up to date, no satisfying answer is known to this questiom&shat surprisingly,
the stronger problem of bounding not only the degree of ashzfdi but also of its
syzygies can be treated effectively.

Definition 9.1 LetZ C P be a homogeneous idedl.is calledg-regular if its ith
syzygy module is generated by elements of degree less tlemuaktoq + i. The
Castelnuovo-Mumford regularitseg 7 is the leasty for whichZ is ¢-regular.

Among other applications, the Castelnuovo-Mumford regiylaeg 7 is a use-
ful measure for the complexity of Grobner basis computeif9]. The question
of effectively computingeg Z has recently attracted some interest. In this section
we show thateg 7 is trivially determined by a Pommaret basis with respech® t
degree reverse lexicographic order and provide alteragti@ofs to some charac-
terisations of the Castelnuovo-Mumford regularity proga the literature.

Theorem 9.2Let 7 C P be a homogeneous ideal. The Castelnuovo-Mumford
regularity of Z is ¢, if and only if Z has in some coordinates a homogeneous
Pommaret basis of degregewith respect to the degree reverse lexicographic order.

Proof Letx be somej-regular coordinates for the idealso that it possess a Pom-
maret basigH of degreey with respect to the degree reverse lexicographic order
in these coordinates. Then thidn module of the syzygy resolution (35) induced
by the basigH is obviously generated by elements of degree less than @l égu
q + i. Thus we have the trivial estimateg Z < ¢ and there only remains to show
that it is in fact an equality.

For this purpose, consider a generdtgre H of degreey which is of minimal
class among all elements of this maximal degyee H. If clsh, = n, thenh,,
cannot be removed frof without loosing the basis property, as the leading term
of no other generator of class can dividelt_ /., and, since the degree reverse
lexicographic order is class respecting, all other gemesatio not contain any
terms of class.. Hence we trivially findceg Z = ¢ in this case.

If cls h, = n — i for somei > 0, then the resolution (35) contains at thle
position the syzygyS..(,—i+1,...,n) Of degreeg + i. Assume now that we min-
imise the resolution step by step starting at the end. Wencthat the syzygy
S.i(n—i+1,...,n) IS NOt eliminated during this process.

There are two possibilities ho®....(,,_;1,.... »y could be removed during the
minimisation. The first one is that a syzygy at the next le¥¢he resolution con-
tained the terne..(,_;11,....,) With a constant coefficient. Any such syzygy is of
the form (39) withcls h, < n—iandclsh, < k1 < --- < k; < n and its leading
termiswy,, , eqx With ki1 > k;. However, sincels (zx, - - Tr,,  ha) < n — 1
andcls (xp—it1 - - - znhy) = n — ¢, it follows from our use of the degree reverse
lexicographic order (since we assume that everything isdganeous, both poly-
nomial have the same degree) and the definition of the indGokdeyer term
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orders, that the term.,(,,_;11,... ») iS greater than the leading term
any syzygySu;(k, ....k.,,) at the levek + 1 and thus cannot appear.
The second possibility is th&,,,,_;41,... ») itself contained a constant coef-
ficient at some vectogs,,. However, this requiredeg hg = deg h + 1 which
is again a contradictiol. As the minimisation process never introduces new con-
stant coefficients, the syzydy,.,,—i1,....») may only be modified but not elim-
inated. Furthermore, the modifications cannot méke,, ;. .. ,) to the zero
syzygy, as otherwise a basis vector of the next level wasakénnel of the differ-
ential. However, this is not possible, as we assume thagiheftthe resolution is
already minimised and by the exactness of the sequence amgl keember must
be a linear combination of syzygies. Hence the final minireabtution will con-
tain at theith position a generator of degree- ¢ andregZ = q. O

i+1€ask of

To some extent this result was to be expected. By Theorentt&#educed
Grobner basis is generically also a Pommaret basis andrding to Bayer and
Stillman [10], this basis has for the degree reverse lex@plgic order generically
the degreeegZ. Thus the only surprise is that Theorem 9.2 does not reqiae t
the leading ideal is stable and the Pommaret bAsis not necessarily a reduced
Grobner basis (if the idedl has a Pommaret basis of degrg¢hen the truncated
ideal(le<Z)>, is always stable by Remark 8.8 and thus thef¢etlefined by (1)
is the reduced Grobner basisbf,).

Note furthermore that Theorem 9.2 implies a remarkable fgigen arbitrary
coordinates, the idealZ either does not possess a finite Pommaret basis for the
degree reverse lexicographic order or, if such a basisextss of degreeeg 7.
Hence using Pommaret bases, it becomes trivial to deterthm&€astelnuovo-
Mumford regularity: it is just the degree of the basis.

Remark 9.3The proof of Theorem 9.2 also provides us with informatiomath
the positions where in the minimal resolution the maximarde is attained. We
only have to look for all elements of maximal degree in the Raret basis; their
classes correspond to these positions. <

Remark 9.&Recall from Remark 6.2 that Theorem 6.1 remains valid for @mny
volutive basisH with respect to a continuous division of Schreyer type (veith
obvious modification of the definition of the numbei@)) and that it is indepen-
dent of the used term order. It follows immediately from thenfi of the resolution
(35), i.e. from the form of the maps in it given by the respeeinvolutive bases
according to Theorem 5.10, that always the estimatd < degH holds and thus
any such basis provides us with a bound for the Castelnuovorfidrd regularity.
This observation also implies that an involutive basis wétspect to a division
of Schreyer type and an arbitrary term order can never beveéilaegree than the

17 For later use we note the following fact about this argumeints. is a constant term

in the syzygyS.(n—i+1,...,n), then it must be smaller than the leading term and hence
lt<(ze, -+~ xe,hp) < W<(xhy -+ Th;y, ho) IMplying thatcls hg < cls hy. Thus it suf-
fices, if h, is of maximal degree among all generatéys € H with cls hg < cls h,. For

the special case that, is of minimal class, we exploited this observation alreaulyhe
proof of Theorem 8.11.
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Pommaret basis for the degree reverse lexicographic oftierlatter one is thus
in this sense optimal. As a concrete example consider agaildéal mentioned in
Remark 2.21: in “good” coordinates a Pommaret basis of dejexists for it and
after a simple permutation of the variables its Janet basi$ degreel. <

In analogy to Corollary 8.13 comparing the projective dirsien of a mod-
ule M and its leading modulk < M with respect to an arbitrary term order, we
may derive a similar estimate for the Castelnuovo-Mumfexgliarity.

Corollary 9.5 LetZ C P be a homogeneous ideal ardan arbitrary term order
such that a Pommaret basl$ of 7 exists. ThemegZ < reg (1t1Z) = degH. If
< is the degree reverse lexicographic order, then everY = reg (1t<7).

Proof It follows from Theorem 9.2 thateg (1t<Z) = deg H. On the other hand,
the form of the resolution (35) implies trivially thatg 7 < deg H. For the degree
reverse lexicographic order Theorem 9.2 entails thgZ = deg H, too. O

Combining the above results with Remark 8.8 and Propos&i6immediately
implies the following generalisation of a result by EisedbReeves and Totaro
[26, Prop. 10] for Borel-fixed monomial ideals.

Proposition 9.6Let Z be a quasi-stable ideal generated in degrees less than or
equal tog. The ideall is g-regular, if and only if the truncatioff>, is stable.

Remark 9.Bayer et al. [8] introduced a refinement of the Castelnuovorifbrd
regularity: theextremal Betti numberdRRecall that the (graded) Betti numbey;

of the ideall is defined as the number of minimal generators of deg#eg of the
ith module in the minimal free resolution @f(thusreg Z is the maximal valug
such thats; ;;; > 0 for somes:). A Betti number3;; > 0 is called extremal, if
Bre = 0forall & > i and? > j. There always exists a least one extremal Betti
number: if we take the maximal valddéor which §; ;4ree 7 > 0, theng; jyreg 7 iS
extremal. In general, there may exist further extremaliBetinbers. Bayer et al.
[8, Thm. 1.6] proved that for any idedl both the positions and the values of the
extremal Betti numbers coincides with those of its genaiittal ideal with respect
to the degree reverse lexicographic order.

Our proof of Theorem 9.2 allows us to make the same stateroerthé or-
dinary initial ideal for<gegreviex—provided the coordinates aderegular. Further-
more, it shows that the extremal Betti numbergatan be immediately read off
the Pommaret basiH of Z. Finally, if we introduce “pseudo-Betti numbers” for
the (in general non-minimal) resolution (35), then the tioss and values of the
extremal ones coincide with the true extremal Betti numbé&s

Take the generatdr., used in the proof of Theorem 9.2.dk h, = n—i; and
deg h, = q1, then the considerations in the proof imply immediatelyt ha ,, +,
is an extremal Betti number and its value is given by the nurobgenerators of
degreeg; and class: — i; in the Pommaret basig. If i1 = depthZ, then this
is the only extremal Betti number. Otherwise, ¢gtbe the maximal degree of a
generatoh € H with cls h < n—i; and assume that— i, is the minimal class of
such a generator. Then the arguments used in the proof ofr@ime®.2 show that
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Bi,.q2+i, 1S 8ls0 an extremal Betti number and that its value is givethbynumber
of generators of degreg and class: — i, in the Pommaret basig. Continuing
in this manner, we obtain all extremal Betti numbers. Sirlcew considerations
depend only on the leading terms of the generators, we finthtoteading ideal
1t~ Z exactly the same situation. <

Bayer and Stillman [10] gave the following characterisaiid g-regularity for
which we now provide a new proof. Note the close relationgigiveen their first
condition and the idea of assigning multiplicative varesbl

Theorem 9.8Let Z C P be a homogeneous ideal which can be generated by
elements of degree less than or equaktd@henZ is g-regular, if and only if for
some valu® < d < n linear formsyy, ..., yq € Py exist such that

(<Ivy17ay]71>yj)q:<Iaylv7yjfl>qa ]-S]Sda (59&)
<Ivy17"'ayd>quq~ (59b)

Proof Assume first that the conditions (59) are satisfied for someali forms
Y1, ---,Yq € Py and choose variablessuch thate; = y; for 1 < i < d. Let the
finite setH, be a basis of, as a vector space in triangular form with respect to
the degree reverse lexicographic order, ite.h, # lt<hy for all by, he € H,.
We claim that, is a Pommaret basis of the truncatibg, implying that the full
ideal Z possesses a Pommaret basis of degree ¢ and hence by Theorem 9.2
thatregZ < g.

