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Abstract

We improve certain upper bounds for the degree of Gröbner bases and the Castelnuovo-Mumford
regularity of polynomial ideals. For the degree of Gröbner bases, we exclusively work in deter-
ministically verifiable and achievable generic positions of a combinatorial nature, namely either
strongly stable position or quasi stable position. Furthermore, we exhibit new dimension and
depth depending upper bounds for the Castelnuovo-Mumford regularity and the degrees of the
elements of the reduced Gröbner basis (w.r.t. the degree reverse lexicographical ordering) of a
homogeneous ideal in these positions. Finally, it is shown that similar upper bounds hold in
positive characteristic.
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degree, dimension, depth, Castelnuovo-Mumford regularity.

1. Introduction

Gröbner bases, introduced by Bruno Buchberger in his Ph.D. thesis (see e.g. (Buchberger,
1965, 2006, 1979)), have become a powerful tool for constructive problems in polynomial ideal
theory and related domains. For practical applications, in particular, the implementation in com-
puter algebra systems, it is important to establish upper bounds for the complexity of determining
a Gröbner basis for a given homogeneous polynomial ideal. Using Lazard’s algorithm (Lazard,
1983), a good measure to estimate such a bound, is an upper bound for the degree of the interme-
diate polynomials during the Gröbner basis computation. If the input ideal is not homogeneous,
the maximal degree of the output Gröbner basis is not sufficient for this estimation. On the other
hand, Möller and Mora (1984) showed that to discuss degree bounds for Gröbner bases, one can
restrict to homogeneous ideals. Thus upper bounds for the degrees of the elements of Gröbner
bases of homogeneous ideals, allow us to estimate the complexity of computing Gröbner bases
in general.
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Let us recall some of the existing results in this direction. Let P be the polynomial ring
k[x1, . . . , xn] where k is a field of characteristic zero and I ⊂ P be an ideal generated by ho-
mogeneous polynomials of degree at most d with dim(I) = D. The first doubly exponential
upper bounds were proven by Bayer, Möller, Mora and Giusti, see (Mora, 2005, Chapter 38) for
a comprehensive review of this topic. Based on results due to Bayer (1982) and Galligo (1974,
1979), Möller and Mora (1984) provided the upper bound (2d)(2n+2)n+1

for any Gröbner basis of
I. They also proved that this doubly exponential behavior cannot be improved. Simultaneously,
Giusti (1984) showed the upper bound (2d)2n−1

for the degree of the reduced Gröbner basis (w.r.t.
the degree reverse lexicographic order) of I when the ideal is in generic position. Then, using a
self-contained and constructive combinatorial argument, Dubé (1990) proved the so far sharpest
degree bound 2(d2/2 + d)2n−1

≤ 2d2n
for d ≥ 2.

Caviglia and Sbarra (2005) studied upper bounds for the Castelnuovo-Mumford regularity
of homogeneous ideals. Analyzing Giusti’s proof, they gave a simple proof of the upper bound
(2d)2n−2

for the degree reverse lexicographic Gröbner basis of an ideal I in generic position
(they also showed that this bound holds independent of the characteristic of k). Finally, Mayr
and Ritscher (2013), by following the tracks of Dubé (1990), obtained the dimension-dependent
upper bound 2(1/2dn−D+d)2D−1

for every reduced Gröbner basis of I. It is worth while remarking
that there are also lower bounds for the worst-case complexity: d2m

with m = n/10 − O(1) from
the work of Mayr and Meyer (1982) and d2m

where m ∼ n/2 due to Yap (1991).
In this article, we will first improve Giusti’s bound by showing that if I is in strongly stable

position and D > 1, then 2d(n−D)2D−1
is a simultaneous upper bound for the Castelnuovo-Mumford

regularity of I and for the maximal degree of the elements of the Gröbner basis of I (with respect
to the degree reverse lexicographic order). Furthermore, we will sharpen the bound of Caviglia-
Sbarra to (dn−D + (n − D)(d − 1))2D−1

. We will see that the latter improved bound is always lower
than all existing bounds. Finally, we will show that, if I is in quasi stable position and D ≤ 1,
Giusti’s bound may be replaced by nd − n + 1 (this result was already obtained in (Lazard, 1983)
when the ideal is in generic position). In the recent work (Hashemi et al., 2017), we showed how
many variants of stable positions – including quasi stable and strongly stable position – can be
achieved via linear coordinate transformations constructed with a deterministic algorithm.

This article is a revised and extended version of (Hashemi and Seiler, 2017) presented at
ISSAC 2017. The changes to the original version include the addition of a new section (see
Sec. 3) on the French course notes (Lejeune-Jalabert, 1984). It contains some results from loc.
id. (with simpler proofs) on upper degree bounds for Gröbner bases of certain classes of ideals. In
Sec. 4 we exhibit in more detail the properties of one-dimensional ideals in quasi stable position.
In addition, in Theorem 50, a new upper degree bound for Gröbner bases is derived and it is
shown that the new bound is always sharper than all previously published bounds. We conclude
the paper by discussing the case of positive characteristic where we show that similar bounds
hold (this study gives a positive answer to the conjecture posed in (Hashemi and Seiler, 2017,
Con. 4.5)).

The structure of the paper is as follows: in the next section, we give basic notations and
definitions. Section 3 is devoted to some results from Lejeune-Jalabert (1984) concerning upper
bounds for the degree of Gröbner bases of particular classes of ideals including zero-dimensional
ideals. In Sections 4, 5 and 6 we improve the degree bounds provided by Lazard, Giusti and
Caviglia-Sbarra, respectively.
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2. Preliminaries

Throughout this article, we keep the following notations. Let P = k[x1, . . . , xn] be the poly-
nomial ring (where k is of characteristic zero). A power product of the variables x1, . . . , xn is
called a term and T denotes the monoid of all terms in P. We consider non-zero homogeneous
polynomials f1, . . . , fk ∈ P and the ideal I = 〈 f1, . . . , fk〉 generated by them. We assume that
fi is of degree di and that the numbering is such that d1 ≥ d2 ≥ · · · ≥ dk > 0. We also set
d = d1. Furthermore, we denote by R = P/I the corresponding quotient ring and by D its Krull
dimension. Finally, we use throughout the degree reverse lexicographic order with xn ≺ · · · ≺ x1.

The leading term of a polynomial f ∈ P, denoted by LT( f ), is the greatest term (with respect
to ≺) appearing in f and its coefficient, denoted by LC( f ), is the leading coefficient of f . The
leading monomial of f is the product LM( f ) = LC( f )LT( f ). The leading ideal of I is defined
as LT(I) = 〈LT( f ) | f ∈ I〉. For the finite set F = { f1, . . . , fk} ⊂ P, LT(F) denotes the set
{LT( f1), . . . ,LT( fk)}. A finite subset G ⊂ I is called a Gröbner basis of I w.r.t. ≺, if LT(I) =

〈LT(G)〉. We refer to (Becker and Weispfenning, 1993) for more details on Gröbner bases.
Given a graded P-module X and a positive integer s, we denote by Xs the set of all homo-

geneous elements of X of degree s. To define the Hilbert regularity of an ideal, recall that the
Hilbert function of I is defined by HFI(t) = dimk(Rt); the dimension of Rt as a k-linear space.
From a certain degree on, this function of t is equal to a polynomial in t, called Hilbert polyno-
mial, and denoted by HPI (see e.g. (Cox et al., 2007) for more details on this topic). The Hilbert
regularity of I is hilb(I) = min{m | ∀t ≥ m, HFI(t) = HPI(t)}. Finally, recall that the Hilbert
series of I is the power series HSI(t) =

∑∞
s=0 HFI(s)ts.

Proposition 1. There exists a univariate polynomial p(t) with p(1) , 0 such that HSI(t) =

p(t)/(1 − t)D. Furthermore, hilb(I) = max{0, deg(p) − D + 1}.

For a proof of this result, we refer to (Fröberg, 1997, Theorem 7, page 130). It follows
immediately from Macaulay’s theorem that the Hilbert function of I is the same as that of LT(I)
and this provides an effective method to compute it using Gröbner bases, see (Greuel and Pfister,
2007).