Letus writtHy = {hr¢ | 1 <k <n, 1 <0<} whereclshy, = k. A

basis of the vector spacg, =1, . . ., z;), is then given by alh; , with & > j and
allterms in(zy,. .., x;),. We will now show that
Hopr1 = {zjhie | 1<j <k, 1<k<n, 1 <<} (60)

is a basis ofZ,; as a vector space. This implies thd} is locally involutive for
the Pommaret division and thus involutive by Corollary 7f3art I. Since, by
assumptionZ is generated in degrees less than or equa) tee have furthermore
(Hq) = I>4 so that indeed{, is a Pommaret basis of the ide&!,.

Let f € 7,41 andcls f = j. By the properties of the degree reverse lexico-

graphic order this implies that = z; f 4 g with f € (Klzj,...,zn] \ {0})q and
g€ ({z1,... ,xj_1>)q+1 (cf. Lemma A.1 of Part I). We distinguish two cases.
The condition (59b) implies thdtZ, z1, . .. ,xd>)q = P,. Thusifj > d, we may
write f = ZZ:dH Zﬁil ckehike+gwith e, o € kandg € (<x1, .. ,xd>)q. We
setfo = Yp_, Sk enehieand fy = SUZLL SO ek chie + . Obviously,
fe(Z,ar,...,xj-1): xj)q. If j < d, then the condition (59a) implies that ac-
tually f € (Z,z1,...,x;_1),. Hence in this case we may decompgse fo + f1
with fo = S0 S0k ckehie andfi € (w1, 25m1))

Itis trivial that (Hy+1) C Zy+1 (here we mean the linear span oleand not
over P). We show by an induction overthatZ,,1 C (Hq+1). If j = 1, then
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f=afwith f € Z,. Thusf € (Hyy1). If j > 1, we write f = fo + f1 with
fo = xzjfoandfi = z;fi + g where f, and f; have been defined above. By
construction,fo € (Hq+1), asx; is multiplicative for all generators contained in
fo,and f; € Zs+1 With cls fi < j. According to our inductive hypothesis this
implies thatf; € (Hq11), too. HencgHg41) = Zg11.

Assume conversely that the idéals ¢-regular. Then, by Theorem 9.2, it pos-
sesses a Pommaret bakiof degreereg 7 < ¢ with respect to the degree reverse
lexicographic order. We set = dim P /Z and claim that for the choicg, = z;
for 1 < i < d the conditions (59) are satisfied. For the second equal@p)(5
this follows immediately from Proposition 3.15 which shatlat it actually holds
already at degreeeg Z < q.

For the first equality (59a) take a polynomiale ((Z,z1,...,2;_1) : xj)q.
By definition, we have then;f € (Z,z1,...,zj_1). If f € (x1,...,2j-1),
then there is nothing to prove. Otherwise, a polynomial (z1, ..., z,;_1) exists
such thatz; f — g € Z and obviouslyls (z; f — g) = j. If we introduce the set
H>; = {h € H | clsh > j}, the involutive standard representationgff — g
induces an equation; f = 3, ¢, . Pnh + g whereg € z;(z1,...,x;1) and
Py, € (x;) (this is trivial if cls h > j and follows fromdeg h < q if clsh = j).
Thus we can divide by; and find that already € (Z,z1,...,2j-1)q. O

Bayer and Stillman [10] further proved that genericcoordinates it is not
possible to find a Grobner basis of degree less tlegrf and that this estimate
is sharp, as it is realised by bases with respect to the degveese lexicographic
order. The restriction to the generic case is here esseasalor instance most
monomial ideals are trivial counterexamples. Hence thesult is only of lim-
ited use for the actual computation of the Castelnuovo-Murthfegularity, as one
never knows whether one works with generic coordinates.

Example 9.Consider the homogeneous ideal
T = (2% —wxyb, y" — 2%z, y2" —wz") C Qw,z,v,2] . (61)

The given basis of degre®is already a Grobner basis for the degree reverse lex-
icographic term order. If we perform a simple permutatiortwd variables and
considerZ as an ideal ifQ[w, y, z, z], then we obtain for the degree reverse lexi-
cographic term order the following Grobner basis of dedi&e

{y7 — 252, y2" —wa”, 2% —wayb, 828 — w3,

15,5 _ 25 429,38 _ Bt

y3022 w13y — a3, 50 wx49} . (62)

y wal®, 2224~ we

Unfortunately, neither coordinate system is genericce@sl = 13, one yields a
basis of too low degree and the other one one of too high degree

With a Pommaret basis itis no problem to determine the Qasteib-Mumford
regularity, as the first coordinate systemjisegular. A Pommaret basis df for
the degree reverse lexicographic term order is obtainediding the polynomials
2F(y" — 2%2) for 1 < k < 6 and thus the degree of the basis is indégd <
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Yet another characterisation gfregularity is due to Eisenbud and Goto [25].
We give a constructive proof of it as an easy corollary of Tleev9.2.

Theorem 9.10The homogeneous idealC P is g-regular, if and only if its trun-
cationZ>, admits a linear resolution.

Proof If 7 is ¢-regular, then by Theorem 9.2 it possesses in suitable owies a
Pommaret basi®( of degreeregZ < ¢. The setH, defined by (1) is a Pommaret
basis of the truncated idedl, according to Lemma 2.2. Now it follows easily
from Theorem 5.10 th&f, possesses a linear free resolution, as all syzygies in
the resolution (35) derived froit, are necessarily homogeneous of dedgree

The converse is trivial. The existence of a linear resofufior 7>, immedi-
ately implies thateg 7>, = ¢. HenceZs , possesses a Pommaret basis of degree
by Theorem 9.2 entailing the existence of a Pommaret basisdbdegree;’ < q.
Hence, again by Theorem 9:2¢g7 = ¢’ < g. O

Remark 9.1MWe are now finally in a position where we can finish the disaussi
started in Remark 2.18 on the effective construction of Panetnbases. There
we were nhot able to prove that after a finite number of cootditransformations
based on our criterion for asymptotic singularity (Theor2rm3) one always ar-
rives at ad-regular coordinate system for a given homogeneous ideal P.
Recall that our main problem in Remark 2.18 was that we do aa¢ la bound for
the degrees of either Pommaret or Janet basé&s Our results above do not pro-
vide us with such a bound, but it still turns out that we carvprthe termination
of our approach by studying what happens at the finite degreeecg 7.

We assume from now on that we are working with a class resggotder and
with an infinite fieldk. By the considerations in the proof above, our coordinates
ared-regular, if and only if an involutively head autoreducg&dinear basis ofZ,

is also a Pommaret basisbf ,. Denote, as in Remark 2.8, " the number of
elements of clask in such a basis. There we already noted that these numbers are
invariants ofZ, as they are in a one-to-one correspondence with the caeitecof

the Hilbert polynomialHz.

Consider now some basls arising during the completion process. It induces
a subsett, C Z, by taking all Pommaret multiplicative multiples of element
up to degreey; let Bff’) be the number of members of claksn it. If H is not
a Pommaret basis, then a comparison of the vam@s and B,Sk) starting with
k = n will sooner or later lead to a smaller valﬁiék); more precisely, we have
the inequalityy""_, k3 < =7, k8% with equality holding, if and only if
is a Pommaret basis.

Each completion step which adds an element of degi@dess increases the
value of the sund_}_, kﬁék’). Consider now the effect of a coordinate transfor-
mation of the form used in the proof of Theorem 2.13. All newrts arising on
the right hand side of (3) are greater than the original orik véispect to any class
respecting term order. Thus in general we can expect that sifich a transforma-
tion at least some leading terms of the new’sgtare greater than before. In fact,
by the same argument as in the proof of Theorem 2.13, we evebeaure that
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after a finite number of transformations this will indeed be tase. But this obser-
vation implies that after a finite number of transformatitims sumy_,_, k/S’é’“)
must increase and eventually we must obtain after a finiteb@uraf completion
steps and coordinate transformations the right value fershhm implying that we
have obtained-regular coordinates and a Pommaret basis. <

As a further corollary to Theorem 9.10, we provide a convéssEheorem 8.2
generalising Theorem 8.9 from the monomial case to polyabstuibmodules.

Theorem 9.12Let M C P™ be a componentwise linear submodule with Pom-
maret basisH. Then generically the resolution (35) is minimal. It is nmiail, if
and only if H is a minimal basis ofM.

Proof As Example 8.3 demonstrated, the problem is that generadlysetsg,
defined by (56) are not Pommaret bases of the modMes, for all d > 0.
According to Theorems 9.10 and 9.2, this is trivially the ecdisr all degrees

d > q = degH, since for themM 4 = Myxq4. Thus it suffices to consider
the finitely many modules\ , ..., M, . By Corollary 2.17, generic coordi-
nate systems are simultaneou&lyegular for all these modules (and then also for
the whole submodul&).

Let H be the Pommaret basis @8 in such a coordinate system and consider
the corresponding setg; for 0 < d < ¢. By construction M 4 = (Ga). Ac-
cording to our assumption, all moduléd ;, possess linear resolutions and thus
reg M 4, = d. Hence the Pommaret basisbt ;) is of degreel by Theorem 9.2,
which is only possible, if it is already given hy;. If all setsG, are involutive,
then no first syzygy of the Pommaret basiscan contain a constant term and it
follows from Lemma 8.1 that the resolution (35) is minimalrthermore, in this
case the basis must be a minimal generating set.®f. Indeed, it is trivial that
the elements of of lowest degree are minimal generators and since no element
of a higher degred can be contained in a module( ;. for anyd’ < d, it must
also be a minimal generator. O

Remark 9.13hese considerations in the proof above can be exploitedffec-
tively deciding whether a given submoduld C P™ is componentwise linear.
We compute a Pommaret bagis for M, changing tod-regular coordinates if
necessary. If the resolution (35) determinedHys minimal, thenM is compo-
nentwise linear by Theorem 8.2 (the minimality of the retioluis trivial to check
with Lemma 8.1). Otherwise, there are first syzygies in (3)taining a con-
stant term. LeS,., be one of minimal degree. fegh, = d, then obviously all
modulesM 4 for degreesi’ < d possess linear resolutions (coming from their
Pommaret baseg;). For analysing the modul#1 4, we take the corresponding
setG,; and complete it to a Pommaret bagtg (potentially performing further
coordinate transformation). ffeg H4 = d, then we recompute the Pommaret ba-
sisH of M in the new coordinates, which trivially are stilfregular for M and

all modulesM 4y with d’ < d, and check again for minimality. In the case that
obstructions in some degree< d < reg M appear, we continue in the same
manner. After a finite number of steps we either obtain a mahirasolution and
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M is componentwise linear or we find a degresuch that the modul#1 ; does
not possess a linear resolution. <

10 Regularity and Saturation

Already in the work of Bayer and Stillman [10] on the Castewo-Mumford
regularity thesaturationZ*** of a homogeneous ideZl C P plays an important
role. Recall that by definition

T =T:PF={feP|IkeNy:f-PeCI}. (63)

AnidealZ such thafl = 72 is calledsaturated We show now first how®®t can
be effectively determined from a Pommaret basig of

Proposition 10.1Let H be a Pommaret basis of the homogeneous idefdr a

class respecting term order. We introduce the $éfs= {h € H | clsh =1} and
degml It<

Hy = {h/z, " | h € Hi}. ThenH = (H \ Hi) U Hy is a weak Pommaret
basis of the saturatio@®*.