Let us state some auxiliary results on regular sequences. Recall that a sequence of polynomi-
als f1, . . . , fk ∈ P is called regular if it generates a proper ideal and fi is a non-zero divisor on the
ring P/〈 f1, . . . , fi−1〉 for i = 2, . . . , k. This is equivalent to the condition that fi does not belong
to any associated prime of 〈 f1, . . . , fi−1〉. It can be shown that the Hilbert series of a regular se-
quence f1, . . . , fk is equal to

∏k
i=1(1− tdi )/(1− tn), see e.g. (Lejeune-Jalabert, 1984). The converse

of this result is also true, see (Fröberg, 1997, Exercise 7, page 137). As a trivial consequence
of this statement we observe that any permutation of a homogeneous regular sequence remains
a regular sequence. In addition, these conditions are equivalent to the statement that D = n − k,
see Lemma 8.

Definition 2. The depth of I is defined as the maximal integer λ such that there exists a regular
sequence of linear forms y1, . . . , yλ on R.

For example, let J = 〈x2
1, x1x2〉 ⊂ P = k[x1, x2]. Then, no linear form ax1 + bx2 for

a, b ∈ k is regular on R. This follows that depth(J) = 0. It is well-known that the dimension
of an ideal is greater than or equal to its depth (a simple proof using Pommaret bases can be
found in (Seiler, 2009) after Proposition 3.19). If dim(I) is equal to the depth of I, then R is
called Cohen-Macaulay. For example, one sees that the quotient ring k[x1, x2]/〈x2

2〉 is Cohen-
Macaulay, however, k[x1, x2]/〈x2

1, x1x2〉 is not Cohen-Macaulay. Below, for a given integer e, by
P(e), we shall mean a graded P-module such that P(e)t = Pe+t for any t.
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Definition 3. The ideal I is called m-regular, if its minimal graded free resolution is of the form

0 −→
⊕
j∈Jr

P(−er j) −→ · · · −→
⊕
j∈J1

P(−e1 j) −→
⊕
j∈J0

P(−e0 j) −→ I −→ 0

with ei j − i ≤ m for each i, j where Ji for each i is finite. The Castelnuovo-Mumford regularity of
I is the smallest m such that I is m-regular; we denote it by reg(I).

For more details on the regularity, we refer to (Mumford, 1966; Eisenbud and Goto, 1984;
Bayer and Stillman, 1987; Bermejo and Gimenez, 2006). It is well-known that in generic co-
ordinates reg(I) is an upper bound for the degree of the Gröbner basis w.r.t. the degree reverse
lexicographic order. This upper bound is sharp, if the characteristic of k is zero (see (Bayer
and Stillman, 1987)). A good measure to estimate the complexity of the computation of the
Gröbner basis of I is the maximal degree of the polynomials which appear in this computation,
see (Lazard, 1981, 1983; Giusti, 1984).

Definition 4. We denote by deg(I,≺) the maximal degree of the elements of the reduced Gröbner
basis of I w.r.t. the term order ≺.

We conclude this section with a brief review of the theory of Pommaret bases. Suppose that
f ∈ P and LT( f ) = xα with α = (α1, . . . , αn). We call max {i | αi , 0} the class of f , denoted by
cls( f ). Then the multiplicative variables of f are XP( f ) = {xcls( f ), . . . , xn}. Furthermore, xβ is a
Pommaret divisor of xα, written xβ |P xα, if xβ | xα and xα−β ∈ k[xcls( f ), . . . , xn].

Definition 5. Let H ⊂ I be a finite set such that no leading term of an element of H is a
Pommaret divisor of the leading term of another element. ThenH is called a Pommaret basis of
I w.r.t. ≺, if

I =
⊕
h∈H

k[XP(h)] · h. (1)

One can easily show that any Pommaret basis is a (generally non-reduced) Gröbner basis of
the ideal it generates. The main difference between Gröbner and Pommaret bases consists of the
fact that by (1) any polynomial f ∈ I has a unique involutive standard representation. If an ideal
I possesses a Pommaret basisH , then reg(I) equals the maximal degree of an element ofH , cf.
(Seiler, 2009, Theorem 9.2). The main drawback of Pommaret bases is however that they do not
always exist. Indeed, a given ideal possesses a finite Pommaret basis, if and only if the ideal is
in quasi stable position – see (Seiler, 2009, Proposition 4.4).

Definition 6. A monomial ideal J in P is called quasi stable, if for any term m ∈ J and all
integers i, j, s with 1 ≤ j < i ≤ n and s > 0 such that xs

i | m, there exists an exponent t ≥ 0 such
that xt

jm/xs
i ∈ J . A homogeneous ideal I is in quasi stable position, if LT(I) is quasi stable.

Let us denote by deg(m, xi) the degree of m w.r.t. the variable xi. It follows from (Seiler,
2012, Lemma 3.4) that a monomial ideal J is quasi stable iff for any monomial m ∈ J and all
integer 1 ≤ j < cls(m) we have xt

jm/xs
cls(m) ∈ J with s = deg(m, xcls(m)) and t is the maximum of

deg(u, x j) where u belongs to a minimal generating set of J .

Remark 7. Since any linear change of variables is a k-linear automorphism of P preserving
the degree, it follows trivially that the dimensions over k of the homogeneous components of a
homogeneous ideal I or of its factor ring R remain invariant. Hence the Hilbert function and
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therefore also the Hilbert series, the Hilbert polynomial and the Hilbert regularity of I do not
change. The same is obviously true for the Castelnuovo-Mumford regularity. In addition, due to
the special form of the Hilbert series of the ideal generated by a regular sequence, we conclude
that any regular sequence remains regular after a linear change of variables and hence the depth
is invariant, too. Finally, we note that almost all linear changes of variables transform a given
homogeneous ideal into quasi stable position (which is thus a generic position), see (Seiler,
2009). It follows that to study any of the mentioned invariants of I, w.l.o.g. we may assume that
I is in quasi stable position. We writeH = {h1, . . . , hs} for its Pommaret basis. Finally, for each
i we set mi = LT(hi) and it is then easy to see that {m1, . . . ,ms} forms a Pommaret basis of LT(I).

3. Lejeune-Jalabert course notes

In her French course notes, Lejeune-Jalabert (1984) studied deg(I,≺) for some particular
classes of homogeneous ideals including zero-dimensional ideals. Since these course notes may
not be largely available, we discuss briefly some results contained in them related to the subject
of this paper and for the sake of completeness we include short proofs for some of them. Before
stating the main theorems of this section, we shall give some preliminary results. If an ideal of
dimension n− k can be generated by k polynomials, then it is called a complete intersection. The
following result is well-known. Proofs for the local case can be found for example in (Bruns
and Herzog, 1998, Theorem 2.3.3) or (Matsumura, 1986, Theorem 17.4). The graded version is
given in (Lejeune-Jalabert, 1984, Proposition 2.4, page 101).

Lemma 8. If D = n − k, then f1, . . . , fk is a regular sequence.

In this section, we consider the Nœther position as a particular generic position for polyno-
mial ideals to derive effective degrees for their Gröbner bases. Recall that a homogeneous ideal
I ⊂ P is in Nœther position if the injective ring extension k[xn−D+1, . . . , xn] ↪→ R is integral, i.e.
the image in R of xi for any i = 1, . . . , n − D is a root of a polynomial Xs + g1Xs−1 + · · · + gs = 0
where s is an integer and g1, . . . , gs ∈ k[xn−D+1, . . . , xn], see e.g. (Eisenbud, 1995). For example,
one can see that the ideal 〈x2

2 − x1〉 ⊂ k[x1, x2] is in Nœther position. Alternatively, Nœther posi-
tion can be defined combinatorially as a weakened version of quasi stable position, see (Hashemi
et al., 2017; ?, Theorem 4.4).

Lemma 9. Suppose that f1, . . . , fk is a regular sequence and I is in Nœther position. Then,
f1, . . . , fk, xn−D+1, . . . , xn is a regular sequence.

Proof. Since I is in Nœther position then dim(I + 〈xn−D+1, . . . , xn〉) = 0, see (Bermejo and
Gimenez, 2001, Lemma 4.1). Thus the assertion follows from Lemma 8.

Lemma 10. If z is a linear non-zero divisor on R, then hilb(I) = max{0, hilb(I + 〈z〉) − 1}.

If f1, . . . , fk is a regular sequence, from Proposition 1 one deduces that hilb(I) = max{0, d1 +

· · ·+ dk − n + 1}, see also (Lejeune-Jalabert, 1984, Rem. 3.2.2, page 104). This property is stated
in the next proposition.