Proof Recall that for terms of the same degree any class respeetingorder
coincides with the reverse lexicographic order. Hence lofeams in a generator
h € 'H; the leading ternit <~ has the lowest; -degree. This implies in particular
that, is well-defined and does not contain a generator of dlassymore.

We first show that indee®(; C 7. Letd; = maxjen, {deg,, lt<h} and
A = dy + maxpen, {degh} — minyes, {degh}. We claim thath - P C T for
all h € Hy. Thus letz” € P, and choosé € N such that:¥h € H;; obviously,
we havek < d;. Since the polynomiat*z¥h lies inZ, it possesses an involutive
standard representation of the form

:L‘”:L‘Ifﬁz Z Prh + Z Qrh (64)

heH\H1 heH,

with P, € ]k[:L‘l, o ,xclsh] andQy € ]k[:L‘l].

The left hand side of this equation is containedafi) and thus also the right
hand side. Analysing an involutive normal form computatieeding to the repre-
sentation (64), one immediately sees that this impliesahabefficientsP;, (since
herecls h > 1) and all summandg;,h lie in (x%). As a first consequence of this
representation we observe that for any monomfa{not necessarily of degres)
we may divide (64) by} and then obtain an involutive standard representation of
xMh with respect to the seit{; hence this set is indeed weakly involutive for the
Pommaret division and the given term order.

If 2 € P, then we find for anys € H; that|degh — degh| < A and
hencedeg Q) = deg (z"a}h) — degh > k. SinceQy, € k[z1], this implies that

18 |t seems to be folklore that for Grobner bases the constmiin Proposition 10.1 yields
a Grobner basis of : x7°; in [71, Prop. 5.1.11] this observation is attributed (oitth
reference) to Bayer. In our case we do not only get a Pommasgs$ but it also turns out
that hereZ®* = 7 : 25° (see the remarks below).
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under the made assumption ot already the coefficien);, lies in (z¥) so that
the product:#h possesses an involutive standard representation witecespH
and thus is contained in the idéahs claimed.

Now we show that every polynomigl € 75 may be decomposed into an
element off and a linear combination of elementsjéf. We may writef = f+g
wheref is the involutive normal form of with respect td4 andg € Z. If f = 0,
then alreadyf € Z and nothing is to be shown. Hence we assume fhat0. By
definition of the saturatio®®*, there exists it~€ Ny such thatf <P, C Z, hence
in particularz® f € Z. This implies thatt_ (=} f) € (It<H) p. Therefore a unique
generatoh € H exists withlt o h | p 1t<(a:1f)

So letlt~ (2% f) = z*1toh and assume first thats » > 1. Since the term on
the Ieft hand side is contained {n}), we must have,; > k so that we can divide
by z¥. But this observation implies that alreatty, f € (1toH)p contradicting
our assumption that is in involutive normal form. Hence we must hase = 1
and by the same argument as abpye< k.

Division by =¥ shows thatt~ f € (lt<’H;)p. Performing the corresponding
involutive reduction leads to a new elemefit € 752, We compute again its
involutive normal formf; and apply the same argument as abové, B2 0. After
a finite number of such reductions we obtain an involutivadtaid representation
of f with respect to the sé{ proving our assertion. O

By Proposition 5.7 of Part I, an involutive head autoredarctdf the setH
yields a strong Pommaret basis for the saturafith. As a trivial consequence of
the considerations in the proof above, we find that-iegular coordinate®®* is
simply given by the quotieri : z5° (in the monomial case this fact also follows
immediately from Proposition 4.4 (iv)). This observationturn implies that for
degrees; > degH; we haveZ, = Z;at. Hence we recover the well-known fact
that all ideals with the same saturation possess also the Bhlimert polynomial
and become identical for sufficiently high degre&%® is the largest among all
these ideals. The smallest valggsuch thatZ, = I;‘“ for all ¢ > qq is often
called thesatietysat 7 of the idealZ.

Corollary 10.2 Let H be a Pommaret basis of the idealC P. ThenZ is sat-
urated, if and only ifH; = 0. If Z is not saturated, theratZ = degH;. In-
dependent of the existence of a Pommaret basis, we have ydi@anogeneous
generating sefr of the socleZ : P, the equality

satZ =14+ max{degf|feFAfe&T}. (65)

Proof Except of the last statement, everything has already bemsepiin the dis-
cussion above. For its proof we may assume without loss oérgdity that the
coordinates aré-regular so that a Pommaret bagisof Z exists, as all quantities
appearing in (65) are invariant under linear coordinatedfarmations.

Let h be an arbitrary element o, of maximal degree. We claim that then
hjz € (T:Py)\T. Indeed, since; is always multiplicative for the Pommaret
division, we cannot havk/x; € T (otherwise{ would not be involutively head
autoreduced), and if we analyse for ahy ¢ < n the involutive standard rep-
resentation ofr,h, then all coefficients of generatols € H \ H; are trivially
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contained in{z1) and for the coefficients of elemenks € H; the same holds
for degree reasons. Hence we can dividerhyand find thatrgﬁ/xl € 7 for all
1</ <nimplyingh/z, €T : P,.

By our previous resultsat Z = deg h. By assumption, homogeneous polyno-
mials Py € P exist such thab/axy = 3oz Prf. If deg Py > 1, thenPsf € T
sincef € 7 : P... Hence for at least ong € F \ Z, the coefficient’; must be a

non-zero constant and thdsg f = satZ — 1. O

Remark 10.3he last statement in Corollary 10.2 is due to Bermejo andebiea
[12, Prop. 2.1] who proved it in a slightly different way. FmonomialidealsZ,
one obtains as further corollary [12, Cor. 2.4] thatZif: Py = Z : z;, then
satZ is the maximal degree of a minimal generatorZofivisible by x; (this
observation generalises a classical result about Boretticteals [33, Cor. 2.10]).
If the considered idedl possesses a Pommaret b&gjshis statement also follows
from the fact that under the made assumptions all elementg, ore minimal
generators. Indeed, suppose to the contrarythatontains two elements, # ho
such thath; | hy. Obviously, the minimality impliesleg,, h; = deg, h2 and a
non-multiplicative indext < ¢ < n exists such thateh; | he. Without loss
of generality, we may assume thiat = x,h;. But this immediately entails that
Jﬁghl/xl = hg/xl ¢ 7 and hencétl/xl S (I : ],‘1) \ (I : 'P+) <

A first trivial consequence of our results is the followingliskknown formula
relating Castelnuovo-Mumford regularity and saturation.

Corollary 10.4 LetZ C P be an ideal. Themneg Z = max {sat Z, reg Z5*'}.

Proof Without loss of generality, we may assume that we &segular coordi-
nates so thal possesses a Pommaret badgisvith respect to the degree reverse
lexicographic order. Now the statement follows immediatedm Proposition 10.1
and Corollary 10.2. O

Trung [78] proposed the following approach for computing thgularity of a
monomial idealZ based on evaluations. L& = dim (P/Z) and introduce for
j =0,..., D the polynomial subrind§ P\9) = k[z;1,...,,] and within them
the elimination idealg?) = 7 NP\ and their saturatiorE") = Z(0) : 253, A
basis ofZ/) is then obtained by setting, = - - - = z; = 0 in a basis off and for
a basis ofZ /) we must additionally set; ; = 1. Now define the numbers

¢; =sup{q| IV /Ty, + 0} +1, 0<j<D (66a)
ep =sup{q| (PP /TP, £0} +1. (66b)

Trung [78] proved that whenever none of these numbers istiefithen their max-
imum is justreg Z. We show now that this genericity condition is satisfied nfla
only if the coordinates aréregular and express the numbeyfsas satieties.

19 Compared with Trung [78], we revert as usual the order of tméables in order to be
consistent with our conventions.
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Theorem 10.5The numbersy, ..., cp are all finite, if and only if the monomial
idealZ C P is quasi-stable. In this casg = satZ\) for 0 < j < D and

max {cp,...,cp} =regT . (67)
If d = depthZ, then it suffices to considey, ..., cp.

Proof We assume first thaf is quasi-stable and thus possesses a Pommaret basis
which we writeH = {hi¢ | 1 <k <n, 1 < ¢ < {,} whereclshy, = k. One
easily verifies that the subset') = {h, € H | k > j} is the Pommaret basis
of the idealZ"). If we setay,, = deg,, hy.¢, then the Pommaret basis 5/ is
HD =HEDU{hy /a5 |1 <0< €14}, Thisimmediately implies that
¢; = max {deg hjt10]1<£< €j+1}. By constructiongdim (P(P) /Z(P)) = 0
and Proposition 3.15 entails that for= deg HP) the equalitﬂ(gD) = P{ED)
holds. Hence:p = ¢ (it is not possible thatp < ¢, as otherwise the sé{ was
not involutively autoreduced).

Thus we find thainax {co,...,cp} = deg’H and Theorem 9.2 yields (67).
Furthermore, it follows immediately from Corollary 10.2@Rroposition 3.15,
respectively, that; = sat Z) for 0 < j < D. Finally, Proposition 2.20 entails
that the valuesy, . .., cq_1 vanish.