Proposition 11. If f1, . . . , fk is a regular sequence then hilb(I) = max{0, d1 + · · · + dk − n + 1}.

Proposition 12. (Lejeune-Jalabert, 1984, Proposition 3.4, page 105) Suppose that 1 ≤ r ≤ n is
a positive integer such that the sequence xr, . . . , xn is regular on R. Furthermore, let G be the
reduced Gröbner basis of I w.r.t. ≺. Then, for each g ∈ G, the leading term of g does not contain
any of the variables xr, . . . , xn.
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Proof. We argue by reductio ad absurdum. Suppose that there exists g ∈ G such that xs | LT(g)
and r ≤ s ≤ n. Since I is a homogeneous ideal, G contains only homogeneous polynomials.
Assume that xs is the smallest variable w.r.t. ≺ such that xs | LT(g). Thus, by the definition of
≺, we can write g as xsA + B where A ∈ k[x1, . . . , xs] and B ∈ 〈xs+1, . . . , xn〉 ⊂ P. This implies
that xsA ∈ I + 〈xs+1, . . . , xn〉, and therefore A ∈ I + 〈xs+1, . . . , xn〉 because by the assumption,
xs is a non-zero divisor on the ring P/(I + 〈xs+1, . . . , xn〉). Since xr, . . . , xn is a homogeneous
regular sequence, any permutation of this sequence remains regular. So, we can conclude that
there exists C ∈ 〈xs+1, . . . , xn〉 such that A + C ∈ I. It follows that there exists g′ ∈ G with
LT(g′) | LT(A) = LT(A + C) which contradicts the minimality of G.

In particular, from Lemma 9 we have the following consequence.

Corollary 13. Suppose that f1, . . . , fk is a regular sequence and I is in Nœther position. Fur-
thermore, let G be the reduced Gröbner basis of I w.r.t. ≺. Then, for each g ∈ G, the leading
monomial of g does not contain any of the variables xn−D+1, . . . , xn.

We state now the main result of the first part of this section.

Theorem 14. (Lejeune-Jalabert, 1984, Cor. 3.5, page 107) Suppose that f1, . . . , fk is a regular
sequence and I is in Nœther position. Then deg(I,≺) ≤ d1 + · · · + dk − k + 1.

Proof. We know that f1, . . . , fk, xn−D+1, . . . , xn is a regular sequence. LetJ be the ideal generated
by this sequence. Thus, hilb(J) = d1 + · · ·+dk + (n−k)−n+1 = d1 + · · ·+dk−k+1. SinceJ is a
zero-dimensional ideal, hilb(J) is the maximum degree of the elements of the Gröbner basis of
J . On the other hand, from Cor. 13, the maximum degree of the elements of the Gröbner basis
of J is equal to that of I, and this completes the proof.

Corollary 15. If f1, . . . , fn is a regular sequence, then deg(I,≺) ≤ d1 + · · · + dn − n + 1.

Remark 16. The bound d1 + · · · + dn − n + 1 is known as Macaulay bound.

In the rest of this section, we deal with Cohen-Macaulay rings, and state the results of
(Lejeune-Jalabert, 1984) to generalize the above results. To state an analogue of Proposition 11,
we need the following lemmata.

Lemma 17. (Lejeune-Jalabert, 1984, Proposition 4.1, page 108) There exist homogeneous poly-
nomials g1, . . . , gn−D ∈ P such that

(1) deg(gi) = di for each i,

(2) gi ≡ fi mod 〈 fi+1, . . . , fk〉 for i = 1, . . . , n − D,

(3) g1, . . . , gn−D form a regular sequence in P.

Lemma 18. (Lejeune-Jalabert, 1984, Proposition 4.4, page 110) Suppose that R is Cohen-
Macaulay and I is in Nœther position. Then, the sequence xn−D+1, . . . , xn is regular on R.

Based on this lemma, we can state a similar result to Proposition 12.

Corollary 19. (Lejeune-Jalabert, 1984, Lemma 4.5.1 , page 113) Suppose that the quotient ring
R is Cohen-Macaulay and I is in Nœther position. Let G be the reduced Gröbner basis of I
w.r.t. ≺. Then, for each g ∈ G, the leading term of g does not contain any of the variables
xn−D+1, . . . , xn.
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Proposition 20. If R is Cohen-Macaulay, then hilb(I) ≤ max{0, d1 + · · · + dn−D − n + 1}.

Proof. Since R is Cohen-Macaulay and the Hilbert series of I is invariant under any invert-
ible linear change of variables, we can assume that xn−D+1, . . . , xn is a regular sequence on
R. Furthermore, by Lemma 10, we have hilb(I) = max{0, hilb(I + 〈xn−D+1, . . . , xn〉) − D}.
We know from (Cox et al., 2007, Proposition 4, Sec. 3, Chap. 9) that the Hilbert function
of I + 〈xn−D+1, . . . , xn〉 and that of its leading term ideal are equal. By Cor. 19, no lead-
ing term of the polynomials in the Gröbner basis of I is divisible by any of the variables
xn−D+1, . . . , xn. Thus, we conclude that the Hilbert function of this ideal and the one of the
ideal J = I|xn−D+1=···=xn=0 ⊂ k[x1, . . . , xn−D] are the same. Note that J is generated by the
polynomials hi = fi|xn−D+1=···=xn=0. For each i, we have either hi = 0 or deg(hi) = di. One
observes that J = 〈h1, . . . , hk〉 ⊂ k[x1, . . . , xn−D] is zero-dimensional. Using Lemma 17 and
without loss of generality we may assume that h1, . . . , hn−D are non-zero and form a regular se-
quence. This implies that the inequality hilb(J) ≤ hilb(〈h1, . . . , hn−D〉) holds. In addition, by
Proposition 11, we have hilb(〈h1, . . . , hn−D〉) ≤ max{0, d1 + · · · + dn−D − (n − D) + 1}. These
arguments show that hilb(I) = max{0, hilb(I + 〈xn−D+1, . . . , xn〉) − D} = max{0, hilb(J) − D} ≤
max{0, d1 + · · · + dn−D − (n − D) + 1 − D} = max{0, d1 + · · · + dn−D − n + 1}.

Finally, we state the second main result of this section.

Theorem 21. (Lejeune-Jalabert, 1984, Proposition 4.8, page 117) If R is Cohen-Macaulay and
I is in Nœther position, then deg(I,≺) ≤ d1 + · · · + dn−D − (n − D) + 1.

Proof. It follows from Cor. 19 that the maximal degree of the elements of the Gröbner basis of
I is equal to that of J = I+ 〈xn−D+1, . . . , xn〉. On the other hand, J is a zero-dimensional ideal,
and therefore, its Hilbert regularity is the maximal degree of the elements of the Gröbner basis
of J . By the proof of Proposition 20, hilb(J) ≤ d1 + · · · + dn−D − (n − D) + 1.

In the case that I is a zero-dimensional ideal, we can derive explicit upper bounds for
deg(I,≺) and dimk(R) using the following well-known result. For the reader’s convenience,
we include an elementary proof for it.

Theorem 22. Let I be a zero-dimensional ideal. Then

(a) deg(I,≺) ≤ d1 + · · · + dn − n + 1,

(b) dimk(R) ≤ d1 · · · dn.

Proof. Since every zero-dimensional ideal is Cohen-Macaulay and in Nœther position then (a)
is an immediate consequence of Theorem 21. We present now an elementary proof for (b).
The assumption dim(I) = 0 implies that dimk(R) is equal to the sum of the coefficients of the
Hilbert series of I (which is of course a polynomial here). We may assume w.l.o.g. that the first
n generators f1, . . . , fn form a regular sequence (Lemma 17). Thus the Hilbert series of I′ =

〈 f1, . . . , fn〉 is HSI′ (t) =
∏n

i=1 (1 + · · · + tdi−1) and dimk(P/I′) is at most HSI′ (1) = d1 · · · dn. We
obviously have dimk(R) ≤ dimk(P/I′) = d1 · · · dn and this proves the assertion.