Now assume that the idedl was not quasi-stable. By Part (ii) of Proposi-
tion 4.4, this entails that for sonfe< j < D the variabler;,, is a zero divisor in
the ringP/(Z, x1, ..., x;)** = PU) /(TU))%2t Thus a polynomiaf ¢ (Z())s
exists for whichz; 41 f € (Z9))%* which means that we can find for any suffi-
ciently large degreg > 0 a polynomialg € PU) with degg = ¢ — deg f such
that fg ¢ ZU) butz; 1 fg € TU. Hence the equivalence class ff is a non-
vanishing element ofZ() /Z(1)), so that for a not quasi-stable idé&akt least one
valuec; is not finite. O

One direction of the proof above uses the same idea as thef @heorem 9.2:
the Castelnuovo-Mumford regularity is determined by thei®aembers of max-
imal degree and their classes give us the positions in themalmesolution where
it is attained (recall Remark 9.3; here these are simplyritees; for whichc; is
maximal). However, while Theorem 9.2 holds for arbitrarynt@mgeneous ideals,
Trung's approach can only be applied to monomial ideals. fdhaulation using
satieties is at the heart of the method of Bermejo and Gimgr&2o compute the
Castelnuovo-Mumford regularity. Similar consideratigiedd an alternative proof
of the following result of Bermejo and Gimenez [12, Cor. 141 fnonomial ideals.

Proposition 10.6Let Z C P be a quasi-stable ideal and = 7/, N --- N 7,
its unique irredundant decomposition into irreducible roomal ideals. Then the
equalityreg Z = max {reg 71, ..., reg J,} holds.

Proof We first note that the Castelnuovo-Mumford regularity of anmmial irre-
ducible ideal7 = <xfll, ceey xff) is easily determined using the considerations in
Remark 2.13 of Part |. There we showed that any such idearbesguasi-stable
after a simple renumbering of the variables and explicilygits Pommaret basis.
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Up to the renumbering, the unique element of maximal degrakis Pommaret

basis is the termy{'z;>~"---2{* ' and thus it follows from Theorem 9.2 that

reg J = 25:1 l; — k4 1.

Recall from Proposition 3.10 that an irreducible decomimsican be con-
structed via standard pairs. As discussed in Section 3, ¢herdposition (13) is
in general redundant; among all standard péitsV, ) with N,, = N for a given
setV only those exponeniswhich are maximal with respect to divisibility appear
in the irredundant decomposition and thus are relevant.

If we now determine the standard pairsiofrom a Pommaret basis according
to Remark 3.12, then we must distinguish two cases. We hastettiie standard
pairs coming from the termg&* of degree; = deg H not lyinginZ. They are of the
form (2, {z1,...,2,}) wherek = cls p andz” = z#/2/:*. By Proposition 3.10,
each such standard pair leads to the irreducible igeat (z}‘™' | k < £ < n).
By the remarks aboveeg J = |v| + 1 < |u| = ¢ =regZ.

The other standard pairs come from the tentigZ Z with || < ¢. Itis easy to
see that among these the relevant ones correspond oneto-tre “end points”
of the monomial completion process: we call an element oPthramaret basis(
of Z an end point, if each non-multiplicative multiple of it hapr@perinvolutive
divisor in the basis (and thus one branch of the completimtgss ends with
this elemer®). If z# € H is such an end point, then the corresponding standard
pair consists of the monomiat’ = z#/x; wherek = cls u and the empty set
and it yields the irreducible ideal = (z**" | 1 < ¢ < n). Thus we find again
regJ = |v|+1=|u[ < q=regT.

These considerations prove the estimaieZ > max {reg J1,...,reg J.}.
The claimed equality follows from the observation that aleyrent of degree in
‘H must trivially be an end point and the corresponding stashgair yields then
an irreducible idealy with reg 7 = q. O

The question of bounding the Castelnuovo-Mumford regtylari a homoge-
neous ideal in terms of the degreg of an arbitrary generating set has attracted
quite some interest. Hermann [40] gave already very earlgubly exponential
bound; much later Mayr and Meyer [55] showed with expliciamples that this
bound is indeed sharp (see [9] for a more detailed discugsion

For monomial idealg the situation is much more favourable. It follows imme-
diately from Taylor’s explicit resolution of such ideals3J/(see [65] for a deriva-
tion via Grobner bases) that herdéireear bound

reeZ <n(qg—1)+1 (68)

holds where: is again the number of variables. Indeed, this resolutisagported

by thelcm-lattice of the given basis and the degree ofitis term is thus trivially

bounded bykq. By Hilbert's Syzygy Theorem, it suffices to consider thetfits

terms which immediately yields the above bound. If the ideaé even quasi-
stable, a simple corollary of Proposition 10.6 yields anrioved bound using the
minimal generators df.

20 Note that an end point may very well be a member of the miniraalsofZ!
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Corollary 10.7 Let the monomialsy, . .., m, be the minimal generators of the
quasi-stable ideall C k[zi,...,z,]. If we setz® = lem(my,...,m,) and
d = min{clsmy,...,clsm,} (i.e.d = depth Z), then the Castelnuovo—Mumford

regularity of 7 satisfies the estimate
regZ < |\ +d—n (69)
and this bound is sharp.

Proof Applying repeatedly the ruléF, ¢1t2) = (F,t1) N (F,t2) for arbitrary
generating set§ and coprime monomials, t,, one obtains an irreducible de-
composition ofZ. Obviously, in the worst case one of the irreducible ideals i
J = (z),...,z)"). As we already know thateg 7 = |\| + d — n, this value
boundsreg 7 by Proposition 10.6. O

Remark 10.8\n alternative direct proof of the corollary goes as followst + be
the Pommaret basis @i. We claim that each generatot € H with clspy = &
satisfies, < A andp; < A; forall j > k. The estimate fog,, is obvious,
as it follows immediately from our completion algorithm thhere is a minimal
generator” | x# with vy = .

Assume for a contradiction that the Pommaret bastontains a generatat*
wherep; > \; for somej > cls i If several such generators exist for the same
valuej, choose one for whicly; is maximal. Obviously; is non-multiplicative
for z* and hence the multiple;z#* must contain an involutive divisat” € H.
Because of our maximality assumptien< ,; and hencg must be multiplicative
for z¥ so thatcls v > j. But this fact trivially implies that:” | p z# contradicting
that™ is by definition involutively autoreduced.

Now the assertion follows immediately: under the made aggiomscls A\ = d
and in the worst casg contains the generatazlc‘}dargj*jll_1 -+~ ap~1 which is of
degred\| +d — n. <

Remark 10.9he same arguments together with Proposition 10.1 alsal ye!
mediately a bound for the satiety of a quasi-stable ideds already mentioned
above, a quasi-stable ideal is not saturated, if and ordy=f 1. In this case, we
have triviallysat Z < |\| + 1 — n. Again the bound is sharp, as shown by exactly
the same class of irreducible ideals as considered above.

The estimate (69) also follows immediately from the resinitfl2]. Yet an-
other derivation is contained in [37]. <

If one insists on having an estimate involving only the maadimegreey of
the minimal generators and the depth, then the above rdasldsymmediately the
following estimate, variations of which appearin [2,18].19

Corollary 10.10 LetZ C P be a quasi-stable ideal minimally generated in de-
grees less than or equal to If depthZ = d, then

g<regZ<(n—d+1)(¢g—1)+1 (70)

and both bounds are sharp.
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Proof Under the made assumptions we trivially find that the degfdbeleast
common multiple of the minimal generators is boundedy< (n—d+1)q. Now
(70) follows immediately from (69). The upper bound is readl by the irreducible
idealZ = (z%,...,2%). The lower bound is attained, # is even stable, as then
Proposition 8.6 implies thatg Z = ¢ independent oflepth 7. O

Remark 10.1Eisenbud, Reeves and Totaro [26] presented a variatiorecdsh-
mate (70). They introduced the notionwétabilityas a generalisation of stability:
let s > 1 be an integer; a monomial idedlis s-stable, if for every monomial
x# € 7 and every index > j > clspu = k an exponent < e < s exists such
thatz#—e=t¢ ¢ Z. Then it is easy to see that for arstable ideal generated in
degrees less than or equalktthe estimate

regZ <qg+(n—1)(s—1) (71)

holds, as> ;4 (n—1)(s—1) is Stable (thus any-stable ideal is trivially quasi-stable).
However, in general (71) is an overestimate, as it based®@atsbumption thaf
possesses a minimal generator of clasmd degreg which must be multiplied
by 25 'z5~! .- 2571 in order to reach a stable set.

Thus for the8-stable ideal(z®, y®, 28) the estimate is indeed sharp (this is
exactly the same worst case as in the proof above for an idedgmth 1); the
Pommaret basis contains as maximal degree element the nmnom’z”. On
the other hand, for the alsbstable idealz®, x2y*, 2224, 48, 28) the regularity is

only 16, as now the maximal degree element of the Pommaret basigis’. <

Finally, we recall that, given two quasi-stable ide@ls7 C P and their re-
spective Pommaret bases, we explicitly constructed in Resra9 and 6.5, re-
spectively, of Part | weak Pommaret bases for the gwm 7, the productZ - 7
and the intersectiofi N 7. They lead to the following estimates for the regularity
of these ideals which were recently also given by Cimpo2agZ0].

Proposition 10.12LetZ, 7 C P be two quasi-stable ideals. Then the following
three estimates hold:

reg (Z + J) < max {regZ,reg T}, (72a)
reg(Z-J) <regZ +regJ , (72b)
reg (ZNJ) < max{regZ,reg J} . (72¢c)

Proof The first two estimates follow immediately from the weak Poanet bases
given in the above mentioned remarks and Theorem 9.2. Fdashestimate the
weak Pommaret basis constructed in Remark 6.5 of Part | igoad enough; it
would also yieldreg Z + reg J as upper bound. However, Lemma 2.2 allows us to
improve it significantly. Letg be the Pommaret basis #fand’H the one of7. If

we sety = max {deg G, deg H}, then one easily sees ti@tNH,, is the Pommaret
basis of(Z N J)>,. Hence, the intersectidhn J possesses a Pommaret basis of
degree at most. O
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11 Iterated Polynomial Algebras of Solvable Type

In Section 11 of Part | we studied involutive bases in polyia@gebras of solv-
able type over rings. We had to substitute the notion of aolirtively head autore-
duced set by the more comprehensive concept of an involutiResaturated set.
In a certain sense this was not completely satisfying, asadett resort here to
classical Grobner techniques, namely computing nornrah$oof ideal elements
arising from syzygies. Using the syzygy theory developeggntion 5, we provide
now an alternative approach for the special case that tHéceat ring R is again

a polynomial algebra of solvable type (over a field). It is ol that in this case
left ideal membership ifk can be decided algorithmically and by Theorem 5.4 it
is also possible to construct algorithmically a basis ofsyieygy module.

Remark 11.1n Section 5 we only considered the ordinary commutative/ipol
mial ring, whereas now we return to general polynomial afgslof solvable type
(over a field). However, it is easy to see that all the argusy@anthe proof of
the involutive Schreyer Theorem 5.4 depend only on normathfoomputations
and on considerations concerning the leading exponentssame holds for the
classical Schreyer theorem, as one may easily check (se¢5&2153] for a non-
commutative version). Thus the in the sequel crucial Thedsel remains valid in
the general case of non-commutative polynomial algebras. <

We use the following notations in this sectidt:= (k[y1, ..., ym], x, <y) and
P = (Rlz1,...,za], %, <4). Furthermore, we are given an involutive divisidy
onINg* and a divisionZ, on N{. For simplicity, we always assume in the sequel
that at least,, is Noetherian. In order to obtain a reasonable theory, weemak
similar assumptions as in Section 11 of Part I: bRtlandP are solvable algebras
with centred commutation relations so that both are (letigthierian.

We now propose an alternative algorithm for the involuiRsesaturation. Until
Line /13/it is identical with Algorithm 6 of Part I; afterwes we perform an invo-
lutive completion and multiply in Line /17/ each poIynorn"rcuIH}’Lgn by the non-
multiplicative variables of its leading coefficient. In thetermination of involutive
normal forms, we may multiply each polynomidl € H’ only by monomials-z*
such thate” € R[X 1, 3, <, (W) andr € k[Y, 1o, <, (e<, 2]

Proposition 11.2Let L, be a Noetherian constructive division. Algorithm 1 ter-
minates for any inpuf with an involutivelyR-saturated and head autoreduced
set’H such that(H) = (F). Furthermore, the setk: Hy, 1, form weakL,-
involutive bases of thR-ideals generated by them for eakle H.

h!,Lg

Proof The termination criterion in Line /26/ is equivalent to Ibgavolution of all
the setdc, H’ 1,- Under the made assumptions on the divisignand because
of the fact thafP is Noetherian, the termination of the algorithm and the risse
about these sets is obvious. In general we only obtain wealtutive bases, as
no involutive head autoreductions of these sets are peddrithe correctness is a
consequence of Theorem 5.4: by analysing all non-multgilie products we have
taken into account a whole basis of the syzygy mo@&uylg(lc _}’Lm). Thus the
outputX is indeed involutivelyR-saturated. O
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Algorithm 1 Involutive R-saturation (and head autoreduction)

Input: finite set# C P, involutive divisionsL, onINg* and L., on Ny
Output: involutively R-saturated and head autoreduced?getith (H) = (F)
U/ H—F, S—F

12/ while S # ¢ do

13/ ve—max<, les,S; S —{feH]|lex, f=v}

4 8§—8\S8,;, H «H

/51 forall feS, do

16/ h «— HeadReducer, ~,(f, H)

17/ if f# hthen

181 S =S\ {f} H —H\{f}
19/ if h # 0then

110/ H — H U{h}

111/ endLif

112/ end.if

113/ end.for

1141 if S, # 0 then

115/ choosef € S, and determine the sét’ ;
116/ repeat

M7l Ty« FIF€R) 1,0 91 € Vipie, 0, 1<y (00 )}
/18/ repeat o
119/ choosé’ € 7 such thate,, (Ic<, k') is minimal
120/ T—T\{n}

121/ h «— NormalFormr, <,,L,,<, (R, H')

122/ if h # 0then

123/ H — H U{h}

124/ endLif

125/ untl 7 =0V h #0

126/ untl 7 =0Ah=0

127/ end.if

128/ if H' # H then

129/ H—H,;, S—H
130/ end.if

131/ end.while

132/ return ‘H

Theorem 11.3Let the polynomial ringP satisfy the made assumptions ahgd

be a Noetherian constructive division. If in Algorithm 3 aff the subalgorithm
InvHeadAutoReducer, <, is substituted by Algorithm 1, then the completion will
terminate with a weak involutive basis 8f= (F) for any finite input sef¥ C P.
Furthermore, the setB:<mﬂh, L, form strongL,-involutive bases of thR-ideals
generated by them for eaéhe H.

Proof The proof of the termination and of the correctness of theritlgm is as in
Part I. The only new claim is that the séts,, H), ., are stronglyL,-involutive.
This is a simple consequence of the fact that under the mamlgrgsion on the
product inP the loop in Lines /5-13/ of Algorithm 1 leads to an involutiiead
autoreduction of these sets. Hence we indeed obtain stnengutive bases. 0O
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Corollary 11.4 If L, is the Janet division, then each polynomjale 7 pos-
sesses a unique involutive standard representafios >, _,, P x h where

b, e ﬂ‘[YLy,lcﬂ(ﬂh,Lw)xy (le<, P[X 1, #,<.(h)].

Proof For the Janet division the only obstruction ferbeing a strong involutive
basis is that some elements of it may have the same leadirgnerfs. More pre-
cisely, for anyh € H we haveHy, , = {h’' € H | lex h' = le h}. Thisimme-
diately implies furthermoré_imLm = Hp,r,. By Theorem 11.3 the selts<m7:{h7Lm
form a strongL,-involutive basis of the ideals they generate. Hence thienela
representation must be unique. O

12 Conclusions

One can find in the literature algorithms for the effectivéedmination of all the
invariants considered in this article. However, typicallye has for each invari-
ant a separate algorithm requiring often a number of Grbbases computations.
In fact, the classical approach for many of them would be tostroict the min-
imal free resolution—an obviously quite expensive apphod&y contrast, with
the determination of a single Pommaret basis (with respetit¢ degree reverse
lexicographic order) we obtain simultaneoushthout further computationthe
following information on our module: its Hilbert functiomfd thus the Krull di-
mension and the multiplicity) together with a maximal sghnindependent set of
variables, its depth and a very simple maximal regular secgiea Noether nor-
malisation together with a sparse homogeneous system afngders and finally
its projective dimension together with all extremal Bettinmbers (and thus the
Castelnuovo-Mumford regularity) plus bounds on the renmgjrBetti numbers.
Taking a converse point of view, we may say that comparedavidinary Grobner
bases Pommaret bases are much less arbitrary but to a caidé&lextent deter-
mined by structural properties of the module they geneféies fact makes them
a natural choice for many computational problems in algelgaometry.

The price to pay for this power of Pommaret bases is the pnobfe-regularity
which makes their effective construction somewhat more lmensome. We pro-
posed a simple deterministic method for solving this problghich even gives
us a fighting chance of finding a sparse coordinate transtimmaGenerally, it
should be much more efficient than the usually proposed pitibigc approach
which inevitably destroys all sparsity present in the ar@igenerating set and
thus makes all subsequent computations very expensive.

o-regularity is often considered as a purely technical mdsa Our results
show a different picture. Asymptotic regularity is indeetkéahnical concept used
by our method for the construction &fregular coordinates and relevant for the ter-
mination of the completion algorithm presented in Part |.dntrastg-regularity
has an intrinsic meaning. This can already be seen from thglsifact that in the
case of linear differential operators there is a close imtaio characteristics (see
any textbook on partial differential equations, e. g. [49)6a necessary condition
for a coordinate system to beregular is that the hypersurfaag, = 0 is non-
characteristic. Indeed, the standard definition of a charatic hypersurface may
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be rephrased that on it one cannot solve for all derivatifetagsn. We also men-
tioned in Remark A.5 thaf-regularity is essentially equivalent to quasi-regularit
in the sense of Serre which in turn is related to the assatatene ideals of the
module and thus again to intrinsic properties (see [66] &iails).

We have also seen théiregularity is related to many genericity concepts in
commutative algebra and algebraic geometry. Many statestiesit are only gener-
ically true hold ind-regular coordinates. In particular, itregular coordinates
many properties of an affine algehda= P /Z may already be read off the mono-
mial algebrad’ = P /1t<Z where< is the degree reverse lexicographic order.

For example, it follows immediately from Proposition 3.1fatdepth A =
depth A" and that(z1, ..., z4) is @ maximal regular sequence for both algebras.
As in the homogeneous case it is also trivial thah .4 = dim .4’, we see that
the algebrad is Cohen-Macaulay, if and only ift’ is so. Similarly, it is an easy
consequence of Theorem 8.11 thatj dim .A = proj dim .4’ and of Theorem 9.2
thatreg A = reg A’; in fact, all extremal Betti numbers are the same as mentione
in Remark 9.7. An exception are the remaining Betti numbédrsre Example 8.10
shows that even in-regular coordinategl and.A” may have different ones.

These equalities are of course not new; they can alreadyumelfio [10] (some
even in earlier references). However, one should note amitapt difference:
Bayer and Stillman [10] work with thgeneric initial ideal whereas we assunae
regularity of the coordinates. These are two different gieitg concepts, as even
in d-regular coordinatels - 7 is not necessarily the generic initial ideal (in contrast
to the former, the latter is always Borel-fixed).

When we proved in Corollary 8.13 and 9.5, respectively, the inequalities
projdim A < projdim A" andregZ < reg (lt<7) for arbitrary term ordersx,
we had to assume the existence of a Pommaret bagisaf<. It is well-known
that these inequalities remain true, if we drop this assiongsee for example the
discussionsin [9, 10, 15]). We included here our alterrgiroofs because of their
great simplicity and they cover at least the generic case.

Many of the results in Sections 6—8 on monomial ideals areigdisations
of the work of Eliahou and Kervaire [27]. They consideredlasively the case
of stable modules where we obtain a minimal resolution. & analyses closely
their proofs, it is not difficult to see that implicitly theptroduce Pommaret bases
and exploit some of their basic properties. Our proof of Tleev8.9 appears so
much simpler only because we have already shown all thegeepres in Part I.
Furthermore, Eliahou and Kervaire did not realise that thaystructed a syzygy
resolution in Schreyer form. Hence they had to give a lengtig rather messy
proof that the comple&S., §) is exact, whereas in our approach this is immediate.