4. Lazard’s upper bound

In this section, we investigate some properties of one-dimensional ideals in generic positions.
In particular, we show that the Macaulay bound remains an upper bound for the degree of the
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reduced Gröbner basis of a one-dimensional ideal in generic position (Lazard, 1983). We provide
simpler proofs for some of his results and show that the notion of genericity which is needed to
prove this bound is Nœther position (see Theorem 30). Note that for Lazard, dimension was
always the one as projective variety, whereas we use throughout this paper the one as affine
variety which is one higher. In the sequel, we set di = 1 for any i > k. We first show that for a
one-dimensional ideal, being in quasi stable position is equivalent to being in Nœther position.

Lemma 23. Let dim(I) = 1. Then, I is in Nœther position, if and only if it is in quasi stable
position.

Proof. If I is in Nœther position then, from (Bermejo and Gimenez, 2001, Lemma 4.1), a pure
power of xi for each i < n belongs to LT(I). Now, assume that xs

i | m for some s ∈ N and m ∈
LT(I). Then, we readily deduce that there exists t such that xt

jm/xs
i ∈ LT(I) for each j < i ≤ n

and therefore I is in quasi stable position. Conversely, being in quasi stable position ensures that
the ideal I is in Nœther position, see (Bermejo and Gimenez, 2006, Proposition 3.6).

Let us first recall the concept of generic initial ideal. Let A = (ai j) ∈ GL(n,k) be an n × n
invertible matrix. By A.I we mean the ideal generated by the polynomials A. f with f ∈ I where

A. f = f (
n∑

i=1

ai1xi, . . . ,

n∑
i=1

ainxi).

The following fundamental theorem is due to Galligo (1974).

Theorem 24. There exists a non-empty Zariski open subsetU ⊂ GL(n,k) such that LT(A.I) =

LT(A′.I) for all matrices A, A′ ∈ U.

Definition 25. The monomial ideal LT(A.I) with A ∈ U andU as given in Theorem 24 is called
the generic initial ideal of I (w.r.t. ≺) and is denoted by gin(I).

Theorem 26. (Lazard, 1983, Theorem 2) Assume that dim(I) = 1 and λ is the depth of I. Then
we have deg (gin(I),≺) ≤ d1 + · · · + dr − r + 1 where r = n − λ.

We showed in (Hashemi et al., 2012) that many properties of gin(I) also hold for lt(I) if I
is in quasi stable position. Along these lines, we shall prove that in this theorem we can replace
gin(I) by I, if I is in Nœther position (or equivalently quasi stable position). For this, we need
the next proposition due to Lazard, which was the key point in the proof of the above theorem.

Proposition 27. (Lazard, 1981, Theorem 3.3) Assume again that dim(I) = 1. Then dimk(R`) =

dimk(R`+1) for each ` ≥ d1 + · · · + dn − n + 1.

Thus, under the assumptions of this proposition, we can say that hilb(I) ≤ d1 + · · ·+dn−n+1.
In addition, in (Lazard, 1981, Theorem 3.3), it was shown that there exists a linear polynomial
y ∈ P such that the multiplication by y from R`−1 to R` for each ` ≥ d1 + · · · + dn − n + 1 is
bijective. We show that if I is in Nœther position, then we can choose y = xn.

Proposition 28. Assume that dim(I) = 1 and I is in Nœther position. Then, the multiplication
xn : R`−1 −→ R` for each ` ≥ d1 + · · · + dn − n + 1 is bijective.
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Proof. Since by (Cox et al., 2007, Proposition 4, page 458), I and LT(I) share the same Hilbert
function then to prove the assertion one can replace I by LT(I). By reductio ad absurdum,
suppose that there exists an integer ` such that xnm ∈ LT(I) where m is a term with m < LT(I).
Since I is in Nœther position, from (Bermejo and Gimenez, 2001, Lemma 4.1) it yields that
x`i ∈ LT(I) for each i < n. Moreover, each term of degree ` in x1, . . . , xn−1 belongs to LT(I). It
follows that there exists an integer s so that for each term u ∈ P of degree s we have um ∈ LT(I).
Assume that s is minimal for this property. Thus, there exists a term v of degree s − 1 so that
vm < LT(I). We conclude that xivm ∈ LT(I) for each i which is in contradiction with the
existence of the linear bijection y : Rdeg(m)+s−1 −→ Rdeg(m)+s.

As a consequence of this proof, we derive the next useful corollary.

Corollary 29. Let dim(I) = 1. Then, dimk(R`) ≤ d1 · · · dn−1 for each ` ≥ d1 + · · · + dn − n + 1.

Proof. Since the Hilbert function of an ideal remains invariant under any invertible linear change
of variables, we may assume that I is in Nœther position. Furthermore, it is enough to prove
the assertion for LT(I). From Macaulay’s theorem (Cox et al., 2007, page 232), for each ` the
set of terms {xs

nm |s ∈ N, deg(m) + s = `,m < LT(I),m ∈ k[x1, . . . , xn−1]} contains a basis for
R`. On the other hand, from the assumption we know that I|xn=0 is a zero-dimensional ideal and
hence by Theorem 22 the set of terms m ∈ k[x1, . . . xn−1]} with m < LT(I) has at most d1 · · · dn−1
elements.

The Hilbert polynomial of a one-dimensional ideal is a constant polynomial. On the other
hand, (D − 1)! times the leading coefficient of the Hilbert polynomial of an ideal is called the
degree of the ideal, see (Cox et al., 2007, page 476). Thus, from this corollary it follows that the
degree of a one-dimensional ideal I is bounded above by d1 · · · dn−1.

Theorem 30. Assume that dim(I) = 1 and I is in Nœther position. Then, deg(I,≺) ≤ d1 + · · ·+

dr − r + 1 where r = n − λ.

Proof. It suffices to show that deg(I,≺) ≤ d1 + · · ·+ dn − n + 1, since then the desired inequality
follows immediately from Proposition 35. As I is in quasi stable position, from (Hashemi,
2010, Theorem 4.17), (Seiler, 2012, Theorem 4.7) we have deg(I,≺) ≤ max{hilb(I′), hilb(I)}
where I′ = (I + 〈xn〉) ∩ k[x1, . . . , xn−1] is an ideal in the ring k[x1, . . . , xn−1]. Obviously, I′ is
generated by the polynomials f1|xn=0, . . . , fk |xn=0. In addition, using the fact that I is in Nœther
position we have dim(I′) = 0. These arguments show that, by Props. 20 and 27, hilb(I′) ≤
d1 + · · · + dn−1 − (n − 1) + 1 and hilb(I) ≤ d1 + · · · + dn − n + 1 which proves the assertion.

Example 31. Lazard (1983, Conj. 3) conjectured that the conclusion of Theorem 26 remained
true, if one replaces ginI by I. Mora claimed that the following ideal (see the Appendix of
(Lazard, 1983)) provided a counter-example. Consider the homogeneous ideal I = 〈x1xt−1

2 −

xt
3, x

t+1
1 − x2xt−1

3 x4, xt
1x3 − xt

2x4〉 in the polynomial ring P = k[x1, . . . , x4]. Thus we have d1 =

t, d2 = d3 = t + 1. One can show that the polynomial xt2+1
3 − xt2

2 x4 appears in the Gröbner basis
of I and hence deg(I,≺) ≥ t2 + 1. For simplicity we restrict to the case t = 4 where we obtain

LT(I) = 〈x1x3
2, x

4
1x3, x5

1, x
3
1x5

3, x
2
1x9

3, x1x13
3 , x

17
3 〉 .

Thus we find here deg(I,≺) = 17 > d1 + d2 + d3 − 3 = 11. But as dim(I) = 2, I does not yield
a counter-example to Lazard’s conjecture. However, if we consider I′ = I|x4=0 ⊂ k[x1, x2, x3],
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then we find that I′ has dimension 1 and that LT(I′) is generated by the same terms as LT(I).
I′ is not in Nœther position, as no pure power of x2 belongs to LT(I′). Hence I′ represents a
counter-example to Lazard’s conjecture. This example shows furthermore that in Theorem 30 it
is not possible to drop the assumption of Nœther position.

Remark 32. We gave above a direct proof for Theorem 30. However, we can provide a more
concise proof using Theorem 26 and Pommaret bases. Indeed, from Theorem 26 it follows that
reg(I) ≤ d1 + · · ·+ dr − r + 1 where r = n− λ, as by (Bayer and Stillman, 1987, Proposition 2.9),
reg(I) is equal to the maximum degree of the minimal generating set of gin(I). Since the ideal
I is in quasi stable position, it possesses a finite Pommaret basisH where reg(I) is the maximal
degree of the elements ofH and therefore deg(I,≺) ≤ d1 + · · ·+ dr − r + 1. These considerations
also yield immediately the following corollary.

Corollary 33. If dim(I) = 1, then reg(I) ≤ d1 + · · · + dr − r + 1 where r = n − λ.

We conclude this section by presenting an affine version of Theorem 30. We drop now the
assumption that the polynomials f1, . . . , fk generating I are homogeneous. Let xn+1 be an extra
variable and f̃ the homogenization of f using xn+1. We further denote by Ĩ the ideal generated by
f̃1, . . . , f̃k (note that in general this is not equal to the homogenization of I). Following (Fröberg,
1997, Def. 31, page 112), we consider a good extension ≺h of ≺ defined by the degree reverse
lexicographic order with xn+1 ≺ xn ≺ · · · ≺ x1. The next proposition may be considered as a
generalization of (Lazard, 1983, Theorem 2) to ideals in Nœther position.

Proposition 34. Assume that Ĩ is in Nœther position, that dim(Ĩ) ≤ 1 and that depth(Ĩ) = λ.
Then, deg(I,≺) ≤ d1 + · · · + dr − r + 1 where r = n + 1 − λ.

Proof. Suppose that {g1, . . . , gt} is a Gröbner basis of Ĩ w.r.t. ≺h. Then, from Theorem 30, we
have deg(gi) ≤ d1 + · · · + dr − r + 1 for each i. By (Fröberg, 1997, Proposition 34, page 113), we
know that {g1|xn+1=1, . . . , gt |xn+1=1} forms a Gröbner basis for I w.r.t. ≺ which ends the proof.

5. Improving Giusti’s upper bound

Giusti (1984) established the upper bound (2d)2n−1
for deg(I,≺) in the case that the ideal is in

generic position. The key point of Giusti’s proof is the use of the combinatorial structure of the
generic initial ideal in characteristic zero. Later on, Mora (2005, Ch. 38), by a deeper analysis of
Giusti’s proof, improved this bound to (d + 1)(n−D)2D−λ

where λ is the depth of I. In this section,
we improve Mora’s bound by following his general approach and correcting some flaws in his
method. Our presentation seems to be simpler than the ones by Mora and Giusti.

We first note that for a given ideal in quasi stable position, we are able to reduce the number
of variables by the depth of the ideal to obtain a sharper bound for deg(I,≺). A novel proof à la
Pommaret of this result is given below.

Proposition 35. Let U(n, d,D) be a function depending on n, d and D such that deg (I,≺) ≤
U(n, d,D) for any ideal I which is in quasi stable position and is generated by homogeneous
polynomials of degree at most d. Then, deg(I,≺) ≤ U(n − λ, d,D − λ) where depth(I) = λ.

Proof. Let t be the maximal class of the elements inH . It is shown in (Seiler, 2009, Prop 2.20)
that in quasi-stable position the variables xt+1, . . . , xn define a regular sequence on R and that
thus λ = n − t (note that this reference distinguishes between depth(I) and depth(R) with the
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two related by depth(R) = depth(I) − 1; what we call here depth(I) corresponds to depth(R)
in Seiler (2009)). By definition of t, no leading term of an element of H is divisible by any of
these variables. Thus H̃ = H|xt+1=···=xn=0 is the Pommaret basis of the ideal Ĩ = I|xt+1=···=xn=0 in
k[x1, . . . , xt] and hence deg(I,≺) = deg(Ĩ,≺). This entails our claim.

As consequences of the above proof we obtain the following corollaries.

Corollary 36. As a similar statement to Proposition 35, suppose that R(n, d,D) is a function
depending on n, d and D such that reg(I) ≤ R(n, d,D). Then, reg(I) ≤ R(n − λ, d,D − λ).

Proof. The claim follows by the same argument as in the proof of Proposition 35 and using the
facts that for each f ∈ H , the corresponding element f̄ ∈ H̄ has the same degree as f and in
quasi stable position reg(I) = reg(Ī) is given by the maximal degree of the elements of H and
H̄ .

Corollary 37. (Hashemi et al., 2012, Theorem 16) Let I be in quasi stable position. Then we
have depth(I) = depth(LT(I)).

To state the refined version of Giusti’s bound, we need to recall the crystallisation principle.
Suppose that I = 〈 f1, . . . , fk〉 and that for some s ∈ N we have deg( fi) ≤ s for all i and gin(I)
has no minimal generator in degree s + 1. Then, the crystallisation principle (CP) states that for
each m in the generating set of gin(I) we have deg(m) ≤ s, see (Green, 1998, Prop 2.28). Note
that this principle holds only in characteristic zero and it has been proven only for generic initial
ideals and for lexicographic ideals, see (Green, 1998, Theorem 3.8).

Giusti’s approach to prove his degree upper bound consists of applying CP along with an
induction on the number of variables. One crucial fact in his analysis is that CP also holds for
a generic initial ideal modulo the last variable. Below, we will show that both these properties
remain true for an arbitrary strongly stable ideal.

Definition 38. A monomial ideal J is called strongly stable, if for any term m ∈ J we have
x jm/xi ∈ J for all i and j such that j < i and xi divides m. A homogeneous ideal I is in strongly
stable position, if LT(I) is strongly stable.

Proposition 39. Let I be in strongly stable position. Then, CP holds for LT(I).

Proof. The following arguments are inspired by (Mora, 2005, page 728). Let us consider an
integer s ≥ d. Suppose that we are computing a Gröbner basis of I using Buchberger’s algorithm
and by applying the normal strategy. In addition, assume that we have already computed the set
G = {g1, . . . , gt} up to degree s (this set will be enlarged to a Gröbner basis of I), and there is no
new polynomial of degree s + 1 to be added into G. Note that we have chosen s ≥ d to be sure
that G generates I. To prove the assertion, it suffices to show that G is a Gröbner basis of I.

We introduce the set Ms = 〈LT(G)〉s ∩T where T is the set of all terms of P. We now claim
that for each pair of terms xα = xα1

1 · · · x
αn
n , xβ = xβ1

1 · · · x
βn
n in Ms either deg(lcm(xα, xβ)) = s+1

or there exists a further term xγ ∈ Ms \ {xα, xβ} such that

• xγ | lcm(xα, xβ),

• deg(lcm(xγ, xα)) < deg(lcm(xα, xβ)) and deg(lcm(xγ, xβ)) < deg(lcm(xα, xβ)).
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If this claim is true, then Buchberger’s second criterion implies that it suffices to consider those
pairs {gi, g j} with the property deg(lcm(LT(gi),LT(g j))) = s + 1. If for each such pair the corre-
sponding S-polynomial reduces to zero, then G is a Gröbner basis and we are done. Otherwise,
there exists a new generator of degree s + 1 contradicting the made assumptions.

For proving the made claim, it suffices to show that, if we have deg(lcm(xα, xβ)) > s + 1,
then there exists a term xγ ∈ Ms \ {xα, xβ} satisfying the above conditions. Let j be an integer
such that α j , β j and α j+1 = β j+1, . . . , αn = βn. W.l.o.g., we may assume that α j > β j. Since
xα and xβ have the same degree, there is an index i < j such that βi > αi. The strongly stable
position of I implies that Ms is a strongly stable set. Therefore the term xγ = xixα/x j satisfies
xγ ∈ Ms \ {xα, xβ} and xγ | lcm(xα, xβ). Furthermore, deg(lcm(xγ, xα)) = s + 1 < deg(lcm(xα, xβ))
and deg(lcm(xγ, xβ)) = deg(lcm(xα, xβ)) − 1, proving the claim.

Example 40. We show that there exists an ideal I (due to Green (1998)) in strongly stable posi-
tion such that LT(I) , gin(I). Let I = 〈x1x3, x1x2 +x2

2, x
2
1〉 ⊂ k[x1, x2, x3]. Its leading term ideal

LT(I) = 〈x1x3, x1x2, x2
1, x

2
2x3, x3

2〉 is strongly stable, but we find gin(I) = 〈x2
2, x1x2, x2

1, x1x2
3〉 ,

LT(I). Nevertheless, one observes that both LT(I) and gin(I) satisfy CP.

As a consequence of the proof of this proposition, we can infer a generalization of CP.