We rediscover all their complicated calculations in thegfraf Theorem 7.2.
But note that this explicit formula for the differential iseded neither for proving
the minimality of the resolution nor for its constructiortheugh the latter is of
course simplified by it. Furthermore, the theory of involetstandard representa-
tions gives us a clear guideline how to proceed.

Our results strongly suggest a homological backgroundeftbmmaret divi-
sion. Most of the quantities like the depth or the Castelodbumford regularity
determined by the Pommaret basis of an ideate of a homological nature; more
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precisely, they correspond to certain extremal points éBbtti diagram and thus
come from the Koszul homology. For the special case of moabitheals, Sahbi
showed in his diplomathesis [63] how the Koszul homology gfiasi-stable ideal
can be explicitly computed from th-graph of its Pommaret basis.

The combination of Corollary 3.8 and Proposition 3.19 aBaws to make some
statements about the so-call8thnley conjecturdt concerns the minimal num-
ber of multiplicative variables for a generator in a Stantlscomposition. Fol-
lowing Apel [5, Def. 1] and Herzog et al. [43] we call this nuaerlthe Stanley
depthof the decomposition and for an ideAlC P the Stanley depth of the al-
gebraA = P/Z, written sdepth .4, is defined as the maximal Stanley depth of
a complementary decomposition fér In its simplest form the Stanley conjec-
ture claims that we always have the inequadifiypth A > depth .A. Obviously,
Corollary 3.8 together with Proposition 3.19 (plus the exi€e Theorem 2.16 for
Pommaret bases) shows that this inequality holds for anyiideals.

The rigorous formulation of the Stanley conjecture [69, C&nl] concerns
monomial ideals and requires that all generators in the mi@osition are again
monomials. Furthermore, no variables transformationlesdd. Then our results
only allow us to conclude that the Stanley conjecture is foreall quasi-stable
ideals. Some further results on this question have beereasthiby Apel [5,6]
with the help of a slightly different notion of involutive bas.

Many of the results mentioned above are quite well-knowBkarel-fixed ide-
als and thus for generic initial ideals. However, it appehet for many purposes
it is not necessary to move to this highly special class dlglegjuasi-stable ideals
which are easier to produce algorithmically share many eirthroperties. Thus
it is not surprising that quasi-stable ideals have appeanéér different names in
guite a number of recent works in commutative algebra (€12.18,42]).

The results presented in this article offer two heuristiplarations for the
efficiency of the involutive completion algorithm alreadyntioned in Part I. The
first one is that according to our proof of Theorem 5.4 the lntree algorithm
automatically takes into account many instances of Bugjds&rsecond criterion
for redundantS-polynomials. Whereas a naive implementation of Buchlr@yge
algorithm without such criteria fails already for rather @irexamples, a naive
implementation of the involutive completion algorithm Werreasonably for not
too large examples.

The second explanation concerns Proposition 3.2. It is-kredlvn that the so-
called “Hilbert driven” Buchberger algorithm [77] is ofterery fast, but it requires
a priori knowledge of the Hilbert polynomial. The involuéicompletion algorithm
may also be interpreted as “Hilbert driven”. The assignnoénbultiplicative vari-
ables to the elements of the current b&gidefines at each iteration a trial Hilbert
functionhy, ., < measuring the size of the involutive sp@t) 1, . This trial func-
tion is the true Hilbert function, if and only if we have ald3ereached an involutive
basis; otherwise it yields too small values. For continutivisions the analysis of
the products of the generators with their non-multiplicatvariables represents a
simple check for the trial Hilbert function to be the true one

While for many ideals the involutive approach is an intdrestlternative for
the construction of Grobner bases, there exist some obwases where this is
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not the case. For monomial ideals any basis is already ar@rdiasis, whereas
an involutive basis still has to be constructed. Blinkov &etdt [14] showed that
for toric ideals involutive bases are typically much largfean Grobner bases. In
both cases, the reason is that these ideals are rarely imajgrsition and often
possess Grobner bases of a much lower degreertizgah

An interesting question is whether the results of this sdgoart can be ex-
tended to the polynomial algebras of solvable type intreduin the first part.
Such a generalisation is trivial only for the determinat@nStanley decompo-
sitions, as these are defined as vector space isomorphiginbamrefore do not
feel the non-commutativity (note that we always have themooative product
on the right hand side of the defining equation (7) of a Stadlgomposition).
Thus involutive bases are a valuable tool for computing étillfunctions even in
the non-commutative case. They give immediatelyGeefand-Kirillov dimension
[56, Sect. 8.1.11] as the degree of the Hilbert polynomialyen the commuta-
tive case it always coincides with the Krull dimension). Soexamples for such
computations in the context of quantum groups (howevengu€irobner instead
of involutive bases) may be found in [17].

By contrast, our results on the depth and on the Castelndvbwo{ord regu-
larity rely on the fact that for commutative polynomigis= (x;) implies that any
term in f is divisible by z;. In a non-commutative algebra of solvable type we
have the relations; x x; = c;;x;2; + h;; and in general the polynomial; is not
divisible byx;.

For syzygies the situation is complicated, too. The prooTbéorem 5.4 is
independent of the precise form of the multiplication anastive may conclude
that we can always construct at least a Grobner basis ofythgg module. Our
proof of Theorem 5.10 relies mainly on normal form argumehtt generalise.
A minimal requirement is that the term order, respects the multiplicatios, as
otherwise the theorem does not even make sense. Furthemeneust be careful
with all arguments involving multiplicative variables. Wieed that ifz; andx;
are both multiplicative for a generator, theyx z; = ¢;;x;2; + h;; must also con-
tain only multiplicative variables which will surely happgf ;; depends only on
variablesr;, with k¥ < max {i, j}. This is for example the case for linear differen-
tial operators, so that we may conclude that Theorem 5.1 ifartonsequences)
remain true for the Weyl algebra and other rings of diffef@ndperators.

Example 12.Recall from Example 3.9 of Part | that the universal enveigil-
gebra of the Lie algebran(3) is isomorphic to the ringk[x;, x2, 23], x) with the
productx induced by the relations

Il *xT2 =2X122, T2 xT1 = 2122 — I3,
T1*x T3 = X173 , T3 *xT1 = T1T3 + T2 , (73)
T k% T3 = Ta2x3 , T3 * T2 = T3 — T1 .

Obviouslyzyze — x3 € (x1), but the termzs is not divisible byz;. It follows
from the same relation that, x x; depends on:s and thus the arguments on
multiplicative variables required by our proof of Theorem@break down. <
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A Rees Decompositions la Sturmfels-White

Sturmfels and White [74, Algo. 4.2] presented an algoritlomthie effective con-
struction of Rees decompositions (based on works by Bakiaavsl Garsia [7]).
We show now that generically it yields a Pommaret basis. Heweve believe
that the involutive approach is much more efficient. It doesanly allow us to
avoid completely computations in factor algebras, usingresults in Section 2
we obtain more easily and deterministically good coordisathereas Sturmfels
and White must rely on a probabilistic approach.

We introduce some additional notations. Let ag&ihbe a finitely generated
module over the rin® = k[z1, ..., x,]. Theannihilator of an elemenin € M
is Ann(m) = {f € P | fm = 0}. Thek-vector space&Zs C M is defined
as the se/yy = {m € M | Ann(m) = Py} (of course,Z,, is nothing but
the nth Koszul homology grougd,,(M) of M). The approach of Sturmfels and
White is based on the following fact which may be interpredsdheir version of
the concept of-regularity.

Lemma A.1If Z,, = 0, then there exists a non zero divispe Py, i.e.ym =0
impliesm = 0 for all m € M. IdentifyingP; with k™, the set of all non zero
divisors contains a Zariski open subset.

The Sturmfels-White Algorithm 2 computes a ba¥is= {y1,...,yn} of P;
and a set{ C M of generators such that (as gradegtector spaces)

M= P Ky, ..., yasn) - h. (74)
heH

Here the classls h is automatically assigned in the course of the algorithm and
not necessarily equal to the notion of class we introduceatendefinition of the
Pommaret division. Within this appendix, the latter ond Wwé referred to aso-
ordinate class:clsxh, since its definition depends on the chosen coordinates

Whether the individual steps of Algorithm 2 can be made ¢ffeclepends on
how M is given. If it is presented by generators and relations, aalways as-
sume, one may use Grobner bases; Sturmfels and White fatealtheir algorithm
directly for this case. Note that they need repeated Gnobases calculations in
order to perform algorithmically all the computations irctiar modules. A further
problem is to find the non zero divisors, as Lemma A.1 only gotees their ex-
istence but says nothing about their determination. Stelsy#nd White proposed
a probabilistic approach. As the non zero divisors contaiadski open subset
of P, the random choice of a one-form yields one with probability

Theorem A.2 The Algorithm 2 terminates for any finitely generated poipied
moduleM with a Rees decomposition.

For a proof we refer to [7,74] where Lemma A.1 is proved, tooténalso
Remark A.5 below). We will now show that generically the &tégls-White Al-
gorithm 2 returns a Pommaret basis when it is applied to a sdote M C P
of a free module. We begin by studying the relation betweencthsses and the
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Algorithm 2 Construction of a Rees Decomposition & la Sturmfels-White
Input: polynomial moduleM overP = k[z1,.. ., zx]

Output: basis) of P, setH of generators defining Rees decomposition (74)

1 k«—0;, p—0;, M —M

12/ while M’ # 0do

13/ computeZ \

14 if Z, = 0then

/5/ k—Ek+1

16/ choose a non zero divisgk, € P linearly independent ofy., ..., yx—1}
17/ M — M [y M’
18/ else

19/ computehy;1,...,hy € Msuchtha{ [h;] [p <i < p+¢(}
is a basis ofZ

/10/ for ¢ from p + 1top + £ do

111/ clsh; — k

112/ end_for

113/ pe—p+L

114/ M — M| Z

/15/  end.if

/16/ end.while

1171 if k < nthen

/18/  complete{ys, ..., yx} to a basisy of P,

/19/ end.if

120/ return (Y, H = {(hy,clshy),..., (hy,clshy)})

coordinate classes of the generators of a Rees decompadétiermined with the
help of this algorithm (the restriction to submodules canseonly the very first
step of the next proof).