Corollary 41. Suppose we know in advance that I is in strongly stable position. Let us fix
an integer t (not necessarily greater than d). Suppose that we are computing a Gröbner basis
for I using Buchberger’s algorithm and by applying the normal strategy. Assume that we have
treated all S-polynomials of degree at most t and Gt is the set of all polynomials computed
so far. If all S-polynomials of degree t + 1 reduce to zero, then any critical pair { f , g} with
max{deg( f ), deg(g)} ≤ t is superfluous. In particular, Gt remains a Gröbner basis for 〈I≤t〉.

In the sequel, for an index i we shall denote by Ii the ideal I|xi=···=xn=0 ⊂ k[x1, . . . , xi−1].
Since we assume that ≺ is the degree reverse lexicographic term order, strongly stable position
of I entails that for any index i, Ii is in strongly stable position, too. The essence of Giusti’s
approach consists in finding, by repeated evaluation, relations between deg(I,≺) and deg(Ii,≺)
for i = n, . . . , n − D + 1. For this purpose, we introduce some further notations for an ideal I
in strongly stable position. We denote by N(I) the set of all terms m < LT(I). If dim(I) = 0,
then we define F(I) = N(I). Otherwise we set F(I) = {τxa

n ∈ N(I) | τ ∈ F(In) and deg(τxa
n) <

deg(I,≺)}. Since I is in strongly stable position, N(I) is strongly stable for the reverse ordering
of the variables. More precisely, if xα ∈ N(I) with αi > 0, then we claim that x jxα/xi ∈ N(I)
for any j > i. Indeed, otherwise it belonged to LT(I) and thus – since LT(I) is strongly stable –
xα ∈ LT(I) which is a contradiction. Below, #X denotes the cardinality of a finite set X.

Lemma 42. Suppose that I is in strongly stable position. Then the following statements hold.

(a) deg(I,≺) ≤ max{d, deg(In,≺)} + #F(In),

(b) #F(I) ≤
(
max{d, #F(In)}

)2.

Proof. (a) Let G be the reduced Gröbner basis of I for ≺. Because of our use of the degree
reverse lexicographic term order, we easily see that G|xn=0 is the reduced Gröbner basis of In

for ≺. Let G′ ⊂ G be the subset of all polynomials in G of maximal degree. We distinguish
two cases. If LT(G′) ∩ k[x1, . . . , xn−1] , ∅, then obviously deg (I,≺) = deg(In,≺) and the
assertion is proved. Otherwise, CP (applicable by Proposition 39) implies that for each degree
max {d, deg(In,≺)} < i ≤ deg(I,≺) there exists a polynomial gi ∈ G with deg(gi) = i (note that
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if deg(I,≺) = d then (a) holds and we are done). Thus, we can write LT(gi) in the form xai
n τi

with ai > 0 and τi ∈ k[x1, . . . , xn−1]. We claim that τi ∈ F(In). Writing τi = x
αi1
i1
· · · x

αik
ik

where
i1 < · · · < ik, we may conclude by the assumed reducedness of G that τi < LT(I) and by the
strong stability of LT(I) that x

αi1
i1
· · · x

αik +ai

ik
∈ LT(I). Hence there exists an integer a > 0 such

that x
αi1
i1
· · · x

αik +a−1
ik

< LT(I) and x
αi1
i1
· · · x

αik +a
ik

∈ LT(I). It follows that there exists a generator

g ∈ G ∩ In such that its leading term LT(g) = x
βi1
i1
· · · x

βik
ik

divides the latter term. We must have
β` ≤ α` for each ` < ik and βik = αik + a by the definition of a. Furthermore, the strong stability
of LT(I) implies that deg(g) > deg(τi), as otherwise another generator g′ ∈ G would exist with
LT(g′) | τi. Thus deg(τi) < deg(In,≺). If we write τi = τ̄ix

αik
ik

, then there only remains to show
that τ̄i ∈ F(Iik ). Note that the membership τi ∈ N(In) is a trivial consequence of τi ∈ N(I).
If dim(Iik ) = 0, the claim follows immediately from F(Iik ) = N(Iik ). Otherwise we repeat the
same arguments as above.

Thus for each i with max{d, deg(In,≺)} < i ≤ deg(I,≺) there exists a generator gi ∈ G such
that LT(gi) = xai

n τi and τi ∈ F(In). Since G is reduced, the terms τi are pairwise different. Hence
deg(I,≺) −max {d, deg(In,≺)} ≤ #F(In) and this proves (a).

To show (b), we use the proof of (a) in which, to apply CP, we should consider the poly-
nomials of degree at least d. Thus in the sequel we shall replace #F(In) by max{d, #F(In)}.
Let us introduce for each degree δ ∈ N the subset Fδ(I) = {xδnτ | xδnτ ∈ F(I)} ⊂ F(I). By
definition, xδnτ ∈ Fδ(I) implies τ ∈ F(In) and thus #Fδ(I) ≤ #F(In). On the other hand,
from deg(I,≺) −max {d, deg(In,≺)} ≤ max{d, #F(In)} we deduce that the maximal δ such that
xδnτ ∈ F(I) is max{d, #F(In)} and thus

#F(I) ≤
max{d,#F(In)}−1∑

δ=0

max{d, #F(In)}

which immediately yields the inequality in (b).

Remark 43. Mora (2005, Theorem 38.2.7) presented another version of this lemma. Instead
of our set F(I), he defined F̃(I) = {τxa

n ∈ N(I) | τ ∈ N(In), deg(τxa
n) < deg (I,≺)} which

differs only in the condition on τ. Assuming the equality F̃0(I) = F̃(In) where F̃0(I) contains
the elements of F̃(I) with a = 0, he proved the following two properties:

(a) deg(I,≺) ≤ deg(In,≺) + #F̃(In),

(b) #F̃(I) ≤
(
#F̃(In)

)2.

However, in general these assertions are not correct – not even for an ideal in generic position.
Indeed, in general we have only F̃(In) ⊆ F̃0(I) and if dim(I) > 0 and deg (I1 ≺) < deg (I,≺)
then equality does not hold. As a concrete example consider I = 〈x2

1, x
11
2 x1〉 ⊂ k[x1, x2]. We

perform a generic linear change x1 = ay1 +by2 and x2 = cy1 +dy2 with parameters a, b, c, d ∈ k.
The leading term ideal of the new ideal is then 〈y2

1, y
11
2 y1〉. This show that I = gin(I) and

therefore the original coordinates for I are already generic. We have I2 = 〈x2
1〉, F̃(I2) = {1, x1}

and deg(I2,≺) = 2. Furthermore, we have F̃(I) = {x11
2 } ∪ {x

i
2, x

i
2x1 | i = 0, . . . , 10} and #F̃(I) =

23. Thus, 12 = deg(I,≺) 6≤ deg(In,≺) + #F̃(In) = 2 + 2 = 4 and 23 = #F̃(I) 6≤ (#F̃(In))2 = 4.

We state now the main result of this section.

Theorem 44. If the ideal I is in strongly stable position, then #F(I) ≤ d(n−D)2D
and we have

deg(I,≺) ≤ max
{
(n − D + 1)(d − 1) + 1, 2d(n−D)2D−1 }

.
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Proof. We proceed by induction over D = dim(I). In this proof without loss of generality,
we may assume that d ≥ 2. If D = 0, the assertions follow immediately from Theorem 22.
For D > 0, we exploit that dim(I) = dim(In) + 1 and we may consider In as an ideal in
k[x1, . . . , xn−1]. Lemma 42 now entails that

#F(I) ≤ max{d, #F(In)}2

≤
(
d(n−1−(D−1))2D−1)2

= d(n−D)2D

and thus the first inequality holds. For the second inequality, Thms. 22 and 30 immediately imply
our claim for D ≤ 1. For D ≥ 2, we obviously have (n − 1 − (D − 1) + 1)(d − 1) + 1 ≤ d(n−D)2D−1

and 2d(n−1−(D−1))2D−2
≤ d(n−1−(D−1))2D−1

. We can thus rewrite the induction hypothesis as

deg (In,≺) ≤ max
{
(n − 1 − (D − 1) + 1)(d − 1) + 1,

2d(n−1−(D−1))2D−2 }
≤ d(n−D)2D−1

.

Again by Lemma 42, we can also estimate

deg(I,≺) ≤ max {d, deg(In,≺)} + #F(In)

≤ d(n−D)2D−1
+ d(n−1−(D−1))2D−1

= 2d(n−D)2D−1

proving the second assertion.

Example 45. Let us consider the values n = 2, d = 2 and D = 0. The above theorem states
deg(I,≺) ≤ 4. Consider the ideal I = 〈x2

1, x1x2 + x2
2〉. By performing a generic linear change

of coordinates, we get gin(I) = 〈x2x1, x2
1, x

3
2〉. Therefore #F(I) = 4 ≤ 4 and deg (I,≺) =

3 ≤ 4 confirming the accuracy of the presented upper bounds. It should be noted that for
such a zero-dimensional ideal Theorem 22 provides the best upper bound for deg (I,≺), namely
d1 + · · · + dn − n + 1 which is equal to the exact value 3 for this example.

Using Proposition 35, we obtain even sharper bounds depending on both the dimension and
the depth of I. We continue to write dim(I) = D and depth(I) = λ. For the rest of this paper,
we assume that R is not Cohen-Macaulay, i. e. that D > λ. Note that if R is Cohen-Macaulay,
then Theorem 21 presents a sharp upper bound for deg(I,≺) in generic position.

Corollary 46. If I is in strongly stable position and D > 1, then #F(I) ≤ d(n−D)2D−λ−1
and

deg(I,≺) ≤ 2d(n−D)2D−λ−1
.

The maximal degree of an element of the Pommaret basis of an ideal in quasi stable position
equals the Castelnuovo-Mumford regularity (Seiler, 2009, Theorem 9.2). If the ideal is even in
stable position, then the Pommaret basis coincides with the reduced Gröbner basis (Mall, 1998,
Theorem 2.15). These considerations imply now immediately the following two results.

Corollary 47. If the ideal I is in strongly stable position and D > 1, then reg(I) ≤ 2d(n−D)2D−λ−1
.

Corollary 48. Let the ideal I be in quasi stable position, H its Pommaret basis and D > 1.
If we write deg(H) for the maximal degree of an element of H , then deg (I,≺) ≤ deg (H) ≤
2d(n−D)2D−λ−1

.
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6. Improving the upper bound of Caviglia-Sbarra

Caviglia and Sbarra (2005) gave a simple proof for the upper bound (2d)2n−2
for deg(I,≺)

when the coordinates are in generic position by analyzing Giusti’s proof and exploiting some
properties of quasi stable ideals. We will now improve this bound to a dimension and depth
dependent bound. As a by-product, we will show that the notion of genericity that one needs
here is strongly stable position. We end this section by showing that a similar upper bound holds
in positive characteristic, too.

We begin with a quick review of the approach presented in (Caviglia and Sbarra, 2005). For
any monomial ideal J ⊂ P let G(J) be its unique minimal generating set. We write degi(J) =

max{degi(u) | u ∈ G(J)} where degi(u) denotes the degree in the variable xi of u. Slightly
changing our previous notation, we now denote by Ji the ideal J|xi+1=···=xn=0 ⊂ k[x1, . . . , xi]. It
follows immediately that for any quasi stable monomial ideal J we have degi(Ji) = degi(J),
see (Caviglia and Sbarra, 2005, Lemma 1.5). We note that two distinct terms in G(J) must
differ already in the first n − 1 variables because of the minimality of G(J). Hence #G(J) ≤∏n−1

i=1 (degi(J) + 1).
Assume that I is in quasi stable position and satisfies CP w.r.t. d. CP implies that deg (I,≺)−

d+1 ≤ #G(LT(I)) and hence deg(I,≺) ≤ d−1+
∏n−1

i=1 (degi(LT(I))+1). Quasi stability of LT(I)
implies that degi(LT(I)) = deg(Ii,≺) and thereby deg(I,≺) ≤ d − 1 +

∏n−1
i=1 (deg(Ii,≺) + 1).

Set B1 = d and for i ≥ 2 recursively Bi = d − 1 +
∏i−1

j=1(B j + 1). If we assume that for
each index 1 ≤ i < n the reduced ideal Ii satisfies CP w.r.t. d, then by the considerations above
deg(Ii,≺) ≤ Bi. In particular, B2 = 2d and deg(I,≺) ≤ Bn. One easily sees that the Bi satisfy
the recursion relation Bi = d− 1 + (Bi−1 + 1)(Bi−1 − d + 1) = B2

i−1 − (d− 2)Bi−1 for all i ≥ 2. Since
we may suppose that d ≥ 2, we have Bi ≤ B2

i−1. Thus, for all i ≥ 2 we have Bi ≤ (2d)2i−2
and

therefore Bn = deg(I,≺) ≤ (2d)2n−2
. We summarize the above discussion in the next theorem.

Theorem 49. (Caviglia and Sbarra, 2005) Suppose that I is in quasi stable position and that
the ideals I1, . . . ,In−1,I satisfy CP w.r.t. d. Then deg(I,≺) ≤ reg(I) ≤ (2d)2n−2

.

Proof. Since reg(I) equals the maximal degree of an element of the Pommaret basis of I,
deg(I,≺) ≤ reg(I). So, we must only show the second inequality. As the regularity remains in-
variant under linear coordinate transformations, we may w.l.o.g. assume that I is even in strongly
stable position. Then, by (Mall, 1998, Theorem 2.15), we have deg(I,≺) = reg(I). In addition,
Proposition 39 entails that also I1, . . . ,In−1,I satisfy CP w.r.t. d. Now the assertion follows
from the consideration above.

In the following, we derive a dimension dependent upper bound for deg(I,≺).

Theorem 50. Suppose that I is in strongly stable position and D = dim(I) ≥ 2. Then

deg(I,≺) = reg(I) ≤
(
dn−D((n − D + 1)(d − 1) + 2) + (n − D)(d − 1)

)2D−2
.

Proof. The equality follows from (Mall, 1998, Theorem 2.15). Since I is in strongly stable
position, In−D ⊂ k[x1, . . . , xn−D] is zero-dimensional (Seiler, 2009, Prop 3.15). According to
Theorem 22, deg(In−D,≺) ≤ (n−D)(d−1)+1. Hence the maximal degree of a term in G(LT(I))
which depends only on x1, . . . , xn−D is at most this bound. We shall now construct an upper
bound for the degree of the terms in G(LT(I)) containing at least one of the remaining variables
xn−D+1, . . . , xn. Following the approach by Caviglia and Sbarra, we first look for an upper bound
for the number of these terms.
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Consider a term m = xα1
1 · · · x

αn
n ∈ G(LT(I)) with αi > 0 for some i ≥ n − D + 1. It is clear

that xα1
1 · · · x

αn−D
n−D belongs to the complement of LT(In−D). Since the ideal In−D ⊂ k[x1, . . . , xn−D]

is zero-dimensional, Theorem 22 entails that

dimk

(
k[x1, . . . , xn−D]/In−D

)
≤ dn−D.

Hence the number of terms xα1
1 · · · x

αn−D
n−D is at most dn−D. On the other hand, for any index n −

D + 1 ≤ i ≤ n we have αi ≤ degi(LT(I)) ≤ deg(Ii,≺). Furthermore, we know that two distinct
term in G(LT(I)) differ already in their first n − 1 variables. These arguments imply that the
number of terms in G(LT(I)) containing at least one of the variables xn−D+1, . . . , xn is at most
dn−D ∏n−1

i=n−D+1
(
deg(Ii,≺) + 1

)
.

The strongly stability of I implies that CP holds for LT(I) w.r.t. (n − D)(d − 1) + 1 ≥ d by
Proposition 39. Hence deg (I,≺) −

(
(n − D)(d − 1) + 1

)
+ 1 must be less than or equal to the

number of terms in G(LT(I)) containing at least one of the variables xn−D+1, . . . , xn leading to
the estimate

deg(I,≺) ≤ dn−D
n−1∏

i=n−D+1

(
deg(Ii,≺) + 1

)
+ (n − D)(d − 1) .

Since In−D+1 is a one-dimensional ideal then from Theorem 30, it follows that deg(In−D+1,≺) ≤
(n − D + 1)(d − 1) + 1. Thus, we can write

deg(I,≺) ≤ dn−D((n − D + 1)(d − 1) + 2)
n−1∏

i=n−D+2

(
deg(Ii,≺) + 1

)
+ (n − D)(d − 1) .