Proposition A.3 Let H define a Rees decomposition of the form (74) for the sub-
moduleM C P with respect to the basjg of P, and let{ and)’ be determined
with the Sturmfels-White Algorithm 2. With respect to thei$x we have the in-
equalitiesclsh > cclsyh for all generatorsh € H.

Proof Z . = 0 for a submoduleM C P". Thus Algorithm 2 produces no gener-
ators of clas$). The coordinate class is always greater than

We follow step by step Algorithm 2. In the first iteration soman zero divisor
y1 € P; is chosen and in the second iteration we must treat the factaiule
MO = M/y; M. Nowm € M represents an element &f, ), if and only if
yem € y3 M forall k& > 1. Thuscclsy (yym) = 1 for all & > 1 which is only
possible ifcclsy,m = 1.

If Z) # 0, then Algorithm 2 proceeds with1®? = M®™ /7, ). Now
m € M represents an element &2, if and only if for all £ > 1 the product
yrm either is an element af; M or represents an elementsf, ). In both cases
this is only possible, itclsy,m = 1. The same argument holds unil ., = 0
for some/. Thus all generatorh to which Algorithm 2 assigns the clagsare
divisible byy; and hence all their terms possess the coordinate tlass
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Now M D = M@ /1y, M@ must be considered. Proceeding as above, we
see thaim € M represents an element Bf, .+, if and only if y,m € y, M©)
for all £ > 2 implying thatcclsy,m < 2. Using the same argument as above, we
conclude that all generators of clasaccording to the Sturmfels-White algorithm
consist of terms with a coordinate class less than or equal Emllowing Algo-
rithm 2 until the end we obtain the assertion, namely titgh > ccls, h for all
generatorh € H. O

As it may happen thatlsh > ccls,h for some generatdi, the setH is not
necessarily a Pommaret basis. More precisely, the codefipare not necessarily
o-regular forM. We show now similarly to the proof of Theorem 2.13 that we may
always transforny into ad-regular coordinate system

For simplicity, let us assume that only one generaiawith cclsy,h < clsh
exists and thatls h = 2. Consider a coordinate transformatign= y;, for &£ > 1
andz; = y1 + cy2 wherec € k is chosen such that with respect to the new
coordinates:cls,h = 2. The possible values af form a Zariski open set irk.

By Lemma A.1, the non zero divisors among whighwas chosen in Algorithm 2
contain a Zariski open subset &% . Thus there exist values efsuch that both
ccls,h = 2 and z; is a hon zero divisor.

As in the proof of Theorem 2.13, it is not difficult to show thiais transforma-
tion increases the Hilbert function of the involutive spdrih Applying a finite
number of similar changes of coordinates leads to a new EasisP; in which
ccls,h = clsh. As we still have a Rees decomposition, the’gds a Pommaret
basis of the submodul®&t and the coordinatesare-regular for M. Obviously,
the one-formsq, ..., z, would have been valid choices for the non zero divisors
in Algorithm 2. Thus we conclude that this algorithm may bedi$or the con-
struction of Pommaret bases. The following propositionvghthat in fact any
Pommaret basis may be constructed this way.

Proposition A.4 Let H be a Pommaret basis of the submodle C P with
respect to thej-regular coordinatesy and a class respecting term order. The
one-formsy, . . ., y, may be used as non zero divisors in Algorithm 2 and the then
obtained generatorh satisfyclsh = ccls,h. They arek-linear combinations of
the elements ot{; one may even simply take use the elementq of

Proof The Pommaret basi¥ defines a Rees decomposition

M = @ Ik[ylwuaycclsyh] -h. (75)

heH

As in the previous proof, we follow step by step the Sturmifaigite Algorithm 2.
Let MV = M/yyM andH; = {h € H | cclsyh = 1}. The vector space
Z yy 1s isomorphic to a subspace of thelinear space freely generated B,
asZ . contains only elements with coordinate cldasy Proposition A.3 and
the only elements aM of coordinate clas$ which are not iny; M arek-linear
combinations of the elements Bf; .

Leth € H; andk > 1. We determine the involutive normal form gf.h
induced by (75). Every term ig,h has coordinate clask thust = 1t~ (yxh)



74 Werner M. Seiler

satisfiesecls, t = 1. Since’H is a strong basis, there exists precisely one generator
h' € H such thatt<h' |pt. If ltch' = t, thenh’ € H;, as< is class respect-
ing. After the corresponding reduction step, the initiaimeof the result is still of
coordinate clas$. So the normal form of,.h has the following structure

yrh = Z Cflfl +ym (76)
flEHl

for some coefficients;, € k and an elemenin € M. The vector spac# ) is

generated by those € H; where the first summand in (76) is zero; this includes
in particular all elements of{; of maximal degree.

Thus if H1 # 0, thenZ,,a) # 0. Algorithm 2 proceeds in this case with
M = MWD /Z 0. I dim Z 00 < |[Hal, thenZ e # 0. Algorithm 2 will
iterate Line /14/, until all elements ¢f; have been used up. When this stage is
reachedZ ) = 0. It follows from the direct sum in (75) thag, is a non zero
divisor for M) and we may proceed with1 1) = M©) /yy M©),

Let Ho = {h € H | cclsyh = 2}. As above,Z 41 is isomorphic to
a subspace of the vector space freely generate@#hyThere are some minor
modifications in (76): the first sum is over &ll € H, and there are additional
summands which vanish either modyloM or moduloy, M) or modulo some
Zp for1 <4 < 0. Again Algorithm 2 will iterate line /14/, until all elemesibf
‘H, have been used up. The same argument may be repeatgd for, y,,.

Thus, Algorithm 2 terminates with a Rees decompositionh{wétspect to the
basis)y C P;) generated by{ where|H| = |H| and where the elementsc H
with cls h = & freely generate the same vector space as the elerhents with
cclsyh = k. We may even choosE = H. In any casegls h = ccls,h andH is a
Pommaret basis oM. O

Remark A.INote the strong similarity between this proof and the prdéfroposi-
tion 2.20. This fact is not surprising, as the minimal classigned by Algorithm 2

is equal to the depth oM [74] and the basi§’ determined by it is quasi-regular
for the moduleM in the sense of Serre (see either the letter of Serre appeaded
[36] or [66]). In fact, Lemma A.1 follows immediately from étresults of Serre.
They imply furthermore tha , is always finite-dimensional and thus it is not
really necessary to factor i¥,,. In [66] it is shown that coordinates aferegular
for the submoduleM C P7, if and only if they are quasi-regular for the factor
module’P”/ M. Thus in principle, one should always compare Algorithm 2 ap
plied to P/ M with the Pommaret basis 0%1 (recall that the latter also leads
immediately to a Rees decompositior&f/ M via Corollary 3.8). <

AcknowledgementsThe author would like to thank V.P. Gerdt for a number of ietting
discussions on involutive bases. M. Hausdorf and R. Steidiyaarticipated in an informal
seminar at Karlsruhe University where many ideas of thiglartvere presented and gave
many valuable comments. The constructive remarks of theyanous referees were also
very helpful. This work received partial financial suppoyteutsche Forschungsgemein-
schaft, INTAS grant 99-1222 and NEST-Adventure contra@6@GIFT).



Involution andd-Regularity 11 75

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

W.W. Adams and P. Loustaunadin Introduction to Grobner Base&raduate Studies
in Mathematics 3. American Mathematical Society, Provaigri994.

S. Ahmad and I. Anwar. An upper bound for the regularity aédls of Borel type.
Commun. Alg.36:670-673, 2008.

. M. Amasaki. Application of the generalized Weierstrassparation theorem to the

study of homogeneous idealfrans. Amer. Math. Sac317:1-43, 1990.

. M. Amasaki. Generic Grobner bases and Weierstrass basesnogeneous submod-

ules of graded free module§. Pure Appl. Algebral52:3-16, 2000.

. J. Apel. On a conjecture of R.P. Stanley. Part | — monordigdlis. J. Algebr. Comb.

17:39-56, 2003.

. J. Apel. On a conjecture of R.P. Stanley. Part || — quosienodulo monomial ideals.

J. Algebr. Comh.17:57-74, 2003.

. K. Baclawski and A.M. Garsia. Combinatorial decomposisi of rings. Adv. Math,

39:155-184, 1981.

. D. Bayer, H. Charalambous, and S. Popescu. ExtremalBetibers and applications

to monomial idealsJ. Alg, 221:497-512, 1999.

. D. Bayer and D. Mumford. What can be computed in algebragmetry? In D. Eisen-

bud and L. Robbiano, editor§omputational Algebraic Geometry and Commutative
Algebra Symposia Mathematica 34, pages 1-48. Cambridge UniydPséss, Cam-
bridge, 1993.

D. Bayer and M. Stillman. A criterion for detectimg-regularity. Invent. Math, 87:1—
11, 1987.

Th. Becker and V. Weispfennin@robner BasesGraduate Texts in Mathematics 141.
Springer-Verlag, New York, 1993.

I. Bermejo and P. Gimenez. Saturation and Castelnuoworigrd regularity. J. Alg,
303:592-617, 2006.

L.J. Billera, R. Cushman, and J.A. Sanders. The Stamlegrdposition of the harmonic
oscillator. Indagat. Math, 50:375-394, 1988.

Yu.A. Blinkov and V.P. Gerdt. Janet bases of toric idedls H. Kredel and W.K.
Seiler, editorsProc. Rhine Workshop on Computer Algebpages 125-135. Univer-
sitat Mannheim, 2002.

W. Bruns and A. Conca. Grobner bases, initial idealsiaitil algebras. Preprint
math.AC/0308102, 2003.

B. Buchberger.Ein Algorithmus zum Auffinden der Basiselemente des Restkia
ringes nach einem nulldimensionalen Polynomid@&D thesis, Universitat Innsbruck,
1965. (Engl. translation: J. Symb. Comput. 41 (2006) 47%)51

J.L. Bueso, J. Gbmez-Torrecillas, F.J. Lobillo, antl Eastro-Jiménez. An introduc-
tion to effective calculus in quantum groups. In S. Caenkaeg A. Verschoren, ed-
itors, Rings, Hopf Algebras, and Brauer Groygsecture Notes in Pure and Applied
Mathematics 197, pages 55-83. Marcel Dekker, New York, 1998

G. Caviglia and E. Sbarra. Characteristic-free boundshe Castelnuovo-Mumford
regularity. Compos. Math.141:1365-1373, 2005.

M. Cimpoeas. Monomial ideals with linear upper boundutarity. Preprint
math.AC/0611064, 2006.

M. Cimpoeas. A stable property of Borel type ideaBommun. Alg.36:674-677,
2008.

M. Cimpoeas. Some remarks on Borel type ide@smmun. Alg.37:724—727, 2009.
D. Cox, J. Little, and D. O’'Shealdeals, Varieties, and AlgorithmsUndergraduate
Texts in Mathematics. Springer-Verlag, New York, 1992.



76

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

Werner M. Seiler

D. Cox, J. Little, and D. O’Sheélsing Algebraic GeometryGraduate Texts in Math-
ematics 185. Springer-Verlag, New York, 1998.

D. EisenbudCommutative Algebra with a View Toward Algebraic Geomebraduate
Texts in Mathematics 150. Springer-Verlag, New York, 1995.

D. Eisenbud and S. Goto. Linear free resolutions andmahmultiplicity. J. Alg,
88:89-133, 1984.

D. Eisenbud, A. Reeves, and B. Totaro. Initial ideals,oviese subrings and rates of
algebras Adv. Math, 109:168-187, 1994.

S. Eliahou and M. Kervaire. Minimal resolutions of somenomial ideals.J. Alg,
129:1-25, 1990.

A. Galligo. A propos du théoreéme de préparation dedféiass. In F. Norguet, editor,
Fonctions de Plusieurs Variables Complexescture Notes in Mathematics 409, pages
543-579. Springer-Verlag, Berlin, 1974.

V.P. Gerdt. On the relation between Pommaret and Jarsesbaln V.G. Ghanza,
E.W. Mayr, and E.V. Vorozhtsov, editor§omputer Algebra in Scientific Computing
— CASC 2000pages 167-182. Springer-Verlag, Berlin, 2000.

V.P. Gerdt and Yu.A. Blinkov. Involutive bases of polymal ideals. Math. Comp.
Simul, 45:519-542, 1998.

V.P. Gerdt and Yu.A. Blinkov. Minimal involutive basddath. Comp. Simul45:543—
560, 1998.

H. Grauert.Uber die Deformation isolierter Singularitaten analgtier Mengen.In-
vent. Math, 15:171-198, 1972.

M.L. Green. Generic initial ideals. In J. Elias, J.M. &jrR.M. Mirb-Roig, and
S. Zarzuela, editorsSix Lectures on Commutative AlgepiRrogress in Mathemat-
ics 166, pages 119-186. Birkhauser, Basel, 1998.

G.-M. Greuel and G. PfisterA SINGULAR Introduction to Commutative Algehra
Springer-Verlag, Berlin, 2002.

W. GrobnerModerne Algebraische Geometri8pringer-Verlag, Wien, 1949.

V.W. Guillemin and S. Sternberg. An algebraic model afsitive differential geome-
try. Bull. Amer. Math. So¢.70:16-47, 1964.

A. Hashemi. Polynomial-time algorithm for Hilbert s=siof Borel type idealsAlba-
nian J. Math, 1:145-155, 2007.

M. Hausdorf, M. Sahbi, and W.M. Seilef- and quasi-regularity for polynomial ide-
als. In J. Calmet, W.M. Seiler, and R.W. Tucker, edit@bal Integrability of Field
Theories pages 179-200. Universitatsverlag Karlsruhe, Karksy@006.

M. Hausdorf and W.M. Seiler. An efficient algebraic altfon for the geometric com-
pletion to involution.Appl. Alg. Eng. Comm. Com3:163-207, 2002.

G. Hermann. Die Frage der endlich vielen Schritte in dezcFie der Polynomideale.
Math. Ann, 95:736-788, 1926.

J. Herzog and T. Hibi. Componentwise linear ide&dlagoya Math. J.153:141-153,
1999.

J. Herzog, D. Popescu, and M. Vladoiu. On the Ext-modcafieteals of Borel type. In
Commutative AlgebreContemp. Math. 331, pages 171-186. Amer. Math. Soc., Prov-
idence, 2003.

J. Herzog, A. Soleyman Jahan, and S. Yassemi. Stanleyngesitions and partionable
simplicial complexesJ. Algebr. Comh.27:113-125, 2008.

H. Hironaka. Resolution of singularities of an algebrairiety over a field of charac-
teristic zero.Ann. Math, 79:109-326, 1964.

H. Hironaka. Bimeromorphic smoothing of complex arialgpacesActa Math. Viet-
nam, 2:103-168, 1977.



Involution andd-Regularity 11 1

46. H. Hironaka. Idealistic exponents of singularity. If.Jdgusa, editorAlgebraic Ge-
ometry — The Johns Hopkins Centennial Lectupeges 52—-125. Johns Hopkins Uni-
versity Press, 1977.

47. S. Hosten and G.G. Smith. Monomial ideals. In D. EisénbBuR. Grayson, M. Still-
man, and B. Sturmfels, editolSpmputations in Algebraic Geometry with Macaulay 2
Algorithms and Computation in Mathematics 8, pages 73-3@€inger-Verlag, Berlin,
2002.

48. M. Janet.Lecons sur les Systémegduations aux Dérivees Partielle€ahiers Sci-
entifiques, Fascicule IV. Gauthier-Villars, Paris, 1929.

49. F. John.Partial Differential Equations Applied Mathematical Sciences 1. Springer-
Verlag, New York, 1982.

50. H. Kredel and V. Weispfenning. Computing dimension anttpendent sets for poly-
nomial ideals.J. Symb. Comp6:231-247, 1988.

51. M. Kreuzer and L. Robbian@omputational Commutative Algebra3pringer-Verlag,
Berlin, 2000.

52. V. Levandovskyy. On Grobner bases for non-commutativalgebras. In J. Calmet,
M. Hausdorf, and W.M. Seiler, editorBroc. Under- and Overdetermined Systems of
Algebraic or Differential Equationgpages 99-118. Fakultat fur Informatik, Universitat
Karlsruhe, 2002.

53. V. Levandovskyy. Non-commutative Computer Algebra for Polynomial Algebras
Grobner Bases, Applications and ImplementatidRhD thesis, Fachbereich Mathe-
matik, Universitat Kaiserslautern, 2005.

54. D. Mall. On the relation between Grobner and Pommarsgfappl. Alg. Eng. Comm.
Comp, 9:117-123, 1998.

55. E.W. Mayr and A.R. Meyer. The complexity of the word peaik for commutative
semigroups and polynomial idealadv. Math, 46:305-329, 1982.

56. J.C. McConnell and J.C. Robsddon-commutative Noetherian Ring&/iley, 1987.

57. E. Miller and B. SturmfelsCombinatorial Commutative AlgebraGraduate Texts in
Mathematics 227. Springer-Verlag, New York, 2005.

58. W. Plesken and D. Robertz. Janet’s approach to pressmgand resolutions for poly-
nomials and linear PDE#rch. Math, 84:22-37, 2005.

59. D. Rees. A basis theorem for polynomial moduksc. Cambridge Phil. Soc52:12—
16, 1956.

60. G.J. Reid. Algorithms for reducing a system of PDEs taddad form, determining
the dimension of its solution space and calculating its dragéries solution.Eur. J.
Appl. Math, 2:293-318, 1991.

61. M. Renardy and R.C. RogerAn Introduction to Partial Differential EquationsTexts
in Applied Mathematics 13. Springer-Verlag, New York, 1993

62. D. Robertz. Noether normalization guided by monomialecdecompositions. Pre-
print, Dept. Mathematics, RWTH Aachen, 2008.

63. M. Sahbi. Pommaret bases and the computation of the Klesmology in the mono-
mial case. Diploma Thesis, Fakultat fur Informatik, Usrisitat Karlsruhe, 2007.

64. F.O. Schreyer. Die Berechnung von Syzygien mit dem hgmadeinerten Weierstral3-
schen Divisionssatz. Master's thesis, Fakultat fur Mathtik, Universitat Hamburg,
1980.

65. W.M. Seiler. Taylor and Lyubeznik resolutions via Gnéb bases.J. Symb. Comp.
34:597-608, 2002.

66. W.M. Seiler. Spencer cohomology, differential equadioand Pommaret bases. In
M. Rosenkranz and D. Wang, editoGrobner Bases in Symbolic AnalysRadon
Series on Computation and Applied Mathematics 2, pages2ilAl-Walter de Gruyter,
Berlin, 2007.



78

67.

68.

69.

70.
71.

72.

73.

74.

75.

76.

77.

78.

79.

Werner M. Seiler

W.M. Seiler. Involution — The Formal Theory of Differential Equationsdaits Ap-
plications in Computer Algebra Algorithms and Computation in Mathematics 24.
Springer-Verlag, Berlin, 2009 (to appeatr).

R.P. Stanley. Hilbert functions of graded algebsdv. Math, 28:57-83, 1978.

R.P. Stanley. Linear diophantine equations and lochbrwlogy. Invent. Math,
68:175-193, 1982.

R.P. StanleyCombinatorics and Commutative Algebiirkhauser, 1983.

M. Stillman. Tools for computing primary decomposisoand applications to ideals
associated to Bayesian networks. In A. Dickenstein andHrdiris, editors,Solving
Polynomial EquationsAlgorithms and Computation in Mathematics 14, pages 203—
239. Springer-Verlag, 2005.

B. Sturmfels. Algorithms in Invariant Theory Texts and Monographs in Symbolic
Computation. Springer-Verlag, Wien, 1993.

B. Sturmfels, N.V. Trung, and W. Vogel. Bounds on degrafegrojective schemes.
Math. Ann, 302:417-432, 1995.

B. Sturmfels and N. White. Computing combinatorial depositions of rings.Com-
binatorica 11:275-293, 1991.

D. Taylor. Ideals Generated by Monomials in d&+SequencePhD thesis, University
of Chicago, 1960.

J.M. ThomasDifferential SystemsColloquium Publications XXI. American Mathe-
matical Society, New York, 1937.

C. Traverso. Hilbert functions and the Buchberger allgor. J. Symb. Comput
22:355-376, 1996.

N.G. Trung. Evaluations of initial ideals and CastelmeéMumford regularity.Proc.
Amer. Math. So¢130:1265-1274, 2002.

W.V. Vasconcelos.Computational Methods in Commutative Algebra and Algebrai
Geometry Algorithms and Computations in Mathematics 2. Springertag, Berlin,
1997.