Set Bn−D+1 = dn−D((n − D + 1)(d − 1) + 2) + (n − D)(d − 1) and recursively

B j = dn−D((n − D + 1)(d − 1) + 2)
j−1∏

i=n−D+2

(Bi + 1) + (n − D)(d − 1)

for n − D + 3 ≤ j ≤ n. One easily verifies that these numbers satisfy the recursion relation
B j =

(
B j−1 − (n − D)(d − 1)

)
(B j−1 + 1) + (n − D)(d − 1) = B2

j−1 −
(
(n − D)(d − 1) − 1

)
B j−1.

We may again assume that d ≥ 2, and therefore B j ≤ B2
j−1 for n − D + 3 ≤ j ≤ n. This

implies that B j ≤ (dn−D((n−D + 1)(d − 1) + 2) + (n−D)(d − 1))2 j−n+D−2
and in particular we have

Bn ≤ (dn−D((n − D + 1)(d − 1) + 2) + (n − D)(d − 1))2D−2
.

Remark 51. It should be noticed that in the case that D ≤ 1, Thms. 22 and 30 present sharp
upper bounds for deg(I,≺) and therefore in all of our improved bound we can ignore these
two cases. Now, let us compare the dimension dependent bounds A(n, d,D) = 2d(n−D)2D−1

de-
rived in Theorem 44 and B(n, d,D) = 2(1/2dn−D + d)2D−1

due to Mayr and Ritscher (2013) with
C(n, d,D) = (dn−D((n−D + 1)(d−1) + 2) + (n−D)(d−1))2D−2

obtained now. Obviously, all three
bounds describe essentially the same qualitative behavior, although they are derived with fairly
different approaches. However, the bound C(n, d,D) for D ≥ 2 has always the best constants. We
claim that for infinite values of n, d,D we have C(n, d,D) < B(n, d,D) < A(n, d,D). To illustrate
these relations, let us take n−D = 2 and D = 2. Then, A(n, d,D) = 2d4, B(n, d,D) = 2(d2/2+d)2

and C(n, d,D) = 3d3 − d2 + 2d − 2. One observes readily that the dominant term of C(n, d,D)
has smallest degree and so it is the sharpest upper bound. In the case of a hypersurface, i.e. for
D = n − 1, even the bound A(n, d,D) is always better than B(n, d,D), as its constant is always 2
versus 2(3/2)2n−2

for the Mayr-Ritscher bound.
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Again an application of Proposition 35 yields immediately the following improved bound
depending on both the depth and the dimension of I.

Corollary 52. Under the assumptions of Theorem 50, one has

deg(I,≺) = reg(I) ≤ (dn−D((n − D + 1)(d − 1) + 2) + (n − D)(d − 1))2D−λ−2
.

We conclude the paper by presenting an upper bound for reg(I) when the characteristic of
k is positive. It should be noted that in this case, it is not always possible to achieve strongly
stable position by linear coordinate transformations (see (Hashemi et al., 2017) for a more de-
tailed discussion). Below, by using Lazard’s upper bound, we improve the upper bound stated in
(Caviglia and Sbarra, 2005, Cor. 2.6). For this purpose, we adopt some notations and definitions
from loc. id. and give a simpler proof to Theorem 2.4 in that paper.

In the rest of the paper, we assume that the characteristic of k is positive. According to the flat
base change property of local cohomology, we may assume that the size of k is infinite. Then,
given an ideal I, by (Hashemi et al., 2017, Alg. 3), there exists a linear coordinate transformation
Ψ so that Ψ(I) is in quasi stable position. Therefore, to obtain an upper bound for reg(I), w.l.o.g.
we may assume in the sequel that I is in quasi stable position, see Rem. 7.

Recall that a sequence of non-constant homogeneous polynomials g1, . . . , gt ∈ P is called
almost regular for R if gi for i = 2, . . . , t is a non-zero divisor on the ring P/(I+ 〈g1, . . . , gi−1〉)≥`
for some ` sufficiently large. This is equivalent to the condition that gi does not belong to any
associated prime of I + 〈g1, . . . , gi−1〉 except the maximal homogeneous ideal of P. Since I is
in quasi stable position then by (Seiler, 2009, Proposition 4.4) we conclude that the sequence
xn−D+1, . . . , xn is almost regular on R. This observations allows us that in the next lemma we
apply this sequence instead of a sequence of generic linear forms and this leads to a simpler proof
than the one given by Caviglia and Sbarra. Below, we let λ(M) be the length of an P-module
M; i.e. the largest integer m so that there exists a chain N0  N1  · · ·  Nm of sub-modules
of M. If no such largest length exists, then M has infinite length. In the case that λ(M) is finite,
one can use Hilbert series to compute it. For the special case that we use below, when J is a
monomial ideal, λ((J : xn)/J) is finite and it is equal to the value of HSJ (t)−HSJ :xn (t) at t = 1.
For example, let J = 〈x4

1, x1x10
2 〉 ⊂ k[x1, x2]. Then, HSJ (t) − HSJ :xn (t) = t10 + t11 + t12 and

therefore λ((J : xn)/J) = 3. One observes that for this special case, we have λ((J : xn)/J) ≤∏n−1
i=1 (deg(Ji)) = 4.

Lemma 53. (Caviglia and Sbarra, 2005, Theorem 2.4) Under the above assumptions, if D > 0
then reg(I) ≤ max{d, reg(In−1)} + dn−D ∏n−1

i=n−D+1 reg(Ii).

Proof. In their proof, Caviglia and Sbarra proved reg(I) ≤ max{d, reg(In−1)} + λ((I : xn)/I).
Thus, it suffices to show that λ((I : xn)/I) ≤ dn−D ∏n−1

i=n−D+1 reg(Ii). Since the ideals I and
Ii for each i are in quasi stable position, using (Seiler, 2009, Cor. 9.5), we can replace I by
J = LT(I). It is clear that λ((J : xn)/J) is equal to the number of terms m = xα1

1 · · · x
αn
n < J

so that mxn ∈ J . It follows that xα1
1 · · · x

αn−D
n−D belongs to the complement of J . Since the ideal

In−D ⊂ k[x1, . . . , xn−D] is zero-dimensional, we get from Theorem 22

dimk

(
k[x1, . . . , xn−D]/In−D

)
≤ dn−D

and the number of choices for xα1
1 · · · x

αn−D
n−D is at most dn−D. Hence, a repetition of the ar-

guments in the proof of Theorem 50 yields λ((J : xn)/J) ≤ dn−D ∏n−1
i=n−D+1 deg(Ii,≺) ≤

dn−D ∏n−1
i=n−D+1 reg(Ii) and this completes the proof of the lemma.
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In the case D ≤ 1, Theorem 22 and Cor. 33 provide sharp upper bounds for reg(I) and
therefore we will ignore this case in the sequel. The next theorem improves the upper bound
reg(I) ≤

(
dn−D + (n − D)(d − 1) + 1

)2D−1
presented in (Caviglia and Sbarra, 2005, Cor. 2.6).

Theorem 54. Under the above assumptions, if D > 1 then

reg(I) ≤
(
dn−D((n − D + 1)(d − 1) + 1) + (n − D)(d − 1) + 1

)2D−2
.

Proof. Our proof follows similar ideas as the proof of (Caviglia and Sbarra, 2005, Cor. 2.6).
We first observe that In−D+1 ⊂ k[x1, . . . , xn−D+1] is one-dimensional and therefore by Cor. 33,
reg(In−D+1) ≤ (n − D + 1)(d − 1) + 1 which is indeed equal to B0. Now, set B1 = dn−D((n − D +

1)(d − 1) + 1) + (n − D)(d − 1) + 1
)

and recursively

B j = B j−1 +

j−1∏
i=1

Bi

for 2 ≤ j ≤ D − 1. It is obvious that B j = B j−1 + (B j−1 − B j−2)B j−1 ≤ B2
j−1 and B j ≤ B2 j−1

1 . On

the other hand, by virtue of Lemma 53, we have reg(I) ≤ BD−1 and therefore reg(I) ≤ B2D−2

1 , as
desired.

Applying Proposition 35 yields the following improved bound depending on both the depth
and the dimension of I, which also settles the conjecture (Hashemi and Seiler, 2017, Con. 4.5).

Corollary 55. Under the assumptions of Theorem 54,

reg(I) ≤
(
dn−D((n − D + 1)(d − 1) + 1) + (n − D)(d − 1) + 1

)2D−λ−2
.
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